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1 Introduction

Non-perturbative dualities in quantum field theories have delivered many profound insights

over the past three or so decades. Most famous among these are the lessons that we have

learned about the very nature of spacetime via the duality between strongly coupled quan-

tum field theories and theories of gravity as manifested in the AdS/CFT correspondence [1].

Within the realm of quantum field theories alone, non-perturbative dualities rely on the

fact that the generating functions of observables include an integration over the degrees of

freedom. Consequently, the choice of degrees of freedom with which we describe the system

may result in multiple possibilities. In four dimensions, for example, the electromagnetic

duality, manifest in the Maxwell equations, allows us to describe a system in terms of

electric or magnetic fields and charges and exchanges fundamental particles for solitonic

degrees of freedom. We therefore have a choice as to how we describe the system, and at
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the perturbative level, one or the other may be more appropriate depending on the problem

at hand. This electric-magnetic duality (and its extension by Witten and Olive [2]) has

had a powerful impact, not only on our understanding of the structure of gauge theories,

but also on some of the deepest mathematical puzzles of our time [3].

A 3-dimensional analogue of the 4-dimensional duality above is one which exchanges

fundamental particles with solitonic vortices but, defined only for abelian gauge theories,

this particle-vortex duality, as well as its physical implications, is much less understood

than its 4-dimensional counterparts. To set the scene for what follows, we will first give an

heuristic description of the particle-vortex duality elaborating on a discussion in the text-

book of Zee [4], before embarking on a more technical treatment in the following section.

Like many concepts commonplace in high energy theory, particle-vortex duality has its

roots in the landscape of condensed matter; in this case in the theory of anyonic supercon-

ductivity [5]. After some limited further development in condensed matter physics, it was

in the context of string theory that more development occured, starting with Intriligator

and Seiberg [6]. Following [4] then, we start with an abelian Higgs model

L = −1

2
|(∂µ − iqAµ)φ|2 − V

(

φ†φ
)

, (1.1)

with some well-behaved potential, V
(

φ†φ
)

for the complex scalar φ. We will ignore the

potential term from now on, but presume that the theory exhibits vortex solutions (and

consequently restrict our attention to three dimensions). Writing φ = |φ|eiθ and restricting

to the solution for which |φ| = v minimizes the potential gives

L = −1

2
v2(∂µθ − qAµ)

2. (1.2)

We can introduce a non-dynamical field ξµ and write the Lagrangian in first order form as

L = +
1

2v2
ξ2µ − ξµ(∂µθ − qAµ) . (1.3)

The phase θ, characterizing the vortex is, in fact, singular at the origin for a vortex solution,

allowing us to split it into a smooth part, and a vortex part:

θ = θsmooth + θvortex , (1.4)

where the vortex monodromy ∆θvortex = 2π. Integrating out θsmooth gives ∂µξ
µ = 0 and

implies that we can write ξµ as the curl of a vector field

ξµ = ǫµνρ∂νaρ . (1.5)

Having integrated out θsmooth and substituted in the new expression for ξµ, we get the

following Lagrangian

L = − 1

4v2
f2µν + ǫµνρ∂νaρ(∂µθvortex − qAµ) , (1.6)

where fµν is the field strength tensor for aµ. A subsequent integration by parts and

rewriting of the resulting term as

aρǫ
ρµν∂µ∂νθvortex = 2πaµj

µ
vortex , (1.7)
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finally gives

L = − 1

4v2
f2µν + 2πaµj

µ
vortex −AµJ

µ, (1.8)

where Jµ = qǫµνρ∂νaρ. Note that equation (1.7) is a crucial step in this derivation. Since

the derivatives are contracted with the epsilon tensor, by symmetry arguments this ex-

pression will naively vanish. The only time this will not be the case is when there are

singularities in θ. Thus, θvortex is explicitly that part of θ which is not smooth and whose

second derivative is related through this equation to the vortex current. If there are no

vortices then this expression will vanish and there will be no duality.

The introduction of an auxiliary vector field ξµ leads to the coupling of the vortex

current to the gauge field aµ. We have gone from a description where the fundamental

excitations are the particles associated to the field θ to the vortex description where the

fundamental degrees of freedom are the vortices associated to θvortex. However, to com-

plete this description, we must have a field whose fundamental excitations themselves are

vortices. To that end, we introduce a new field Φ which couples to aµ precisely for this

purpose. On adding this field, we can define an action which gives a dual description, with

particle and vortex degrees of freedom swapped. The Lagrangian

L = − 1

4v2
f2µν −

1

2
|(∂µ − i2πaµ)Φ|2 − V

(

|Φ|2
)

−Aµ(qǫ
µνρ∂νaρ) , (1.9)

then describes an abelian Higgs model for the vortex field Φ coupled to aµ as opposed to

the original field where θ was coupled to Aµ. The action of the transformation

∂µθ − qAµ = ξµ = ǫµνρ∂
νaρ , (1.10)

exchanges the scalar degree of freedom θ with the gauge field degree of freedom aµ in the

presence of the background gauge field Aµ. However, the necessity of introducing the new

field Φ does not feel very satisfactory. We will see that there is a more complete way to for-

malise the duality.1 The above transformation is also not strictly true in the presence of Φ.

A supersymmetric generalization of these ideas was proposed in [8] (see also [9]),

however a path integral transformation realizing the particle-vortex duality could only

be reduced to an unproven identity. Witten [10] later defined an Sl(2,Z) transforma-

tion on a conformal field theory by combining an S-transformation (which adds an ǫB∂A

term to the Lagrangian) with a T -transformation (which adds a Chern Simons term,

ǫA∂A). For example, starting with a charged scalar Lagrangian of the form L̃(Φ, A),

the TS-transformation maps

L̃(Φ, A)
TS−−→ L(Φ, A,B) = L̃(Φ, A) + ǫijkBi∂jAk + ǫijkAi∂jAk . (1.11)

The current-current two-point function of this three-dimensional CFT is constrained by

conformal symmetry to be of the form:

〈Ji(k)Jj(−k)〉 =
(

δijk
2 − kikj

) t

2π
√
k2

+ ǫijkkk
w

2π
, (1.12)

1A more precise definition of particle-vortex duality, and an undertanding of how it arises in a path

integral formulation was given by Burgess and Dolan in [7]. For completeness, we review their formulation

in appendix A.
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where t and w form a complex coupling τ = w+ it. The action of the TS-transformations

of the Sl(2,Z) group on the complex parameter τ is then τ → (aτ + b)/(cτ + d). Because

this is an action on a conformal field theory, we can ask what the action of the transforma-

tion is on the gravity dual of this theory via the AdS/CFT correspondence. In this case

the transformation acts on a U(1) gauge field with a Maxwell action plus a topological

theta term.

A while later, the constraints imposed on correlators in gauge theories by the existence

of a particle-vortex duality were analysed in [11]. Note that when the theory is changed

by the action of the duality, (i.e. the theory is not self-dual), the correlators are themselves

transformed. The authors also analyzed the AdS4 × S7 gravity dual of the N = 8 three-

dimensional SU(N) SYM in the large N limit, and found that Maxwell duality in the

bulk leads to the same type of constraints on correlators as would be obtained from a self-

dual field theory. In abelian models a similar relation was obtained, and a correspondence

with AdS4 × S7 was proposed as an implicit relation coming from large N non-abelian

gauge theories.

Today, the ABJM model [12] is understood as the correct description of the field theory

living on M2-branes and is dual (in the appropriate limit) to a type IIA supergravity on

AdS4 ×CP 3. This begs the question as to whether the results of [11] can be reinterpreted

from this point of view.2

The aim of this article is two-fold: first we seek to provide a more precise definition of

the particle-vortex duality at the level of a path integral transformation then, using this,

we attempt to embed the duality transformation in the ABJM model.

The structure of the paper is as follows. In section 2 we revisit the formulation of

the particle-vortex duality by retaining some features of the relation of [7] (reviewed in

appendix A) and defining it as an action on the path integral of the theory. In particular

we find that, by combining it with the Mukhi-Papageorgakis Higgs mechanism for three-

dimensional Chern-Simons theories [15] (see also [16]), we can define it as a self-duality of

abelian Chern-Simons theories. In section 3 we look explicitly at vortex solutions and the

conditions under which they exist in such theories.

