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In this work, we implement a complex scalar dark matter (DM) candidate in a Uð1ÞB−L gauge extension
of the Standard Model. The model contains three right-handed neutrinos with different quantum numbers
and a rich scalar sector, with extra doublets and singlets. In principle, these extra scalars can have vacuum
expectation values (VΦ and Vϕ for the extra doublets and singlets, respectively) belonging to different
energy scales. In the context of ζ ≡ VΦ

Vϕ
≪ 1, which allows one to obtain naturally light active neutrino

masses and mixing compatible with neutrino experiments, the DM candidate arises by imposing a Z2

symmetry on a given complex singlet, ϕ2, in order to make it stable. After doing a study of the scalar
potential and the gauge sector, we obtain all the DM-dominant processes concerning the relic abundance
and direct detection. Then, for a representative set of parameters, we find that a complex DM with mass
around 200 GeV, for example, is compatible with the current experimental constraints without resorting to
resonances. However, additional compatible solutions with heavier masses can be found in vicinities of
resonances. Finally, we address the issue of having a light CP-odd scalar in the model showing that it is safe
concerning the Higgs and the Zμ-boson invisible decay widths, and also astrophysical constraints regarding
energy loss in stars.
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I. INTRODUCTION

Currently, it is well established from several observations
and studies on different scales that most of the Universe’s
mass consists of dark matter (DM) [1–5]. Although the
nature of DM is still a challenging question, the solution
based on the existence of new kinds of neutral, stable and
weakly interacting massive particles (WIMPs) is both well
motivated and extensively studied. This is mainly due to
two reasons. The first reason is that WIMPs appearing in a
plethora of models [6–16] “naturally” give the observed
relic abundance, ΩDMh2 ¼ 0.1199� 0.0027 [5]. The sec-
ond reason is that WIMPs may be accessible to direct
detection. Currently, there is a variety of experiments
involved in the search for direct signals of WIMPs which
have imposed bounds on spin-independent WIMP-nucleon
elastic scattering [17–19].
It is also well known that the Standard Model (SM)—

despite being tremendously successful in describing
electroweak and strong interaction phenomena—must be
extended. Physics beyond the SM has both theoretical
and experimental motivations. For instance, the neutrino
masses and mixing—which are required for a consis-
tent explanation of the solar and atmospheric neutrino

anomalies—are some of the most compelling reasons to go
beyond the SM. Another motivation is providing a sat-
isfactory explanation of the nature of DM. This last reason
is the focus of our work. The preferred theoretical frame-
work which provides a DM candidate is supersymmetry
[6–9]. However, many other interesting scenarios have
been proposed [10–16]. In this paper, we focus on the
possibility of having a viable scalar DM candidate in a U(1)
gauge extension of the SM. In particular, this model,
sometimes referred as the flipped B − L model [20,21]
has a very rich scalar content, which allows us to obtain a
complex scalar DM candidate.
The paper is organized as follows. In Sec. II we briefly

summarize the model under consideration. In Sec. III we
study the vacuum structure and the scalar sector spectrum that
allows us to have a viable complex scalarDMcandidate in the
model. In particular, we consider the scalar potential in the
context of ζ ≡ VΦ

Vϕ
≪ 1, where VΦ and Vϕ are vacuum

expectation values (VEVs) of the doublets Φ1;2 and singlets
ϕ1;3;X, respectively. InSec. IVwepresent thegauge sector and
choose some parameters that simplify the study of the DM
candidates. In Sec. Vwe calculate the thermal relic density of
the complex scalar DM candidate and present a set of
parameters that are consistent with the current observations.
In Sec. VI we summarize the main features of our study.
Finally, in the Appendix, we show the general minimization
conditions used to calculate the scalar mass spectrum.
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II. BRIEF REVIEW OF THE B − L MODEL

We briefly summarize here the model from Refs. [20,21].
It is an extension of the SM based on the gauge symmetry
SUð2ÞL ⊗ Uð1ÞY 0 ⊗ Uð1ÞB−L, where B and L are the usual
baryonic and leptonic numbers, respectively, and Y 0 is a
new charge different from the hypercharge Y of the SM.
The values of Y 0 are chosen to obtain the hypercharge Y
through the relation Y ¼ ½Y 0 þ ðB − LÞ�, after the first
spontaneous symmetry breaking. Assuming a generation-
independent charge assignment and the nonexistence of
mirror fermions, and by restricting ourselves to integer
quantum numbers for the Y 0 charge, the anomaly cancella-
tion constrains the number of right-handed neutrinos,
nR ≥ 3 [20]. Considering nR ¼ 3, there is an exotic charge
assignment for the Y 0 charge where Y 0

nR1;nR2 ¼ −4 and
Y 0
nR3 ¼ 5 besides the usual one where Y 0

nRi ¼ 1 with
i ¼ 1; 2; 3. The model under consideration has this exotic
Y 0 charge assignment. The respective fermionic charge
assignment of the model is shown in Table I.
In the scalar sector the model has three SUð2ÞL

doublets, H;Φ1;Φ2, and four SUð2ÞL singlets, ϕ1;ϕ2;
ϕ3;ϕX. The scalar charge assignments are shown in
Table II. The H doublet is introduced to give mass to
the lighter massive neutral vector boson Z1μ, the charged
vector bosons W�

μ , and the charged fermions, as in the
SM. Besides giving mass to the extra neutral vector boson
Z2μ, which is expected to be heavier than Z1μ, the other
scalars are mainly introduced to generate mass for both the
left- and the right-handed neutrinos. In order to be more
specific, the other doublets Φ1 and Φ2 are introduced to

give Dirac mass terms at tree level through the
renormalizable Yukawa interactions DimL̄LinRmΦ1 and
Di3L̄LinR3Φ2 in the Lagrangian. The ϕ1;ϕ2, and ϕ3

singlets are introduced to generate Majorana mass terms
at tree level [MmnðnRmÞcnRnϕ1, M33ðnR3ÞcnR3ϕ2,
Mm3ðnRmÞcnR3ϕ3]. Finally, the ϕX singlet is introduced
to avoid dangerous Majorons when the symmetry is
broken down, as shown in Ref. [21]. These extra scalars
allow the model to implement a seesaw mechanism at the
OðTeVÞ energy scale, and the observed mass-squared
differences of the neutrino are obtained without resorting
to fine-tuning the neutrino Yukawa couplings [21].
Other studies regarding the possibility that the model
accommodates different patterns for the neutrino mass
matrix using discrete symmetries (S3; A4) have been
done [22,23].
With the above matter content we can write the most

general Yukawa Lagrangian respecting the gauge invari-
ance as follows:

−LY ¼ YðlÞ
i LLieRiH þ YðdÞ

ij QLidRjH þ YðuÞ
ij QLiuRj ~H

þDimLLinRmΦ1 þDi3LLinR3Φ2

þMmnðnRmÞcnRnϕ1 þM33ðnR3ÞcnR3ϕ2

þMm3ðnRmÞcnR3ϕ3 þ H:c:; ð1Þ

where i; j ¼ 1; 2; 3 are lepton/quark family numbers,
m; n ¼ 1; 2, and ~H ¼ iτ2H� (τ2 is the Pauli matrix). Also,
we have omitted summation symbols over repeated indices.
From the Lagrangian in Eq. (1) we see that quarks and

leptons obtain masses from the VEVof just one Higgs, H;
thus, the Higgs interactions with quarks and leptons are
diagonalized by the same matrices that diagonalize the
corresponding mass matrices. In this case the neutral
interactions are diagonal in flavor and there is no flavor-
changing neutral current in the quark and lepton sector.
This particular feature remains if we change from the
symmetry basis to the mass eigenstate basis [24,25]. On the
other hand, the terms proportional to Dim and Di3 can
induce lepton flavor violation (LFV) at the loop level, due
to the couplings of the charged leptons with right-handed
neutrinos and charged scalars, coming from the doubletsΦ1

and Φ2. We have already studied this issue in a previous
work [21]. For the parameters we are using, the model is
safe regarding the kinematically allowed LFV decays
of the form li → lj þ γ, where i ¼ 2; 3 ¼ μ; τ and
j ¼ 1; 2 ¼ e; μ, respectively. In particular, we can give
an estimate for the branching ratios Bðμ → eþ γÞ and
Bðτ → μþ γÞ for Dei ≃ 0.01, Dμi ≃ 0.6, Dτi ≃ 0.9,
mnR ≃ 1 TeV, and mΦ� ¼ 380 GeV, obtaining ≃1.1 ×
10−12 and ≃9.1 × 10−9, respectively, in agreement with
the experimental data [26,27]. The model does not present
other sources of flavor violation since the interactions with
neutral vector bosons are also diagonal.

TABLE I. Quantum number assignment for the fermionic
fields.

Fermion I3 I Q Y 0 B − L

νeL, eL 1=2,−1=2 1=2 0,−1 0 −1
eR 0 0 −1 −1 −1
uL, dL 1=2,−1=2 1=2 2=3,−1=3 0 1=3
uR 0 0 2=3 1 1=3
dR 0 0 −1=3 −1 1=3
n1R, n2R 0 0 0 4 −4
n3R 0 0 0 −5 5

TABLE II. Quantum number assignment for the scalar fields.

Scalar I3 I Q Y 0 B − L

H0;þ ∓1=2 1=2 0,1 1 0
Φ0;−

1
�1=2 1=2 0, −1 −4 3

Φ0;−
2

�1=2 1=2 0, −1 5 −6
ϕ1 0 0 0 −8 8
ϕ2 0 0 0 10 −10
ϕ3 0 0 0 1 −1
ϕX 0 0 0 3 −3
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Finally, the most general renormalizable scalar potential obtained by the addition of all the above-mentioned scalar fields
is given by

VB−L ¼ −μ2HH†H þ λHjH†Hj2 − μ211Φ
†
1Φ1 þ λ11jΦ†

1Φ1j2 − μ222Φ
†
2Φ2 þ λ22jΦ†

2Φ2j2 − μ2sαjϕαj2 þ λsαjϕ�
αϕαj2

þ λ12jΦ1j2jΦ2j2 þ λ012ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ ΛHγjHj2jΦγj2 þ Λ0
HγðH†ΦγÞðΦ†

γHÞ þ ΛHsαjHj2jϕαj2 þ Λ0
γαjΦγj2jϕαj2

þ Δαβðϕ�
αϕαÞðϕ�

βϕβÞ þ ½β123ϕ1ϕ2ðϕ�
3Þ2 þ Φ†

1Φ2ðβ13ϕ1ϕ
�
3 þ β23ϕ

�
2ϕ3Þ − iκH1XΦT

1 τ2HϕX

− iκH2XðΦT
2 τ2HÞðϕ�

XÞ2 þ βXðϕ�
Xϕ1Þðϕ2ϕ3Þ þ β3Xðϕ�

Xϕ
3
3Þ þ H:c:�; ð2Þ

where γ ¼ 1; 2; α; β ¼ 1; 2; 3; X; and α ≠ β in the Δαβðϕ�
αϕαÞðϕ�

βϕβÞ terms.

III. THE VACUUM STRUCTURE AND THE
SCALAR SECTOR SPECTRUM

In general, DM must be stable in order to provide a relic
abundance in agreement with that measured byWMAP and
Planck, ΩDMh2 ¼ 0.1199� 0.0027 [4,5]. Although the
DM stability could result from the extreme smallness of
its couplings to ordinary particles, we restrict ourselves to
searching for a discrete (or continuous) symmetry, such as
Z2, or U(1), to protect DM candidates from decaying.
First, we consider the scalar potential in Eq. (2) by

looking for an accidental symmetry that naturally stabilizes
the DM candidate. Doing so, we find that the scalar
potential has just the SUð2Þ ⊗ Uð1ÞY 0 ⊗ Uð1ÞB−L initial
symmetry. However, none of these gauge groups can
generate a stable neutral scalar when they are spontane-
ously broken down to Uð1ÞQ. Therefore, we impose a
discrete symmetry in the following way: Z2ðϕ2Þ ¼ −ϕ2,
and the other scalar fields are even under this Z2

symmetry. As a result, the β23Φ
†
1Φ2ϕ

�
2ϕ3; β123ϕ1ϕ2ðϕ�

3Þ2
and βXðϕ�

Xϕ1Þðϕ2ϕ3Þ terms are prohibited from appearing
in the scalar potential (2). Actually, when these terms are
eliminated from Eq. (2), the true global symmetry in the
potential is SUð2Þ ⊗ Uð1ÞY 0 ⊗ Uð1ÞB−L ⊗ Uð1Þχ , where
the last one is Uð1Þχ∶ ϕ2 → expð−iχϕ2