In section 4, we embed the particle-vortex duality in ABJM, showing that the abelian

duality is part of the (large N) non-abelian theory. Finally, in section 5, we show that

the particle-vortex duality is naturally obtained as the boundary relation corresponding to

Maxwell duality in the bulk, using the AdS/CFT prescription. Thus, as in [17, 18], we see

that by using an abelian reduction of ABJM to an interesting non-conformal theory, we

learn something about the structure of ABJM.

2 Abelian particle-vortex duality in the path integral

In this section we will extend the path-integral formulation of [7] to give a better definition

of the particle-vortex duality in abelian theories. To this end, let us consider a path integral

for an abelian Higgs model consisting of a complex scalar field Φ = Φ0e
iθ coupled to a U(1)

2The ABJM theory is also known to admit a maximally supersymmetric mass deformation [13, 14],

which not only allows us to go away from the conformal limit but also contains a rich spectrum of solitonic

excitations.
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gauge field aµ. Any kinetic term for the gauge field will be no more than a spectator for the

transformation, as in the Burgess-Dolan formulation described in appendix A and we will

not include it in what follows. There will also be a potential term for Φ0, V (Φ2
0), but this

will also be a spectator so we will also choose to omit it now. When we want to explicitly

discuss vortex solutions however, the potential will be important and will be included. As

long as we are never integrating over aµ or Φ0 we do not need to consider these last terms

we have mentioned.

The partition function for the theory is

Z =

∫

DaµDΦ0Dθ exp
{

− i

2

∫

d3x|(∂µ − ieaµ)Φ|2
}

(2.1)

=

∫

DaµDΦ0Dθ exp
{

− i

2

∫

d3x
[

(∂µΦ0)
2 + (∂µθsmooth + ∂µθvortex + eaµ)

2Φ2
0

]

}

,

where, as in the previous section, we have split the θ field into a smooth part, and a

topologically non-trivial and non-smooth vortex part. We define λµ = ∂µθ, after which we

promote it to an independent variable in a first order formulation. λµ = ∂µθ follows from

the constraint ǫµνρ∂νλρ = 0, which can be imposed via a Lagrange multiplier bµ, giving

the path integral for the ‘master’ action

Z =

∫

DaµDΦ0DbµDλµ exp
{

− i

2

∫

d3x

[

(∂µΦ0)
2 + (λµ,smooth + λµ,vortex + eaµ)

2Φ2
0

+
1

e
ǫµνρbµ∂νλρ

]}

. (2.2)

Integrating over bµ returns us to the original formulation for the partition function, es-

tablishing the self-consistency of our procedure. If however we integrate over λµ first, we

obtain the equation of motion

(λµ,smooth + λµ,vortex + eaµ) eΦ
2
0 = −ǫµνρ∂νbρ , (2.3)

which, on substitution back into the action produces the path integral for the dual action,

Z =

∫

DaµDΦ0Dbµ exp
{

−i
∫

d3x

[

1

4e2Φ2
0

f bµνf
bµν + ǫµνρbµ∂νaρ −

2π

e
jµvortex(t)bµ

+
1

2
(∂µΦ0)

2

]}

, (2.4)

where jµvortex(t) is the vortex current in (A.9), i.e.,

jµvortex(t) =
1

2π
ǫµνρ∂ν∂ρθ =

1

2π
ǫµνρ∂ν∂ρω =

∑

a

Na ẏ
µ
a δ[x− ya(t)] , (2.5)

and is associated with the existence of vortex boundary conditions for θ in the original

action with vortices positioned at ~ya(t) in the two dimensional space (see equation (A.5)

for a definition of ω). In the dual action, it appears as an explicit source term. Here,

the sum is over all vortex positions labeled by the index a. Also note that, as in (A.19),
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jµ = eΦ2
0∂µθ is a scalar current, and we have then the duality relation between the vortex

current and the scalar current:

jµvortex(t) =
1

2πeΦ2
0

ǫµνρ∂νjρ . (2.6)

Notice that here Φ0 has the interpretation of a coupling constant for the field bµ dual to

θ, which itself becomes a dynamical Maxwell gauge field. In this sense this duality maps

particles to vortices, justifying the name particle-vortex duality.

2.1 The Mukhi-Papageorgakis Higgs mechanism

There is a striking similarity between the particle-vortex duality described here and a

version of the Higgs mechanism for three-dimensional Chern-Simons theories discovered

by Mukhi and Papageorgakis in [15] in the context of ABJM theories, but valid more

generally (see also [16] for more details about its implementation). The statement analogous

to the usual Higgs mechanism statement that a massless gauge field eats a scalar and

becomes massive, is now that a Chern-Simons gauge field (with no dynamical degrees of

freedom) eats a scalar and becomes dynamical, i.e. of Maxwell (or Yang-Mills) form with

one dynamical degree of freedom.

The mechanism itself goes as follows. We start with an action for a complex scalar,

Ψ, coupled to a Chern-Simons gauge field, aµ,

S = −
∫

d3x

[

k

2π
ǫµνρaµ∂ν ãρ +

1

2
| (∂µ − ieaµ)Ψ|2 + V

(

|Ψ|2
)

]

, (2.7)

with a vacuum solution Ψ = b. We can then expand the scalar degrees of freedom around

the ground state

Ψ = (b+ δψ)e−iδθ; δθ = θsmooth + θvortex , (2.8)

and plug it back in the action to find

S = −
∫

d3x

[

k

2π
ǫµνρaµ∂ν ãρ+

1

2
(∂µδψ)

2+
1

2
(∂µθsmooth+∂µθvortex + eaµ)

2b2+. . .

]

. (2.9)

Here, the omitted terms come from the δψ self-interaction in V
(

|Ψ|2
)

and the δθ-δψ

interaction. Note that, for the purposes of making a comparison, we have allowed for the

possibility that δθ contains a vortex piece θvortex. The mechanism by which the Chern-

Simons vector eats the scalar and becomes a dynamical Maxwell vector happens through

exactly the same redefinition as in the the usual Higgs mechanism. Here we write

eaµ + ∂µθsmooth + ∂µθvortex = ea′µ , (2.10)

trivially integrate out θ and add a boundary term to the action to obtain

S = −
∫

d3x

[

k

2π
ǫµνρa′µ∂ν ãρ +

1

2
(∂µδψ)

2 +
1

2

(

ea′µ
)2
b2 − k

e
jµvortexãµ + . . .

]

. (2.11)

Solving for a′µ gives

aµ +
1

e
∂µδθ = a′µ = − k

2πb2
ǫµνρ∂ν ãρ , (2.12)
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which is similar to (2.3) for the particle-vortex duality. Defining f̃µν = ∂µãν−∂ν ãµ, we find

S =

∫

d3x

[

− k2

16π2b2

(

f̃µν

)2
− 1

2
(∂µδψ)

2 +
k

e
jµvortexãµ + . . .

]

, (2.13)

where again some nonlinear terms in the fluctuations — specifically, the self-interactions

of δψ coming from V
(

|Ψ|2
)

and terms that would appear when replacing b in the Maxwell

coupling with |Ψ| = b+ δψ — are omitted with impunity, since they could be reintroduced

by simply writing |Ψ| instead of b and retaining V
(

|Ψ|2
)

. We close this section with two

points of note. Firstly, the addition of a term −ǫµνρãµ∂νbρ to either (2.7) or (2.13) can

be made without changing anything since the transformations don’t act on either ã or b.

Second, assuming vortex boundary conditions in the initial action gives a vortex current

coupling in the final action. Again, this is as in the case of particle-vortex duality, although

here we can assume regular boundary conditions and thus avoid the vortex current jµvortex.

2.2 A symmetric duality

As described in the previous section, particle-vortex duality is not a self-duality, in that it

maps the original action to a manifestly different action. In particular it dualizes the scalar

angle θ to the gauge field bµ. For our purposes of embedding the duality in the ABJM

model, it will be useful to ‘symmetrize’ this duality. As we demonstrate now, this may be

acheived by adding a gauge field and a real scalar, and dualizing them to a complex scalar.