Þϕ2, where χϕ2
is the

ϕ2 quantum number under the Uð1Þχ symmetry, and the
rest of the fields are invariant. It is important to note that we
have taken into account the simplicity criterion and some
phenomenological aspects when choosing the Z2 symmetry
above. For example, if we impose Z2ðϕ1Þ ¼ −ϕ1 (with the
other fields being even), the model has a massless right-
handed neutrino, say NR, at tree level. This poses a tension
with the experimental data of the invisible Zμ decay width
[28], since Zμ → N̄R þ NR would be allowed to exist [29].
Other simple choices, such as Z2ðϕ3Þ ¼ −ϕ3 or
Z2ðϕX;Φ1Þ ¼ −ϕX;−Φ1, should be avoided due to the
appearance of Majorons, Js, in the scalar spectra. As is well
known, the major challenges to models with Majorons
come from the energy loss in stars, through the process
γ þ e− → e− þ J, and the invisible Zμ decay width,
through Zμ → RJ → JJJ, where R is a scalar [30].

For the general case of the scalar potential with the Uð1Þχ
symmetry, we have the minimization conditions given in
the Appendix. In general, these conditions lead to different
symmetry-breaking patterns and to a complex vacuum
structure because the scalar potential has several free
parameters. In this paper, however, we restrict ourselves
to find a (or some) viable scalar DM candidate(s) and to
study its (their) properties in a relevant subset of the
parameter space.
First, we impose the conditions necessary for all real

neutral components of the scalar fields (except ϕ2R) to
obtain nontrivial VEVs, i.e., hH0

Ri ¼ VH, hΦ0
1Ri ¼ VΦ1

,
hΦ0

2Ri ¼ VΦ2
, hϕ1Ri ¼ Vϕ1

, hϕ2Ri ¼ 0, hϕ3Ri ¼ Vϕ3
,

and hϕXRi ¼ VϕX
. For the sake of simplicity, we set

VΦ1
¼ VΦ2

¼ VΦ and Vϕ1
¼ Vϕ3

¼ VϕX
¼ Vϕ. Thus, the

Uð1Þχ symmetry is not spontaneously broken and
the model possesses two neutral stable scalars which
are the real (CP-even) and imaginary (CP-odd) parts of
the ϕ2 field with the same mass, which are given by

M2
DM ¼ 1

2
½ΛHs2V2

SM þ ðΛ0
12 þ Λ0

22 − 2ΛHs2ÞV2
Φ

þðΔ12 þ Δ23 þ Δ2XÞV2
ϕ − 2μ2s2�; ð3Þ

where we have defined V2
SM ≡ V2

H þ V2
Φ1

þ V2
Φ2

¼
V2
H þ 2V2

Φ ¼ ð246Þ2 GeV2. From here on, we work with
M2

DM as an input parameter, and thus we solve Eq. (3)
for μ2s2,

μ2s2 ¼
1

2
½ΛHs2V2

SM þ ðΛ0
12 þ Λ0

22 − 2ΛHs2ÞV2
Φ

þðΔ12 þ Δ23 þ Δ2XÞV2
ϕ − 2M2

DM�: ð4Þ

If we allow hϕ2i ≠ 0, the real part of the ϕ2 field obtains
mass and its imaginary part is massless and stable. In that
case, the DM candidate would be the Goldstone boson
related to the breakdown of the Uð1Þχ symmetry. In
general, such massless DM has severe constraints from
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the big bang nucleosynthesis [31,32] and the bullet cluster
[14,33]. Here we do not consider this case.
Also, we work in the context of ζ ≡ VΦ

Vϕ
≪ 1. This

assumption allows us to implement a stable and natural
seesaw mechanism for neutrino masses at low energies, as
shown in Ref. [21]. Once V2

H þ 2V2
Φ ¼ ð246Þ2 GeV2 and

VH is mainly responsible for giving the top-quark mass at
tree level, we have V2

H ≫ V2
Φ. Choosing Vϕ ∼ 1 TeV and

VΦ ∼ 1 MeV, as in Ref. [21], we have that the ζ parameter
is ∼10−6. At first glance, the tiny value of ζ ¼ VΦ=Vϕ

could seem unnatural. However, let us remark that setting
VΦ to a tiny value is justified and natural because if it was in
fact taken to be zero (keeping Vϕ finite and different from
zero, then ζ → 0) the symmetry of the entire Lagrangian
would increase (’t Hooft’s principle of naturalness).
Furthermore, it can be shown that in that case the emergent
U(1) global symmetry would prevent the active neutrinos
from obtaining masses.
In general, we solve numerically the minimization

conditions, and using standard procedures we construct
numerically the mass-squared matrices for the charged,
CP-even, and CP-odd scalar fields. We choose the param-
eters in the potential such that they satisfy simultaneously
the minimization conditions, the positivity of the squared
masses and the lower boundedness of the scalar potential.
In order to satisfy this last condition, we choose the
parameters such that the quartic terms in the scalar potential
are positive for all directions. Although all these constraints
are checked numerically, we here give some insight into
some constraints coming from the minimization conditions
and the positivity of the squared masses when we make
some simplifying assumption about the parameters. First,
we solve Eqs. (A1) and (A7) in the limit ζ → 0. Doing so,
we have

μH ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHV2

SM þ 1

2
ðΛHs1 þ ΛHs3 þ ΛHsXÞV2

ϕ

r
þOðζÞ;