This means that the original and final action will look the same. As before, we may also

add vortex currents. We will also omit a possible kinetic term for aµ and explicitly write

the self-interactions of the scalars Φ and χ. Our launching point, again, will be the path

integral

Z =

∫

DaµDΦ0Dχ0DθDb̃µ exp
{

−i
∫

d3x

[

1

2
|(∂µ − ieaµ)Φ0e

−iθ|2 + 1

2
(∂µχ0)

2

+
1

4e2χ2
0

f (b̃)µν f
(b̃)µν + ǫµνρaµ∂ν b̃ρ −

2π

e
b̃µj̃

µ
vortex(t) + V

(

Φ2
0

)

+ V
(

χ2
0

)

]}

, (2.14)

where j̃µvortex(t) is a source term that, in the dual version, will be associated to vortex bound-

ary conditions for the dual scalar. b̃µ is our new gauge field and χ0, the new scalar. It is the

addition of these two that will lead to a self-dual action. We again write a first order formu-

lation for λµ = ∂µθ and then impose this relation as the constraint ǫµνρ∂νλρ = 0 through

a Lagrange multiplier bµ. Conversely, we can define λ̃µ via a tilde version of (2.3), namely
(

λ̃µ,smooth + λ̃µ,vortex + eaµ

)

eχ2
0 = −ǫµνρ∂ν b̃ρ , (2.15)

and then introduce λ̃µ in the action such that we have the above equation as its equation

of motion. Either way, we obtain the path integral for the master action

Z =

∫

DaµDΦ0Dχ0DλµDbµDλ̃µDb̃µ (2.16)

exp

{

−i
∫

d3x

[

1

2
(∂µΦ0)

2 +
1

2
(∂µχ0)

2 +
1

e
ǫµνρ

(

bµ∂νλρ + b̃µ∂ν λ̃ρ

)

+
1

2
(λµ + λµ,vortex + eaµ)

2Φ2
0 +

1

2

(

λ̃µ + λ̃µ,vortex + eãµ

)2
χ2
0 + V

(

Φ2
0

)

+ V
(

χ2
0

)

]}

.
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Now repeating the same procedure for the fields with tilde replaced with untilde (or, equiv-

alently, integrating over λµ and b̃µ, to write λ̃µ = ∂µθ̃), we obtain the path integral for the

dual action

Z =

∫

DaµDΦ0Dχ0Dθ̃Dbµ exp
{

−i
∫

d3x

[

1

2
|(∂µ − ieaµ)χ0e

−iθ̃|2 + 1

2
(∂µΦ0)

2

+
1

4e2Φ2
0

f (b)µν f
(b)µν + ǫµνρaµ∂νbρ −

2π

e
bµj

µ
vortex(t) + V

(

Φ2
0

)

+ V
(

χ2
0

)

]}

. (2.17)

Assuming that aµ has no kinetic term, we can now actually integrate it out in both

the original and dual actions. Indeed, the terms containing aµ in the Lagrangian

(equation (2.14)) are

L(a) = −1

2
e2a2µ|Φ0|2 − aµ(jµ + Jµ) , (2.18)

with jµ = − ie
2 (Φ∂µΦ

∗ − Φ∗∂µΦ) = e∂µθ, the scalar current and topological (vortex-like)

current Jµ = ǫµνρ∂ν b̃ρ. Solving for aµ we obtain

aµ = − 1

e2Φ2
0

(jµ + Jµ) , (2.19)

and substituting back into L(a), produces an extra contribution

Lextra = +
1

2e2Φ2
0

(jµ + Jµ)
2 = − 1

4e2Φ2
0

(

f b̃µν − ǫµνρj
ρ
)2
. (2.20)

Having thus eliminated aµ from the picture, we are now in a position to realize the duality

as a map from

Z =

∫

DΦ0Dχ0DθDb̃µ exp
{

−i
∫

d3x

[

1

2
|∂µ
(

Φ0e
−iθ
)

|2 + 1

2
(∂µχ0)

2 +
1

4e2χ2
0

f (b̃)µν f
(b̃)µν

+
1

4e2Φ2
0

(

f (b̃)µν − ǫµνρj
ρ
)2

− 2π

e
b̃µj̃

µ
vortex(t) + V

(

Φ2
0

)

+ V
(

χ2
0

)

]}

, (2.21)

into

Z =

∫

DΦ0Dχ0Dθ̃Dbµ exp
{

−i
∫

d3x

[

1

2
|∂µ
(

χ0e
−iθ̃
)

|2 + 1

2
(∂µΦ0)

2 +
1

4e2Φ2
0

f (b)µν f
(b)µν

+
1

4e2χ2
0

(

f (b)µν − ǫµνρj̃
ρ
)2

− 2π

e
bµj

µ
vortex(t) + V

(

Φ2
0

)

+ V
(

χ2
0

)

]}

, (2.22)

that furnishes a formulation of the particle-vortex duality with an explicitly self-dual action.

Of course, since our aim is to embed the particle-vortex duality into the ABJM model

and, in this case we have only scalars and a Chern-Simons gauge field at our disposal we will

need to combine the symmetric form of the duality above with the Mukhi-Papageorgakis

Higgs mechanism of the previous section. Moreover, in order for the duality to be nontrivial,

we need to retain the vortex boundary conditions only in the original scalar, not the one

that gets Higgsed. Starting from the path integral

Z =

∫

DaµDΦ0DθDb̃µDχDχ∗DAµ exp

{

−i
∫

d3x

[

1

2
|(∂µ − ieaµ)Φ0e

−iθ|2

+
1

2
|(∂µ − ieAµ)χ0e

−iφ|2 + ǫµνρ
(

1

e
Aµ∂ν b̃ρ + aµ∂ν b̃ρ

)

+ V
(

φ20
)

+ V
(

χ2
0

)

]}

, (2.23)
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we first implement the Mukhi-Papageorgakis Higgs mechanism by shifting Aµ → A′
µ as

in equation (2.10), absorbing φ and performing the (now trivial) path integral over φ.

Subsequently, we integrate over A′
µ using the equation of motion

eAµ + ∂µφ+ ∂µφvortex ≡ eA′
µ =

1

e2χ2
0

ǫµ
νρ∂ν b̃ρ , (2.24)

and get exactly the path integral in (2.14) which, as we saw previously, is dual to that

in (2.17). We now undo the Mukhi-Papageorgakis Higgs mechanism, by writing a first

order formalism for f
(b)
µν in terms of a field Ã′

µ, then introducing a trivial path integration

over a variable φ̃ and shifting A′
µ by

eÃµ + ∂µφ̃+ ∂µφ̃vortex ≡ eÃ′
µ =

1

e2Φ2
0

ǫµνρ∂νbρ , (2.25)

so that we finally arrive at the path integral

Z =

∫

DaµDχ0Dθ̃DbµDΦDΦ∗DÃµ exp

{

−i
∫

d3x

[

1

2
|(∂µ−ieaµ)χ|2+

1

2
|
(

∂µ − ieÃµ

)

Φ|2

+ǫµνρ
(

1

e
Ãµ∂νbρ + aµ∂νbρ

)

+ V
(

φ20
)

+ V
(

χ2
0

)

]}

, (2.26)

where now χ = χ0e
−iθ̃ and Φ = Φ0e

−iφ̃. Naively, it would seem that (2.24) undoes the

duality transformation but it does not, since the interpretation is different. In the Higgs

mechanism, we solve for Aµ and φ, while retaining b̃µ in the theory. In the particle-vortex

duality, we exchange b̃µ for θ̃ and similarly for quantities with tilde and untilde exchanged.

3 Vortex solutions

To summarize the story so far; we have formulated a manifest duality in the path integral

formalism and argued that such a duality should exchange particles with vortices. Obvi-

ously, in order to do so, we need to have vortex solutions in the theory. Until now we have

simply presumed the existence of such vortices in the field theories under investigation.

Clearly this will not be the case for all field theories of the form we have been discussing.

Here, therefore, we devote some time to discuss constraints on the form of the potential

which will lead to such solutions. Thus, we consider the action in the path integral (2.23).

In order to do this one first writes down the full equations of motion, and only afterwards

will sets χ = b̃µ = Aµ = 0 (which is itself a solution of these equations). The remaining

equations of motion then become

ǫµνρ∂νaρ = 0 ,

Φ(DµΦ)
† − Φ†DµΦ = 0 , (3.1)

and the equation of motion for Φ, which depends on the potential is

DµD
µΦ =

dV

d|Φ|2 . (3.2)
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Note that the first of equations (3.1) implies that aµ must be pure gauge while the second

equation means that

Dµθ = 0 ⇒ ∂αθ = aα , (3.3)

where α is the polar angle in the complex plane, and θ is the argument of Φ, i.e. Φ = |Φ|eiθ.
In particular this relation is valid at infinity. This gives the usual charge quantization

condition
∮

dα aα =
∮

dθ which, in turn, implies that θ = Nα. From the 0-component of

equation (3.3) we get for static solutions that a0 = 0.

Note however that this result would imply as usual that |Φ(r = 0)| = 0 for consistency

of the vortex ansatz. This in turn means that the second equation in (3.1) is already

satisfied at r = 0, hence we don’t need aα = N at r = 0. That would be good, since

substituting aα = N , requires that

ǫµνρ∂ν∂ρθ ∝ jµvortex ∝ δ(r) , (3.4)

so the first of equations (3.1) would be satisfied everywhere except at r = 0 which would in

turn imply a discontinuous form for aµ at r = 0, necessitating some kind of regularization

at this point. In fact, as we will soon demonstrate, in order to have a solution we need

|Φ| 6= 0 at r = 0. Consequently, the solution as it stands will be valid everywhere except

at r = 0. It remains now to satisfy the |Φ| equation of motion in order to determine the

vortex profile. We know already from (3.2) that any vortex solution must satisfy

|Φ|′′
|Φ| =

dV

d|Φ|2 , (3.5)

where, from general considerations about vortices, the one-vortex solution should behave

like |Φ| ∼ Ar as r → 0. If in addition, we consider the most general renormalizable

potential in three dimensions, namely the sextic, V = C1|Φ|6 + λ|Φ|4 +m2|Φ|2 for which
dV

d|Φ|2 = m2 + 2λ|Φ|2 + 3C1|Φ|4, several cases of interest for the asymptotic behaviour of

these solutions present themselves. They are (in no particular order):

• m 6= 0 and λ 6= 0. In this case, V = C1|Φ|6 + λ|Φ|4 +m2|Φ|2. Near the origin, we

take as an ansatz for the field

|Φ| ∼ Ar + Crp + . . . . (3.6)

This reduces the equation of motion in this region to

p(p− 1)Crp−2

Ar
= m2 , (3.7)

which fixes p to be 3 and C = Am2/6. Therefore the small−r form of the field is

|Φ| ∼ Ar

(

1 +
m2

6
r2 + . . .

)

. (3.8)

Clearly we could go to any order analytically if needed. Taking the other asymptotic

limit, if we chose that as r → ∞, |Φ| ∼ Ã/rn, there is an inconsistency for non-

zero n as |Φ|′′/|Φ| ∼ 1/r2 → 0, whereas dV/d|Φ|2 = m2 + . . . . To avoid this, we

choose instead

|Φ| ∼ Ã+
B̃

rn
+ . . . . (3.9)

– 10 –



J
H
E
P
1
0
(
2
0
1
4
)
0
5
1

With this ansatz, the equation of motion reduces to

B̃

Ã

n(n+1)

rn+2
=
(

m2+2λÃ2+3C1Ã
4
)

+

(

4λÃB̃+12C1Ã
3B̃

rn

)

+
4λB̃2

r2n
+
18C1Ã

2B̃2

r2n
,

(3.10)

and we see that we need n = 2 to satisfy the radial behaviour, along with the

constraint that the two parentheses must vanish separately. From the first of these

we find,

m2 + 2λÃ2 + 3C1Ã
4 = 0 , (3.11)

which says that |Φ|=Ã is the nontrivial vacuum of the theory, satisfying dV/d|Φ|2=0.

The vanishing of the second parenthesis requires λ + 3C1Ã
2 = 0. Taken together,

these two constraints give that,

Ã2 = −m
2

λ
, C1 =

λ2

3m2
. (3.12)

Note that the latter is a constraint on the potential, allowing for only a certain class

of sixth order potentials with non-zero quadratic and quartic terms to lead to vortex

solutions. This tells us that λ and thus C1 need to be nonzero — i.e. the potential

must be truly sextic. We then solve to the next order in r in the equation of motion,

i.e. 1/r4, giving

B̃ =
3

Ã
(

2λ+ 9C1Ã2
) , (3.13)

so that

|Φ| ∼ Ã+
3

Ãr2
(

2λ+ 9C1Ã2
) + . . . . (3.14)

Clearly as m→ 0 this solution vanishes.

• m = 0 and λ 6= 0. In this case V = C1|Φ|6+λ|Φ|4. As before we take the asymptotics

close to the vortex origin to be

|Φ| ∼ Ar + Crp + . . . . (3.15)

The equation of motion is now

p(p− 1)Crp−2

Ar
≃ 2λ|Φ|2 ≃ 2λA2r2 , (3.16)

which gives p = 5 and C = λA3

10 so that

|Φ| ∼ Ar

(

1 +
λA2

10
r4 + . . .

)

. (3.17)

Far away from the vortex we take |Φ| ∼ Ã
rn which reduces the equation of motion to

n(n+ 1)

r2
≃ 2λ|Φ|2 = 2λ

Ã2

r2n
. (3.18)
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This fixes n = 1 and Ã = 1/
√
λ, meaning that

|Φ| ∼ 1√
λr

+ . . . . (3.19)

Note that Ã+ B̃/rn leads to a contradiction in the equations of motion and thus the

leading term must be ∼ 1
r . In contrast to the first case above, there is no constraint

on the potential.

• m = 0 and λ = 0. In this case V = C1|Φ|6, a purely sextic potential). At r = 0, as

above, we find
p(p− 1)Crp−2

Ar
= 3C1|Φ|4 ∼ 3C1A

4r4 , (3.20)

which gives p = 7 and C = C1A
5/14, so

|Φ| ∼ Ar

(

1 +
C1A

4

14
r6 + . . .

)

. (3.21)

At infinity, with |Φ| ∼ Ã/rn, the equation of motion is

n(n+ 1)

r2
= 3C1

Ã4

r4n
, (3.22)

which gives n = 1/2 and Ã4 = 1/(4C1), so that there

|Φ| ∼ 1

(4C1)
1/4√r

. (3.23)

Evidently, in the case of a massive potential in order to find a non-trivial solution the

constraint (C1 = λ2/(3m2) and m2/λ < 0) must be satisfied, whereas for the two massless

scenarios there are always solutions. A simple check that will be carried out in the next

section finds that the constraint is not satisfied in the case of the massive ABJM model.

This will mean that an embedding of the duality into massive ABJM will not be possible

and within massless ABJM, only the purely sextic potential will be relevant.

3.1 Pure sextic potential

It turns out that in the pure sextic case, V = C1|Φ|6, we can solve everything explicitly

using some simple considerations. The equation of motion is

|Φ|′′ = 3C1|Φ|5 , (3.24)

and we write it in terms of v = |Φ|′ as

v
dv

d|Φ| = 3C1|Φ|5 , (3.25)

solved by

v2 = C1|Φ|6 +K1 ⇒ |Φ|′ = ±
√

C1|Φ|6 +K1 . (3.26)
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The general solution is then

r +K2/
√

C1 = ±
∫

d|Φ|
√

C1|Φ|6 +K1

. (3.27)

Note however that if |Φ| ∼ Ar at r ∼ 0 and |Φ| ∼ A/rn at r ∼ ∞ (for positive n), there

must exist at least one place where d|Φ|/dr = 0 in the middle, or where v = 0, which

implies C1|Φ|6 +K1 = 0, i.e. |Φ|mid = (−K1/C1)
1

6 , which in turn means that3 K1/C1 < 0.

For the branch connected with r = 0 however, it is clear from equation (3.26) that having

K1 < 0, C1 > 0 would mean that |Φ|′ was imaginary and therefore that C1 < 0 and K1 > 0.

However, this is inconsistent as we would have a runaway potential with no stable vacuum.

We must therefore choose C1 < 0 and K1 > 0. This choice is, if anything, worse since

it implies that the potential is negative definite. In fact even if the vacuum were stable in

this case there would be a problem because the solution

|Φ|′ = +
√

K1 − |C1||Φ|6 , (3.28)

until we reach |Φ|mid, and thereafter

|Φ|′ = −
√

K1 − |C1||Φ|6 . (3.29)

This means that we would reach |Φ| = 0 with nonzero derivative, |Φ|′ = −√
K1. Since

|Φ| ≥ 0, this results in a singularity at this point, as |Φ|′ would jump discontinously.