ð5Þ
κH1X ¼ OðζÞ; κH2X ¼ OðζÞ; ð6Þ

μs1 ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛHs1V2

SMþðΔ13þΔ1X þ 2λs1ÞV2
ϕ

q
ffiffiffi
2

p þOðζÞ; ð7Þ

μs3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛHs3V2

SM þ ð3β3X þ Δ13 þ Δ3X þ 2λs3ÞV2
ϕ

q
ffiffiffi
2

p

þOðζÞ; ð8Þ

μsX ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛHsXV2

SM þ ðβ3X þ Δ1X þ Δ3X þ 2λsXÞV2
ϕ

q
ffiffiffi
2

p

þOðζÞ: ð9Þ

From Eq. (6), we see that κH1X → 0 and κH2X → 0 when
ζ → 0 (and keeping Vϕ finite). Thus, in our calculations we
choose κH1X ∼ VΦ and κH2X ∼ VΦ=Vϕ.
To simplify the squared masses and obtain useful

analytical expressions, let us consider λ11¼λ22¼
λs1¼λs3¼λsX; ΛH1¼ΛH2¼ΛHs1¼ΛHs3¼ΛHsX¼Λ0

H1¼
Λ0
H2; Λ

0
11 ¼ Λ0

13 ¼ Λ0
1X ¼ Λ0

21 ¼ Λ0
23 ¼ Λ0

2X ¼ λ12 ¼ λ012 ¼
Δ13 ¼ Δ1X ¼ Δ3X; Λ0

12 ¼ Λ0
22 ¼ Δ12 ¼ Δ23 ¼ Δ2X, and

the other parameters without restrictions. The previous
constraints have been inspired by the similitude of the
respective potential terms. We have left free the parameters
that involve the DM candidates. Also, we have assumed
that the H scalar field is the Higgs-like field in this model.
With these considerations, we have—apart from the
Goldstone bosons that are eaten by the W� bosons—two
charged scalars, C�

1;2, with masses given by

m2
C�
1
;C�

2

¼ 1

4

h
2ΛH1V2

SM þ ð1þ
ffiffiffi
2

p
ÞVSMVϕ

∓Vϕ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − 2

ffiffiffi
2

p
ÞV2

SM þ 4β213V
2
ϕ

q

þ2β13Vϕ

�i
þOðζÞ: ð10Þ

In the CP-odd scalar sector, we have—besides the two
Goldstone bosons which give mass to the Z1μ and Z2μ

gauge bosons—the following mass eigenvalues:

m2
I3
¼ OðζÞ; m2

I4
¼ M2

DM; m2
I7
¼ −5β3XV2

ϕ þOðζÞ; ð11Þ

m2
I5;I6

¼ 1

4
Vϕ

h
ð1þ

ffiffiffi
2

p
ÞVSM − 2β13Vϕ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β213V

2
ϕ þ ð3 − 2

ffiffiffi
2

p
ÞV2

SM

q i
þOðζÞ: ð12Þ

Finally, in the CP-even scalar sector we have m2
R4

¼ M2
DM, and

m2
R5;R6

¼ 1

4
Vϕ

h
ð1þ

ffiffiffi
2

p
ÞVSM − 2β13Vϕ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β213V

2
ϕ þ ð3 − 2

ffiffiffi
2

p
ÞV2

SM

q i
þOðζÞ; ð13Þ

the other mass eigenvalues are not shown for conciseness. As shown in the above expressions, in the OðζÞ we have three
degenerate mass eigenstates, i.e., m2

R4
¼ m2

I4
, m2

R5
¼ m2

I5
, and m2

R6
¼ m2

I6
. Imposing that all these masses are positive, we

find the following conditions:
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MDM > 0 ∧ β3X < 0;

∧
�
ðΛ0

H2 > 0 ∧ β13Vϕ þ
ffiffiffi
2

p
VSM < 2VSMÞ∨;

�
Vϕ > −2ð

ffiffiffi
2

p
− 1ÞΛ0

H2VSM ∧ β13 <
VSMðΛ0

H2VSM þ VϕÞðΛ0
H2VSM þ ffiffiffi

2
p

VϕÞ
V2
ϕð2Λ0

H2VSM þ ð1þ ffiffiffi
2

p ÞVϕÞ
∧ Λ0

H2 ≤ 0

��
: ð14Þ

Despite the fact that Eqs. (5)–(14) are only valid in the
limit ζ → 0, these relations will be useful in our analysis, at
least as a starting point. However, we would like to stress
that in our numerical programs to analyze the scalar
potential, the full constraints—i.e., the minimization con-
ditions, the positivity of the squared masses, and the lower
boundedness of the scalar potential—are rigorously taken
into account.

IV. GAUGE BOSONS

In this model the gauge symmetry breaking proceeds in
two stages. In the first stage, the real components of the
ϕ1;ϕ3, and ϕX fields obtain VEVs, say Vϕ, as discussed in

the previous section. Once this happens, the gauge sym-
metry is broken down to SUð2ÞL ⊗ Uð1ÞY , where Y is the
usual hypercharge of the SM. In the second stage, the
electrically neutral components of the H;Φ1;2, obtain
VEVs, VH and VΦ, respectively, thus breaking the sym-
metry down to Uð1ÞQ.
The mass terms for the three electrically neutral

SUð2ÞL ⊗ Uð1ÞY 0 ⊗ Uð1ÞB−L gauge bosons (W3
μ, BY 0

μ ,
and BB−L

μ ) arise from the kinetic terms for the scalar fields
upon replacing H;Φ1;2, and ϕ1;2;3;X by their respective
VEVs ðhϕ2Ri ¼ 0Þ. In general the mass-squared matrix for
W3

μ, BY 0
μ , and BB−L

μ can be written as follows:

M2
gauge bosons ¼

2
664
g2ðK þ Pþ 2NÞ −ggY 0 ðK þ NÞ −ggB−LðPþ NÞ
−ggY 0 ðK þ NÞ g2Y 0K gY 0gB−LN

−ggB−LðPþ NÞ gY 0gB−LN g2B−LP

3
775; ð15Þ

where g, gY 0 , and gB−L are the SUð2ÞL, Uð1ÞY 0 , and Uð1ÞB−L coupling constants, respectively. K, P, and N are defined by
K ≡ 1