In other words, there is no normal smooth solution for the vortex. This will however

not be a problem as the smoothness constraint is not required. We saw that in any case

the solution is not valid at r = 0 itself, so we can ignore the constraint that |Φ| = 0 there.

With a little more thought it is clear that, with C1 > 0 as it should be, the only solution

that makes sense (which goes to zero at infinity) is one with K1 = 0, since if K1 < 0, |Φ|′
must become imaginary before reaching r = ∞, and if K1 > 0, |Φ|′ must remain finite as

|Φ| = 0, which means it is again reached before r = ∞. Then the solution is

√

C1r +K2 = −
∫

d|Φ|
|Φ|3 =

1

2|Φ|2 , (3.30)

(we can easily see that the + in front of the integral also doesn’t make sense), so that

|Φ| = 1
√√

C12r + 2K2

, (3.31)

which has

|Φ|′(0) = −
√
C1√
2K2

, (3.32)

which is finite, but as we said, we must excise and regularize an infinitesimal region around

r = 0. To conclude this section, there is a strong constraint on the form of the sextic

potential in the massive case which leads to a vortex solution, whereas for a purely sextic

potential, there will be non-smooth solutions which, with excision of the irregular core, will

correspond to vortices.

3Note that we can (and in general should) glue different branches of the solution at the point where v = 0.
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The non-smooth solution will get smoothed out near r = 0 in a physical situation, in

such a way that the simple variable separation ansatz Φ = |Φ|(r)eiθ is not valid any-

more in the vicinity of r = 0. This is very likely, since the energy of the solution,

3C1/2
∫

rdr
[√
C12r + 2K2

]−3
, is finite (convergent both at r = 0 and r = ∞), so it

should be related to a physical state.

4 Embedding particle-vortex duality in ABJM

In order to formulate the particle-vortex duality within ABJM we must be able to find an

abelian reduction of the ABJM model which can both be mapped to the path integral in

equation (2.23) as well as shown to fulfill the constraint which leads to vortex solutions. We

will show below that while the mass-deformed ABJM theory has the appropriate mapping

to the self-dual action with non-zero mass, the vortex constraints on the potential are not

fulfilled and thus we can only get a self-dual theory with vortices in the massless case. See

appendix A for a brief overview of the ABJM formalism.

4.1 Constructing a self-dual abelian reduction of ABJM

For the two bifundamental scalars, Φ and χ, of ABJM we split the N -dimensional ma-

trix space into two (block-diagonal) N/2 dimensional subspaces. In doing so we will be

able to use each of the sub-spaces to construct a self-duality under the particle-vortex

transformation. In the first subspace, we write the ansatz

Aµ = a(1)µ 1N/2×N/2 ,

Âµ = â(1)µ 1N/2×N/2 ,

Q1 = φG1
N/2×N/2 ,

Q2 = φG2
N/2×N/2 ,

Rα = 0 , (4.1)

where Aµ and Âµ live in the two gauge groups making up the U(N)×U(N) gauge symmetry

of ABJM and Qα and Rα with α = 1, 2 are the two (first sub-space) bifundamental scalars.

The combination of Qα and Rα, often labeled Nα can be shown with this choice of Rα

to vanish while the other combination will be non-zero. The covariant derivative on the

scalar Qα is given by

DµQ
α = Gα

(

∂µφ+ i
(

a(1)µ − â(1)µ

)

φ
)

, (4.2)

where the N/2 × N/2 subscript is now left off the Gα for brevity. This leads to the

kinetic terms

Tr
[

|DµQ
α|2
]

= 2
N

2

(

N

2
− 1

)

|∂µ + i
(

a(1)µ − â(1)µ

)

φ|2 . (4.3)

The second contribution to the mass deformed potential is

Mα = µQα +
2π

k

(

QαQ†
βQ

β −QβQ†
βQ

α
)

= Gα

(

µφ+
2π

k
φ3
)

, (4.4)
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and thus the full potential

V = Tr
[

|Mα|2
]

=
N

2

(

N

2
−1

)

|φ|2
∣

∣

∣

∣

µ+
2π

k
φ2
∣

∣

∣

∣

2

=
N

2

(

N

2
−1

)

|φ|2
(

µ+
2π

k
|φ|2

)2

. (4.5)

With this ansatz, the Chern-Simons terms reduce to

k

4π

N

2
ǫµνρ

(

a(1)µ ∂νa
(1)
ρ − â(1)µ ∂ν â

(1)
ρ

)

=
k

4π

N

2
ǫµνρ

(

a(1)µ + â(1)µ

)

∂ν

(

a(1)ρ − â(1)ρ

)

, (4.6)

so we obtain the first half of the required action, with the additional identification Φ → φ,

aµ → a
(1)
µ − â

(1)
µ and b̃µ → a

(1)
µ + â

(1)
µ . The other half, for χ and Aµ, is obtained from the

second N/2 subspace, now with the constraint b̃µ = a
(1)
µ + â

(1)
µ = a

(2)
µ + â

(2)
µ .

4.2 Vortex constraints on the ABJM potential

We are now in a position to construct a duality in this constrained sector of ABJM by

mapping the action to a known self-dual action. However, to prove that this is a particle-

vortex duality, we first need to show that there is enough freedom in the sextic potential

to provide vortex solutions. In the massive case there is a constraint on the potential that

C1 = λ2/3m2 in order to have a vortex, which means that we must have

V =
|φ|2
3m2

(

λ2|φ|4 + 3m2λ|φ|2 + 3m4
)

=
|φ|2
3m2

[

(

λ|φ|2 + 3m2

2

)2

+
3m4

4

]

, (4.7)

in order to have solitons. Clearly, this is not the case for the mass-deformed ABJM model.

Therefore at µ 6= 0, the mechanism doesn’t work. However at µ = 0 (i.e. the purely sextic

potential), as shown in the previous section, vortex solutions do actually exist. This, along

with the field identifications in section (4.1), suffices to demonstrate that at µ = 0 we can

construct a reduction of ABJM which exhibits a particle-vortex self-duality.

4.3 Toward a non-abelian extension

To close this section we speculate on a possible extension of the particle-vortex duality to

non-abelian vortices starting with the observation that with the embedding of the particle

vortex duality, we can write it on the reduction ansatz in the invariant form

1

2
Tr
[

Q†
αD

µQα −Qα(DµQα)†
]

=
1

e
ǫµνρ∂ν Tr

(

Aρ+Âρ

)

=
1

2
Tr

[

Q̃†
αD̃

µQ̃α−Q̃α
(

D̃µQ̃α
)†
]

,

(4.8)

where the trace is taken only on half the matrix space. With the caveat that we have

not been able to prove that this holds in general (i.e. not on the reduction ansatz), it is

tempting to think that one can write a nonabelian generalization of the type

1

2

[

Q†
αD

µQα −Qα(DµQα)†
]

=
1

e
ǫµνρ∂ν

(

Aρ+Âρ

)

=
1

2

[

Q̃†
αD̃

µQ̃α−Q̃α
(

D̃µQ̃α
)†
]

, (4.9)

for half the matrix space, and a similar one for the other half. Showing that this is indeed

that case in general would go a long way toward generalizing the (self-dual) particle-vortex

duality and we leave it as an open problem that we will return to in the future.
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5 Particle vortex duality from Maxwell duality in the bulk, via AdS/CFT

Having established a framework to understand particle-vortex duality in (at least a reduc-

tion of) the ABJM model, we now relate the duality with Maxwell duality in the bulk, via

the AdS/CFT correspondence. The partition function in a three-dimensional conformal

field theory for a gauge field with a source is generically (in Euclidean signature)

ZCFT[ai] =

∫

Dφe−S[φ]+
∫

d3xJiai , (5.1)

(i = 1, 2, 3), where φ represents all of the fields in the gauge theory, J i the U(1) current

that couples to the source ai which is itself the boundary value for the bulk gauge field Aµ.