4

P
aV

2
aY 02

a ; P≡ 1
4

P
aV

2
aðB − LÞ2a, and N ≡ 1

4

P
aV

2
aY 0

aðB − LÞa, with Y 0
a and ðB − LÞa being the quantum numbers

given in Tables I and II. Considering our aforementioned assumptions, we have

K ¼ 1

4
ðV2

H þ 41V2
Φ þ 74V2

ϕÞ; P ¼ 1

4
ð45V2

Φ þ 74V2
ϕÞ; N ¼ −

1

4
ð42V2

Φ þ 74V2
ϕÞ: ð16Þ

In order to obtain the relation between the neutral gauge bosons ðW3
μ; BY 0

μ ; BB−L
μ Þ and the corresponding mass eigenstates,

we diagonalize M2
gauge bosons. Doing so, we have

γμ ¼
1

Nγ

�
1

g
W3

μ þ
1

gY 0
BY 0
μ þ 1

gB−L
BB−L
μ

�
; ð17Þ

Z1μ ¼
1

NZ1

½gðPg2B−L − Ng2Y 0 −M2
Z1
ÞW3

μ − gY 0 ððPþ NÞg2 þ Pg2B−L −M2
Z1
ÞBY 0

μ þgB−LððPþ NÞg2 þ Ng2Y 0 ÞBB−L
μ �; ð18Þ

Z2μ ¼
1

NZ2

½gðPg2B−L − Ng2Y 0 −M2
Z2
ÞW3

μ − gY 0 ððPþ NÞg2 þ Pg2B−L −M2
Z2
ÞBY 0

μ �þgB−LððPþ NÞg2 þ Ng2Y 0 ÞBB−L
μ �; ð19Þ

whereNγ ,NZ1
, andNZ2

are the corresponding normalization constants. Also, γμ corresponds to the photon, and Z1μ and Z2μ

are the two massive neutral vector bosons of the model, and their squared masses are given by M2
γ ¼ 0 and
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M2
Z1μ;Z2μ

¼ 1

2
R∓ 1

2
½R2 − 4ðKP − N2Þðg2ðg2Y 0 þ g2B−LÞ þ g2Y 0g2B−LÞ�1=2; ð20Þ

with R≡ ðK þ Pþ 2NÞg2 þ Kg2Y 0 þ Pg2B−L. Here, it is
important to note that the matrix M2

gauge bosons in
Eq. (15) has the correct texture to naturally give the masses
of the neutral gauge bosons. Furthermore, in the case that

Vϕ ≫ VH; VΦ, it is straightforward to show that M2
Z1μ

∼
g2ðV2

Hþ2V2
ΦÞ

4cos2θW
¼ M2

W
cos2θW

and M2
Z2μ

∼ 74
4
ðg2Y 0 þ g2B−LÞV2

ϕ, where

the angle θW is defined below.
For future discussion, it is convenient to define the

following basis:

Zμ¼ cosθWW3
μ−sinθW sinαBY 0

μ −sinθW cosαBB−L
μ ; ð21Þ

Z0
μ ¼ cos αBY 0

μ − sin αBB−L
μ ; ð22Þ

and γμ is defined as in Eq. (17). The angle α, defined as
tan α≡ gB−L=gY 0 , can be understood as the parameter of a
particular SO(2) transformation on the two gauge bosons,
BY 0
μ and BB−L

μ , that rotates the Uð1ÞY 0 ⊗ Uð1ÞB−L gauge
group into the Uð1ÞY ⊗ Uð1ÞZ gauge group. In the last
expression Uð1ÞY is the usual hypercharge gauge group.
Also, we have that g2 sin2 θW ¼ e2 ¼ ð1=g2 þ 1=g2Y 0þ
1=g2B−LÞ−1. The Uð1ÞZ can be understood as the gauge
group with the coupling g2Z ¼ g2Y 0 þ g2B−L. Using Eqs. (21)
and (22), we can write the two massive gauge bosons Z1μ

and Z2μ in terms of Zμ and Z0
μ as follows:

Z1μ ¼ cos βZμ þ sin βZ0
μ; ð23Þ

Z2μ ¼ − sin βZμ þ cos βZ0
μ; ð24Þ

where

tanβ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðg2Y 0 þg2B−LÞþg2Y 0g2B−L

q
ðg2B−LP−g2Y 0N−M2

Z2
Þ

g2ðg2Y 0 þg2B−LÞðPþNÞþg2Y 0 ðg2B−LðPþNÞ−M2
Z2
Þ:

ð25Þ
From Eqs. (20), (23), and (24), we can see that tan β ¼ 0

when Vϕ → ∞ or V2
H ¼ ðg2Y 0 þ 3g2B−LÞV2

Φ=g
2
Y 0. In the first

case, as Vϕ approaches infinity the numerator of Eq. (25) is
∝ V2

H. However, the denominator is ∝ V2
ϕ, and hence

tan β → 0, meaning that Z2μ becomes so heavy that it
decouples. The last solution is not allowed since in our case
we have VH ≫ VΦ and OðgY 0 Þ ∼OðgB−LÞ.
In this work, we use the gauge couplings g≃ 0.65 and

gY 0 ¼ gB−L ≃ 0.505, such that tan β≃ 4 × 10−4. Doing so,
we have Z1μ ≃ Zμ and Z2μ ≃ Z0

μ. In general, the angle β
must be quite small (β ≲ 10−3) to be in agreement with

precision electroweak studies [34–36] since a new neutral
boson Z2μ which mixes with the SM Zμ distorts its
properties, such as couplings to fermions and masses
relative to electroweak inputs. Using these parameters
for the gauge couplings and the VEVs discussed in the
previous section, we obtain MZ0 ≃ 3.1 TeV besides the
already known masses for the SM gauge bosons. In general,
a new neutral vector boson must have a mass on the order of
a few TeV, or be very weakly coupled to the known matter
to maintain consistency with the present phenomenology
[34–39]. Doing a phenomenological study of the bounds on
the parameter space imposed by data coming from LEP II,
Tevatron, and the LHC in the present model is out of the
scope of this work. However, we see that the MZ0 value
above is consistent with the relation MZ0=gB−L ≃ 6.13≳
6 TeV [37,38].
Finally, the charged gauge bosons W�

μ are not
affected by the presence of one additional neutral gauge
boson Z2μ. These have the same form as in the SM,
W�

μ ¼ 1ffiffi
2

p ðW1
μ∓iW2

μÞ, with masses given by M2
W� ¼

1
4
g2V2

SM ¼ 1
4
g2ðV2

H þ 2V2
ΦÞ.