The corresponding supergravity partition function in the bulk (in Euclidean signature)

is given by the bulk Maxwell action in an AdS geometry

Zsugra[ai] = e
−

∫

d4x
√−g

[

+ 1

4g2
F 2
µν

]

, (5.2)

where Fµν = ∂µAν − ∂νAµ is the bulk gauge field field strength and Φ corresponds to all

dynamical fields in the bulk. We work in the radial gauge Az = 0, so Ai → ai on the

boundary. We define the four-dimensional Maxwell duality,

F̃µν =
1

2
√−g ǫ

µνρσFρσ , (5.3)

in terms of which we can rewrite the partition function as

Zsugra[ai] = Zsugra[ãi] = e
−

∫

d4x
√−g

[

+ 1

4g2
F̃ 2
µν

]

. (5.4)

The question is how to relate this to the particle-vortex duality we have already found, in

a theory with a known gravity dual. The field theory dual to the self-dual Maxwell theory

in the bulk can itself be rewritten, defining a particle-vortex type duality for currents

similar to (2.6)

J i =
1

2
ǫijk∂j J̃k , (5.5)

as

ZCFT[ai] =

∫

Dφe−S[φ]+
∫

d3x 1

2
ǫijk(∂j J̃k)ai =

∫

Dφe−S[φ]+
∫

d3xJ̃i( 1

2
ǫijk∂jak) , (5.6)

so that, if

ãi =
1

2
ǫijk∂jak , (5.7)

it would be written in exactly the form to match Zsugra[ãi], thus relating the particle-vortex

duality (5.5) in the CFT with the Maxwell duality (5.3) in the bulk.
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5.1 Maxwell duality in AdS4

Having identified a link between a generic d + 1-dimensional Maxwell duality and a d-

dimensional particle-vortex-like duality we turn specifically to the Maxwell duality in AdS4.

In Poincaré coordinates,

ds2 =
−dt2 + dx2 + dy2 + dz2

z2
, (5.8)

the Maxwell duality (5.3) becomes

F̃01 = −F23; F̃23 = −F01, . . . (5.9)

i.e. exchanging electric and magnetic components, including in the radial direction. In the

radial gauge A3 = Ã3 = 0 now, we have F23 = −∂3A2 and F̃23 = −∂3Ã2, so

F̃01(z = 0) = ∂zA2(z = 0); F01(z = 0) = ∂zÃ2(z = 0) , (5.10)

where z = 0 is the boundary of AdS. Expanding near the boundary

Ai = ai + zāi +
z2

2
a
(2)
i +

z3

3!
a
(3)
i + . . .

Ãi = ãi + z˜̄ai +
z2

2
ã
(2)
i +

z3

3!
ã
(3)
i + . . . , (5.11)

the above Maxwell duality relations give

f̃ij =
1

2
ǫijkāk; fij =

1

2
ǫijk ˜̄ak , (5.12)

where fij corresponds to the field strength coming only from the leading term in the

expansion on the boundary (i.e. fij = ∂iaj − ∂jai) as well as

˜̄fij = −1

2
ǫijk∂

2
l ak =

1

2
ǫijka

(2)
k ,

f̄ij = −1

2
ǫijk∂

2
l ãk =

1

2
ǫijkã

(2)
k , (5.13)

etc. Again f̄ij = ∂iāj − ∂j āi. This result is obtained from two applications of the duality

transformations. For the first equality, we first write the duality for āi in terms of fij and

then take a derivative. For the second, we look at the order z term in the duality for F̃ij

vs. Ak. Equating the two results gives ∂2l ak = −a(2)k . We will see shortly that this appears

from the Maxwell equations.

Normally, in d 6= 4, one should be able to give only the ai as boundary condition,

but not āi, the subleading term in the z expansion. In d = 4 however, as a result of the

Maxwell duality, we can specify both ai and āi, or equivalently, both the source ai and the

source for the Maxwell dual, ãi. In Poincaré coordinates the Maxwell equations

∂ρ [
√
ggρµgσν∂µ]Aν − ∂ρ [

√
ggρµgσν∂ν ]Aµ = 0 , (5.14)

and since gµν = 1/z2δµν , this reduces to

∂ρδ
ρµ∂µAνδ

σν − ∂ρδ
µρδσν∂νAµ = 0 . (5.15)
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Notice that all explicit factors of z have disappeared from the equation! This happens only

in four dimensions. More generally there will be an extra contribution of (4 − d)/z∂zAσ,

which means that in particular, the leading term in this equation is of order 1/z, namely,

for σ = i, it is (d−4)āi/z, implying that āi = 0. In the gauge Az = 0, we obtain ∂i∂zAi = 0

for σ = z. This constrains ∂iāi = 0, ∂ia
(n)
i = 0 for n ≥ 2, leaving only ∂iai possibly nonzero.

However, since it is perfectly consistent to set it to zero, we will do so. This is equivalent

to the usual radiation gauge with time replaced by z, az = 0 and ∂iai = 0. For σ = i

we obtain

∂2jAi + ∂2zAi − ∂i(∂jAj) = 0 , (5.16)

which when expanded in z (and taking into account the conditions above for σ = z), results

in the system of equations

∂2j ai + a
(2)
i − ∂i(∂jaj) = 0 ,

∂2j āi + a
(3)
i = 0 ,

∂2j a
(n)
i + a

(n+2)
i = 0 . (5.17)

Note that the first relation also implies ∂ia
(2)
i = 0, as it should. Thus, in the radiation

gauge for ai we have a
(n+2)
i = −∂2j a

(n)
i . Specifying ai and āi (or equivalently, ãi) then

completely fixes the solution to the Maxwell equation in AdS4.

Returning to the gauge theory side of the correspondence, we need to specify ai and

ãi as sources for the path integral (5.1), or exchange ai with ˜̄ai and ãi with āi. As claimed

earlier, this exchange of ai with ˜̄ai corresponds to a particle-vortex duality exchanging

dual currents as in (5.5). These currents however, need to be currents of global symmetries

that can couple to the gravity dual gauge fields. We need to have two currents, one for

particles and one for vortices, that can be replaced by their corresponding particle-vortex

dual currents. According to our embedding of particle-vortex duality in ABJM (4.1), the

scalar φ appears in half of the U(N) space and χ in the other half. With this ansatz

jµ = ĵµ from (B.4) but splits into two currents (for each of the two N/2 subspaces) of J̃

type in (5.5), J̃
(1)
i and J̃

(2)
i that couple to āk and ˜̄ak respectively.

6 Conclusions

This article details our exploration of holographic particle-vortex duality. In particular we

have foccused on its realization in the ABJM model and a possible relation to Maxwell

duality in AdS4 via the AdS/CFT correspondence. By combining a path integral version

of particle-vortex duality with the Mukhi-Papageorgakis Higgs mechanism we have for-

mulated a symmetric version of the transformation that acts as a self-duality. We then

proceeded to show how to embed it as an abelian duality in the (2+1)-dimensional, N = 6

super Chern-Simons-matter theory that is the ABJM model and speculated on a possible

non-abelian extension. Going to the gravity side of the correspondence, Maxwell duality

in AdS4 is found to reduce on the boundary to a particle-vortex duality acting on two

independent gauge field sources ā and ˜̄a and their associated currents J̃ (1) and J̃ (2).
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Our primary motivation for this work was two-fold; first we simply wanted to under-

stand if particle-vortex duality is realized in the (mass-deformed) ABJM model with its

rich solitonic spectrum and second, we wanted to see if the phenomenological work of [11]

could be embedded in the concrete setting of the AdS4×CP
3/ABJM correspondence. This

work paves the way for both these directions but there remains much to be done. Among

the possible extensions of this work are

• the development of our speculations on a non-abelian version of the particle-vortex

duality. To the best of our knowledge the duality has thus far been formulated only

of vortices of the conventional Nielsen-Olesen type exhibited by the abelian Higgs

model and variants thereof. Vortices, however, come in many different forms and

flavors4 such as non-abelian as well as semi-local kinds. It would be of great interest

to understand if and how the duality applies to these.

• An understanding of the manifestation of the full particle-vortex duality on the

gravity side of the correspondence. In particular, having established, in this arti-

cle, that the duality can actually be embedded into (at least some reduction of) the

ABJM model, an important development would be to establish precisely how it acts

on states of the type IIA superstring on AdS4 × CP
3.

• The extraction of the phenomenological results for quantum critical transport uncov-

ered in [11].

• A more complete understanding of how the particle-vortex duality of this article

relates to level-rank duality and its generalizations discovered by Kutasov and col-

laborators in recent years.

It is quite clear that particle-vortex duality should of great interest to both the holographic

condensed matter as well as more formal string theoretic communities and we hope that

this article will stimulate further work in this area.
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A Particle-vortex duality à la Burgess and Dolan

In this appendix we review the duality of [7], ignoring some terms that are not essential to

our argument.

A.1 First derivation

The starting point is (1.2), the action of an abelian Higgs system of constant modulus,

with an external gauge field Aµ. One also introduces a statistical (Chern-Simons) gauge

field5 aµ:

L(φ, a,A) = −κ
2
[∂µφ− qφ (aµ +Aµ)φ]

2 − π

2θ
ǫµνρaµ∂νaρ

+ Lp(ξ, a+A) , (A.1)

where

Lp(ξ, a+A) =
∑

k

[m

2
ξ̇µk ξ̇k,µ + qkξ̇

µ
k (a+A)µ

]

δ[x− ξk(t)] (A.2)

is the particle Lagrangian. Here, θ = 2πn for bosons and θ = (2n+ 1)π for fermions, and

φ is the phase angle of Φ = |Φ|e−iφ.

As is usual for dualities in the path integral formulation, we lift this action to a master

action through the coupling of φ to a new gauge field Aµ constrained by a Lagrange-

multiplier field bµ to be pure gauge:

L = −κ
2
[∂µφ− qφ(aµ +Aµ +Aµ)φ]

2 − π

2θ
ǫµνρaµ∂νaρ

+ Lp(ξ, a+A) + ǫµνρbµ∂νAρ + . . . . (A.3)

Indeed, integrating over bµ, we find ∂[νAρ] = 0, and then integrating over Aµ is equivalent

to putting it to zero.6 On the other hand, integrating first over φ instead, and then over

A, will lead to a dual action in terms of the Lagrange multiplier bµ.

To do that, care must be taken about the periodicity of φ in the presence of vortices

for the original complex scalar field Φ. We have

φ(θ + 2π) = φ(θ) + 2π
∑

a

Na , (A.4)

where Na is the vorticity or winding number of vortex a. We then write φ = ω + ϕ,

where ϕ satisfies periodic boundary conditions, ϕ(θ + 2π) = ϕ(θ), and ω(x) is an explicit

vortex solution,

ω(x) =
∑

a

Na arctan

(

x1 − y1a
x2 − y2a

)

≡
∑

a

Naθa , (A.5)

where
x1 − y1a
x2 − y2a

= tan θa (A.6)

defines the angle of rotation around a particular vortex. In the notation of [4] described in

the introduction, ω corresponds to θvortex, and ϕ to θsmooth.

5This field, which arises from the combinatorics of the charged particles, has no dynamical degrees of

freedom.
6Performing the integration over bµ produces a functional delta function which enforces the constraint

ǫµνρ∂νAρ = 0; this, together with the gauge fixing condition, implies that integrating over Aµ is equivalent

to setting Aµ = 0.
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We then define vµ = ∂µω, obtaining

vµ =
∑

a

Na
1

1 + tan2 θa
∂µ tan θa =

∑

a

Na∂µθa , (A.7)

which means that

ǫµνρbµ∂νvρ = bµ
∑

a

Na ǫ
µνρ∂ν∂ρθa = 2πbµ

∑

a

Na ẏ
µ
a δ[x− ya(t)] = 2πbµj

µ(t) , (A.8)

where

jµ(t) = jµvortex(t) =
∑

a

Na ẏ
µ
a δ[x− ya(t)] (A.9)

is the vortex current. Note that ǫij∂i∂jθa = 2πδ2(x), so we can indeed verify the above

formula for static yia(t) = yia, when ẏ
0
a = 1 and the rest are 0, giving

ǫµνρ∂ν∂ρθa = δµ0ǫij∂i∂jθa = 2πδµ0δ2(x− ya) . (A.10)

Note now that (A.3) has a gauge invariance

δAµ = ∂µλ; δφ = qφλ , (A.11)

which we can gauge-fix by putting ϕ = 0 (i.e. φ = ω), thus making the path integration

over φ trivial. We are thus left with only the path integral over Aµ to do, and since

∂µφ = ∂µω = vµ, the path integral we need to determine is
∫

DAµ exp

{

i

∫

[

−κ
2
(vµ − qφ(aµ +Aµ +Aµ))

2 + ǫµνρ∂µbνAρ

]

}

, (A.12)

and of course, we still have the particle action and the statistical gauge field part of the

action outside the path integral. Then, defining

Jρ ≡ ǫµνρ∂µbν , (A.13)

we get the path integral

∫

DAµ exp



i

∫



−κ
2
q2φ

(

Aµ+aµ+Aµ − vµ
qφ

− Jµ
kq2φ

)2

− Jµ

(

aµ+Aµ − vµ
qφ

)

+
J2
µ

2κq2φ









= N exp

[

i

∫

(

−Jµ
(

aµ +Aµ − vµ
qφ

)

+
J2
µ

2κq2φ

)]

.

Given ∫

Jµv
µ

qφ
=

∫

1

qφ
ǫµνρ∂µbνvρ =

∫

1

qφ
ǫµνρbµ∂νvρ =

2π

qφ
bµj

µ(t) (A.14)

and

J2
µ = 2δρσµν ∂

µ bν∂ρbσ =
1

2
f (b)2µν , (A.15)

where f
(b)
µν = ∂µbν − ∂νbµ, we have as the dual action

Ldual(a, b, A) = − 1

4κq2φ
f (b)2µν − ǫµνρbµ∂ν(aρ +Aρ) +

∑

a

2π

qφ
Na ẏ

a
µb

µ δ(x− ya(t))

− π

2θ
ǫµνρaµ∂νaρ + Lp(ξ, a, A) . (A.16)
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Note that, besides the dualization from the field φ to the field bµ, we have also obtained an

explicit action for moving vortices, with positions yaµ(t), namely 2πbµj
µ
vortex(t). Therefore

we explicitly see that the dualization of φ to bµ also exchanges particles with vortices,

deserving the name of particle-vortex duality.

A.2 Second derivation

We now review a second derivation from [7], which is closer to what we use in the bulk of

the paper. We start with an abelian Higgs action where the complex scalar field is coupled

to a Chern-Simons gauge field a and an external gauge field A, with an arbitrary scalar

potential depending only on |Φ|,

S = −1

2

∫ [

[(i∂µ − eãµ)Φ]
† [(i∂µ − eãµ)Φ] +

πe2

θ
ǫµνρaµ∂νaρ

]

+ Sint
[

|Φ|2
]

, (A.17)

where ã ≡ a+A. We rewrite it as

S = −1

2

∫ [

(∂µΦ)
†(∂µΦ) + e2|Φ|2ãµãµ − 2ãµj

µ +
πe2

θ
ǫµνρaµ∂νaρ

]

+ Sint
[

|Φ|2
]

, (A.18)

where the scalar current is

jµ =
ie

2

[

Φ†∂µΦ−
(

∂µΦ
†
)

Φ
]

= e|Φ|2∂µθ . (A.19)

Then we split Φ as before into a vortex part v and a smooth part,

Φ(~r) = Φ0(~r)e
−iθ(~r)v(~r) , (A.20)

where

v(~r) = exp

[

2πi

qφ

∑

a

Na arctan

(

x1 − y1a
x2 − y2a

)

]

. (A.21)

Then we have

Sa[Φ0, θ, a, A] = −1

2

∫

[

(∂µΦ0)
2 + (∂µθ − iv∗∂µv − eãµ)

2Φ2
0

]

+ SCS [a] + Sint
[

|Φ|2
]

= −1

2

∫ [

(∂µΦ0)
2 + e2Φ2

0ãµã
µ +

1

e2Φ2
0

jµj
µ − 2ãµj

µ

]

− πe2

2θ

∫

ǫµνρaµ∂νaρ

+ Sint[Φ
2
0] , (A.22)

where the current is

jµ = eΦ2
0(∂µθ + iv∗∂µv) . (A.23)

Now we define λµ = ∂µθ.
7 We substitute the integration over θ with integration over λµ,

subject to the constraint ǫµνρ∂νλρ = 0 imposed with a Lagrange multiplier b̃µ, i.e.