V. DARK MATTER

A. Thermal relic density

In order to calculate the present day DM mass density,
ΩDMh2, arising from RDM and IDM scalars freezing out
from thermal equilibrium, we follow the standard pro-
cedure from Refs. [40,41]. Thus, we should find the
solution to the Boltzmann equations for YRDM

and YIDM,
which are defined as the ratio of the number of particles
(nRDM

and nIDM) to the entropy, Yi ≡ ni=s (i ¼ RDM; IDM),
with s being the total entropy density of the Universe.
Usually, s is written in terms of the effective degrees
of freedom heffðTÞ as follows: s ¼ 2π2

45
heffðTÞT3, where T is

the photon temperature and heff is calculated as in Ref. [40].
Actually, in our case, due to the Uð1Þχ symmetry
introduced in Sec. III, MIDM ¼ MRDM

¼ MDM, YRDM
¼

YIDM ≡ Y, and ΩDMh2 ¼ ΩRDM
h2 þ ΩIDMh

2 ¼ 2ΩRDM
h2 ¼

2ΩIDMh
2. Therefore, the Boltzmann equation that we have

to solve is

dY
dx

¼ −
�
45

π
G

�
−1=2 g1=2� MDM

x2
hσvMolleriann½Y2 − Y2

eq�; ð26Þ

where x ¼ MDM=T, G is the gravitational constant, and
Yeq ¼ neq=s. neq is the thermal equilibrium number density
and whenMDM=T ≫ 1, it is neq ¼ giðMDMT

2π Þ3=2 exp ½−MDM
T �,

where gi ¼ 1 is the internal degree of freedom for the scalar
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dark matter. The g� parameter in Eq. (26) is calculated as
in Ref. [40].
Also, we have that the thermal average of the annihi-

lation cross section times the Moller velocity, hσvMolleriann,
has the following form:

hσvMolleriann ¼
1

8M4
DMTK

2
2ðMDM=TÞ

Z
∞

4M2
DM

σannðs− 4M2
DMÞ

×
ffiffiffi
s

p
K1ð

ffiffiffi
s

p
=TÞds; ð27Þ

where Ki are the modified Bessel functions of order i.
The variable s in the integral above is the Mandelstam
variable. Finally, once Y is numerically calculated for the
present time, Y0, we can obtain ΩDMh2 ¼ 2.82 × 108×
ð2 × Y0Þ × MDM

GeV.
In order to calculate σann, we have taken into account all

dominant annihilation processes, which are shown in
Fig. 1. In our case, the dominant annihilation contributions
come from the scalar exchange. This is due to the fact that
our DM candidates, RDM and IDM, couple neither to Zμ nor
to W�

μ gauge bosons at tree level, since they are SM
singlets. Also, we have found that contributions coming
from Z0

μ exchange are negligible for the parameter set
considered here.
Taking into account all considerations above, we solve

Eq. (26) numerically for a representative set of parameters.
Although the scalar potential in this model has many free
parameters, we find that the most relevant parameters for
determining the correct DM relic density and satisfying the
currently direct experimental limits are ΛHs2;Δα2 (with

α ¼ 1; 3; X), and Λ0
γ2 (with γ ¼ 1; 2). The ΛHs2 coupling

strongly controls the direct detection signal, since in our
case the Higgs-like scalar is almost totally the neutral
CP-even component of the H field, and (as discussed
below) direct detection is mainly mediated by the t-channel
Higgs exchange. In order to obtain the correct direct
detection limits without resorting to resonances, we find
that ΛHs2 ∼ 10−4. The Δα2 and Λ0

γ2 parameters are also
crucial in obtaining the correct ΩDMh2 because they mostly
control the DM − DM − RiðIiÞ − RiðIiÞ and DM − DM −
Ri couplings and, therefore, σann. The latter is not allowed
to vary in a wide range since, roughly, ΩDMh2 ∼
1=hσvMolleriann and we aim to obtain values close to
ΩDMh2 ∼ 0.11. In other words, as the Δα2 and Λ0

γ2

parameters increase, ΩDMh2 decreases. In Fig. 2, we have
usedΛ0

γ2 ≃ 10−2 andΔα2 ≃ 9 × 10−2. It is also important to
mention here that the dominant process is the DMþ
DM → I3 þ I3 annihilation, where I3 refers to the lightest
CP-odd scalars, as in Sec III. Although the other param-
eters in the scalar potential are not as critical in determining
ΩDMh2, they give the other quantitative characteristics
appearing in Fig. 2. In order to be more specific, we have
chosen the other parameters such that the mass scalar
spectrum is given by 1437.6, 1016.9, 631.7, 544.9, 379.6,
125 GeV, and 707.1; 544.9; 379.6; 2.3 × 10−6 GeV for the
CP-even and CP-odd scalars, respectively. The CP-even
scalars with masses 1437.6, 1016.9, and 631.7 GeV have
components only in the singlets ϕ1;3;X, and the CP-even
scalars with 544.9 and 379.6 GeV have components only in
the scalar doublets Φ1;2. The CP-even scalar with 125 GeV

(a) (b) (c)

(d) (e) (f)

FIG. 1. Main annihilation processes that contribute to hσvMolleriann.

COMPLEX SCALAR DARK MATTER IN A B-L MODEL PHYSICAL REVIEW D 90, 055022 (2014)

055022-7



has a component in the H doublet and it is the Higgs-like

scalar in our model. In Fig. 2, we can also observe three
resonances at ≃315.8, 508.5, and 718.8 GeV, correspond-
ing to the s-channel exchange of CP-even scalars with
components in the singlets. Let us also mention that the
processes via the s-channel due to the exchange of the
CP-even scalars with masses of 125, 379.6, and 544.9 GeV
are highly suppressed because of the smallness of their
couplings. Thus, their resonances do not appear in Fig. 2.

B. Direct detection

Despite being weakly coupled to baryons, WIMPs can
scatter elastically with atomic nuclei, providing the oppor-
tunity for direct detection. Currently, there are several
experiments which aim to directly observe WIMP dark
matter [17–19]. The signal in these experiments is the
kinetic energy transferred to a nucleus after it scatters off a
DM particle. The energies involved are less than or of the
order of 10 keV. At these energies the WIMP sees the entire
nucleus as a single unit, with a net mass, charge, and spin.
In general, the WIMP-nucleus interactions can be classified
as either spin independent or spin dependent. In our case,
these interactions are spin independent because the two
DM candidates are scalars. The relevant WIMP-nucleus
scattering process for direct detection in the case consid-
ered here takes place mainly through the t-channel elastic
scattering due to Higgs exchange: ðIDM; RDMÞ þ N →
ðIDM; RDMÞ þ N (N refers to the atomic nucleus). The
spin-independent cross section is given by

σSIχN ¼ 4

π

M2
DMm

2
N

ðMDM þmNÞ2
½Zfp þ ðA − ZÞfn�2; ð28Þ

where the effective couplings to protons and neutrons,
fp;n, are

fp;n ¼
X

q¼u;d;s

Geff;qffiffiffi
2

p fðp;nÞTq

mp;n

mq

þ 2

27
fðp;nÞTG

X
q¼c;b;t

Geff;qffiffiffi
2

p mp;n

mq
: ð29Þ

By using fðp;nÞTq and fðp;nÞTG given in Ref. [42] and the fact

that, in our case, Geff;q ¼ G0 ×mq ≡ CDM2H
VHM2

Higgs
×mq (with

CDM2H being the coupling DM-DM-Higgs, which depends
on the parameters of the model), we arrive at a cross section
per nucleon of

σSIχ;p ≈ 2.7 × 107 ×
M2

DMm
2
N

ðMDM þmNÞ2
×G2

0 pb: ð30Þ

Recently, the Large Underground Xenon (LUX) experi-
ment [19] has reported its first results, setting limits on
spin-independent WIMP-nucleon elastic scattering with a
minimum upper limit on the cross section of 7.6 × 10−10 pb
at a WIMP mass of 33 GeV=c2. We have found that by
choosing ΛHs2 ∼ 10−4 we obtain the LUX bound without
resorting to resonances. It is clear that larger values of ΛHs2
can be considered. However, we have chosen this
conservative value for ΛHs2. Our results are shown in
Fig. 3. The parameters are the same as in Fig. 2.
From Figs. 2 and 3, we see that for a DM candidate with

mass around 200 GeV and ΛHs2 ¼ 0.3 × 10−4; 1 × 10−4,
the two conditions—ΩDMh2 and direct detection—are
satisfied outside the resonance regions. We also have
verified that this is a general characteristic of this model.
Due to the existence of the light I3 scalar the annihilation
process DMþ DM → I3 þ I3 [Fig. 1(a)] is the dominant
one, so we do not have to appeal to resonances to get
compatibility with experiments. Other MDM values which

FIG. 2 (color online). The total thermal relic density of IDM and
RDM as a function of MDM. We have used three different
parameters for ΛHs2 ¼ 3 × 10−5; 1 × 10−4; 5 × 10−4.

FIG. 3 (color online). The spin-independent elastic scattering
cross section, σSIχ;p, off a proton p as a function of MDM for the
same parameters as in Fig. 2, appropriately scaled to the relic
density. We also show the XENON100 and LUX exclusion
limits [17,19].
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satisfy the experimental bounds are shown in Figs. 2 and 3.
Specifically, MDM ≈ 319, 410, 511, 590, 737 GeV are also
possible solutions. However, these are within regions with
resonances.
We now make some important remarks about the impact

of the existence of I3 in this model. First of all, we have a
tree-level contribution to the Higgs invisible decay, ΓInv

h ,
due to the coupling of the Higgs field with the light
pseudoscalar field, chI3I3 , which comes from the
Lagrangian terms of the form jHj2jϕ1;2;Xj2, and gives
ΓInv
hI3I3

¼ c2hI3I3=32πmh for mI3 ≪ mh. Actually, when
2MDM < mh the h → IDMIDM and h → RDMRDM decays
are also allowed, thus further contributing to ΓInv

h according
to ΓInv

hDMDM¼ΓInv
hIDMIDM

þΓInv
hRDMRDM

¼2×c2hDMDM=ð32πmhÞ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4M2

DM=m
2
h

p
, with chDMDM ≈ ΛHs2VH. The current

limit on the branching ratio into invisible particles of the
Higgs, BRInv

h , is around 10—15% [43,44]. A stronger
bound of BRInv

h < 5% at the 14 TeV LHC has been claimed
[45]. From the set of parameters used to obtain Figs 2 and 3
we have that BRInv

h ¼ ðΓInv
hI3I3

þ ΓInv
hDMDMÞ=ðΓVis

h þ ΓInv
hI3I3

þ
ΓInv
hDMDMÞ≃ 3.78% forMDM ¼ 50 GeV. For differentMDM

values we have found BRInv
h < 5%. Also, we have used

ΓVis
h ¼ 4.07 MeV for mH ¼ 125 GeV. The model is also

safe regarding the severe existing constraints on the
invisible decay width of the Zμ boson since there is no
process like Zμ → RI3 → I3I3I3 [29] due to the fact that I3
only has components in the SM singlets. (It would be
kinetically forbidden anyway once all real scalar fields of
the model are heavier than the Zμ boson.) For the same
reason, there is no issue with the astrophysical constraints
regarding energy loss in stars since there is no tree-level
coupling inducing the γ þ e− → e− þ I3 [30]. Finally,
some last comments are necessary. First, note that the I3
light scalar does not affect the stability of the DM candidate
since the Z2 symmetry introduced in Sec. III forbids
processes such as RDM → I3 þ I3 and IDM → I3 þ R3.
Furthermore, in general, I3 could also contribute to
ΩDMh2 because it is massive. However, the I3 pseudoscalar
is not stable. It decays mainly in active neutrinos, ν, with