∫

Dθ exp
[

− i

2

∫

(∂µθ + iv∗∂µv − eãµ)
2Φ2

0

]

=

∫

DλµDb̃µ exp
[

− i

2

∫

(λµ + iv∗∂µv − eãµ)
2Φ2

0 + ǫµνρb̃µ∂νλρ

]

. (A.24)

7This is the ∂µϕ from the last subsection, whereas −iv∗∂µv is the ∂µω from there.
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Then doing the integral over λµ first, we obtain

Sb
[

Φ0, A, a, b̃
]

=

∫ [

− 1

4e2Φ2
0

f̃ (b)µν f̃
(b)µν + j̃µb̃µ − ǫµνρãρ∂ν b̃ρ −

πe2

2θ
ǫµνρaµ∂νaρ

]

− 1

2

∫

∂µΦ0∂
µΦ0 + S′

int

[

Φ2
0

]

, (A.25)

where as usual, f̃
(b)
µν = ∂µb̃ν − ∂ν b̃µ, and

j̃µ =
i

e
ǫµνρ∂νv

∗∂ρv (A.26)

is the vortex current.

The duality between the actions Sa and Sb is exactly the same from last subsection,

with the kinetic term for Φ0 and the interaction term being spectators, but here it was

derived from an abelian Higgs action by path integration.

Note that the classical solution for λµ is

∂µθ ≡ λµ = −iv∗∂µv + eãµ +
i

eΦ2
0

ǫµνρ∂ν b̃ρ , (A.27)

which matches with the duality transform of Zee (from the introduction) with v = constant,

ã = 0.

B Review of ABJM and its massive deformation

The ABJM model [12] is obtained as the low-energy limit of the theory of N coincident

M2-branes in a C
4/Zk background. It is a supersymmetric N = 6 U(N) × U(N) (or

SU(N) × SU(N)) Chern-Simons (CS) gauge theory, with bifundamental scalars Y I and

fermions ψI , I = 1, . . . , 4 in the fundamental of the SU(4)R symmetry group, and the two

CS gauge fields, Aµ and Âµ, have equal and opposite levels k and −k. Its action is

S =

∫

d3x

[

k

4π
ǫµνλTr

(

Aµ∂νAλ +
2i

3
AµAνAλ − Âµ∂νÂλ − 2i

3
ÂµÂνÂλ

)

−Tr
(

DµY
†
I D

µY I + iψI†γµDµψI

)

+
4π2

3k2
Tr
(

Y IY †
I Y

JY †
J Y

KY †
K

+Y †
I Y

IY †
J Y

JY †
KY

K + 4Y IY †
J Y

KY †
I Y

JY †
K − 6Y IY †

J Y
JY †

I Y
KY †

KY
K
)

+
2πi

k
Tr
(

Y †
I Y

IψJ†ψJ − ψJ†Y IY †
I ψJ − 2Y †

I Y
JψI†ψJ + 2ψJ†Y IY †

JψJ

+ǫIJKLY †
I ψJY

†
KψL − ǫIJKLY

IψJ†Y KψL†
)

]

. (B.1)

Here the covariant derivative acts like

DµY
I = ∂µY

I + i
(

AµY
I − Y IÂµ

)

.

The action (B.1) has SU(4)×U(1) R-symmetry associated with the N =6 supersymmetries.
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B.1 Massive ABJM

There exists a unique supersymmetry-preserving massive deformation of the model [19],

parametrised by µ, that breaks the R-symmetry down to SU(2)×SU(2)×U(1)A×U(1)B×Z2

as a consequence of splitting the scalars as

Y I = (Qα, Rα), α = 1, 2 .

The Z2 action interchanges Qα and Rα, the SU(2) factors act each only on one of the

doublets Qα and Rα, and the U(1)A symmetry rotates Qα with a charge +1 and Rα with

a charge −1. The mass deformation gives mass to the fermions and changes the potential

of the theory. The bosonic part of the action in the mass deformed case is

Lbosonic =
k

4π
ǫµνλTr

[

Aµ∂νAλ − Âµ∂νÂλ +
2i

3

(

AµAνAλ − ÂµÂνÂλ

)

]

− Tr |DµQ
α|2 − Tr |DµR

α|2 − V . (B.2)

The sextic scalar potential in (B.2) is

V = Tr
(

|Mα|2 + |Nα|2
)

,

where

Mα = µQα +
2π

k

(

2Q[αQ†
βQ

β] +RβR†
βQ

α −QαR†
βR

β + 2QβR†
βR

α − 2RαR†
βQ

β
)

,

Nα = −µRα +
2π

k

(

2R[αR†
βR

β] +QβQ†
βR

α −RαQ†
βQ

β + 2RβQ†
βQ

α − 2QαQ†
βR

β
)

.

The equations of motion of the bosonic fields are

DµD
µQα =

∂V

∂Q†
α

, DµD
µRα =

∂V

∂R†
α

,

Fµν =
2π

k
ǫµνλJ

λ , F̂µν =
2π

k
ǫµνλĴ

λ , (B.3)

where Fµν = ∂[µAν] + i[Aµ, Aν ], and the two gauge currents Jµ and Ĵµ, expressed as

Jµ = i
[

Qα(DµQα)† − (DµQα)Q†
α +Rα(DµRα)† − (DµRα)R†

α

]

,

Ĵµ = −i
[

Q†
α(D

µQα)− (DµQα)†Qα +R†
α(D

µRα)− (DµRα)†Rα
]

,

are covariantly conserved, i.e. ∇µJ
µ = ∇µĴ

µ = 0. The trace parts of those gauge cur-

rents yields two abelian currents jµ and ĵµ corresponding to the global U(1)A and U(1)B
invariances

jµ = Tr Jµ , ĵµ = Tr Ĵµ , (B.4)

which are ordinarily conserved, i.e. ∂µj
µ = ∂µĵ

µ = 0. The gauge choice A0 = Â0 = 0

implies that the energy density is given by

H = Tr
[

(∂0Q
α)†(∂0Q

α) + (DiQ
α)†(DiQ

α) + (∂0R
α)†(∂0R

α) + (DiR
α)†(DiR

α) + V
]

.
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Since this is a Chern-Simons theory, varying with respect to A0 and Â0 gives the Gauss

law constraints

F12 =
2πi

k
J0 =

2πi

k

[

Qα
(

∂0Qα
)† −

(

∂0Qα
)

Q†
α +Rα

(

∂0Rα
)† −

(

∂0Rα
)

R†
α

]

,

F̂12 =
2πi

k
Ĵ0 = −2πi

k

[

Q†
α

(

∂0Qα
)

−
(

∂0Qα
)†
Qα +R†

α

(

∂0Rα
)

−
(

∂0Rα
)†
Rα
]

. (B.5)

Note as an aside that the gauge choice does not uniquely specify the Hamiltonian.

Choosing A0 and Â0 different from zero introduces an extra term in the Hamiltonian,

ǫµνλTr
[

AµAνAλ − ÂµÂνÂλ

]

. In the abelianisation ansatz of [18], this vanishes anyway

since it is proportional to ǫµνλa
(i)
µ a

(j)
ν a

(k)
λ and there are only two a

(i)
µ ’s. So in the abelian

case, the Hamiltonian is the same even away from the gauge A0 = Â0 = 0.

The mass deformed theory has fuzzy sphere ground states given by8

Rα = cGα; Qα = 0 and Q†
α = cGα; Rα = 0 (B.6)

where c ≡
√

µk
2π and the matrices Gα, α = 1, 2, satisfy the equations [13, 14]

Gα = GαG†
βG

β −GβG†
βG

α. (B.7)

In [20, 21], it was shown that this solution corresponds to a fuzzy 2-sphere, not a 3-sphere

as originally thought.

An explicit solution of these equations, which is the unique irreducible one up to a

U(N)×U(N) gauge transformation, is given by

(

G1
)

m,n
=

√
m− 1 δm,n ,

(

G2
)

m,n
=
√

(N −m) δm+1,n ,
(

G†
1

)

m,n
=

√
m− 1 δm,n ,

(

G†
2

)

m,n
=
√

(N − n) δn+1,m . (B.8)

In particular, G1 = G†
1. In the case of pure ABJM, instead of a fuzzy sphere ground state,

there is a fuzzy funnel BPS solution with c replaced by

c(s) =

√

k

4πs
. (B.9)

Here s is one of the two spatial coordinates of the ABJM model. The matrices Gα are

bifundamental under U(N) × U(N), implying that G1G†
1 and G2G†

2 are in the adjoint of

the first U(N), and that G†
1G

1 and G†
2G

2 are in the adjoint of the second U(N).

8General vacuum configurations could also be direct sums of these irreducible solutions.
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