ΓI3→νν ≈
mI3
16π

P
i
m2

νi

V2
ϕ

[46]. For the parameter set used here, we

have τI3 ≃ 1=ΓI3→νν ≈ 109 s, where we have usedP
im

2
νi ≲ 0.01 eV2. With τI3 given here and tU ≃ 4.3 ×

1017 s (the age of the Universe), ΩI3h
2≃

mI3
1.25 keV exp ð−tU=τI3Þ≃ 0. In the last expression for
ΩI3h

2 we have considered that TDI3 > 175 GeV (where
TDI3 is the decoupling temperature of I3). There is also a
constraint which comes from the observed large-scale
structure of the Universe [47,48]. Roughly speaking, this
last condition imposes rI3

mI3
1 keV ð

τI3
1sÞ1=2 ≲ 4 × 103 [47]. In

the last expression rI3 ¼ geffðT0Þ=geffðTDI3Þ ≈ 1=25, where
geff is the effective number of the relativistic degrees

of freedom. With our parameter set this condition is
satisfied.

VI. CONCLUSIONS

We have discussed in this work a scenario where a
complex DM candidate is possible. In particular, the model
studied here is a gauge extension of the SM based on a
SUð2ÞL ⊗ Uð1ÞY 0 ⊗ Uð1ÞB−L symmetry group. This
model contents three right-handed neutrinos and some
extra scalars, doublets, and singlets, with different quantum
numbers. In principle, these scalars are introduced to
generate Majorana and Dirac mass terms at the tree level
and to allow the implementation of a seesaw mechanism at
the TeV scale, as shown in Ref. [21]. The nonstandard
doublets and singlets introduce two new energy scales,
besides the electoweak one given by VH ¼ 246 GeV: VΦ
(the VEVs of the extra doublet neutral scalars) and Vϕ (the
VEVs of the extra singlet neutral scalars). If ζ ≡ VΦ=Vϕ ≪
1 the seesaw mechanism becomes natural [21]. In this
context, we have studied the scalar spectrum and imposed a
Z2 symmetry on the ϕ2 singlet scalar [which accidentally
became a Uð1Þχ symmetry, ϕ2 → expð−iχϕ2

Þϕ2] in order
to allow a complex DM candidate. Before studying the
constraints coming from the thermal relic density (ΩDMh2)
and direct detection experiments on this DM candidate, we
performed a brief analysis of the gauge sector concerning
the Zμ; Z0

μ mixing angle (tan β≃ 4 × 10−4) which satisfies
the β ≲ 10−3 electroweak precision constraint, and we have
verified that the Z0

μ mass emerging from the model is
consistent with the relation MZ0=gB−L ≃ 6.13≳ 6 TeV.
Then, we chose some parameters that simultaneously
allowed us to have a compatible ΩDMh2 and satisfy the
direct detection experiments. Although the scalar potential
has many parameters, we have found that the ΛHs2;Δα2

(with α ¼ 1; 3; X), and Λ0
γ2 (with γ ¼ 1; 2) parameters

mostly control these two constraints. The ΛHs2 parameter
is fundamental in satisfying the limits coming from direct
detection, since in our case it takes place through the
t-channel elastic scattering due to the Higgs exchange.
Choosing ΛHs2 ∼ 10−4 roughly satisfies the bounds from
the LUX experiment and allows for a ΩDMh2 that is in
agreement with the WMAP and Planck experiments. The
Δα2 and Λ0

γ2 parameters control σann mostly and, therefore,
ΩDMh2. As an example, we have shown ΩDMh2 and σSIχ;p,
for Λ0

γ2 ≃ 10−2 and Δα2 ≃ 9 × 10−2, in Figs. 2 and 3. It is
interesting to note that this model, for the same set of fixed
parameters (except the MDM’s), has several MDM values
that satisfy the experimental bounds. In other words, we
have found solutions in the regions outside and inside the
resonances for the same parameters by only varying MDM.
As previously mentioned, the presence of a light scalar, I3,
in this model makes the process DMþ DM → I3 þ I3
dominant for ΩDMh2. However, I3 may bring some poten-
tial problems, so we have discussed some constraints
imposed on I3 coming from the Higgs and Zμ invisible
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decay widths, the energy loss in stars, and the observed
large-scale structure of the Universe. We have found that in
our context all of these constraints are satisfied. Finally, we
would like to point out the recent work that studied the
possibility of a Majoron DM candidate [49].
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APPENDIX: THE MINIMIZATION CONDITIONS

The general minimization conditions coming from
∂VB−L=∂Ri ¼ 0, where VB−L is the scalar potential with
Uð1Þχ symmetry and Ri ¼ fH0

R;Φ
0
1R;Φ

0
2R;ϕ1R;ϕ2R;

ϕ3R;ϕXRg are the neutral real components of the scalar
fields, can be written as follows:

0 ¼ VHð2λHV2
H þ ΛH1V2

Φ1
þ ΛH2V2

Φ2
þ ΛHs1V2

ϕ1
þ ΛHs2V2

ϕ2
þ ΛHs3V2

ϕ3
þ ΛHsXV2

ϕX
− 2μ2HÞ

−
ffiffiffi
2

p
κH1XVΦ1

VϕX
− κH2XVΦ2

V2
ϕX
; ðA1Þ

0 ¼ VΦ1
ðΛH1V2

H þ 2λ11V2
Φ1

þ ðλ012 þ λ12ÞV2
Φ2

þ Λ0
11V

2
ϕ1

þ Λ0
12V

2
ϕ2

þ Λ0
13V

2
ϕ3

þ Λ0
1XV

2
ϕX

− 2μ211Þ
−

ffiffiffi
2

p
κH1XVHVϕX

þ β13VΦ2
Vϕ1

Vϕ3
; ðA2Þ

0 ¼ VΦ2
ðΛH2V2

H þ ðλ12 þ λ012ÞV2
Φ1

þ 2λ22V2
Φ2

þ Λ0
21V

2
ϕ1

þ Λ0
22V

2
ϕ2

þ Λ0
23V

2
ϕ3

þ Λ0
2XV

2
ϕX

− 2μ222Þ
− κH2XVHV2

ϕX
þ β13VΦ1

Vϕ1
Vϕ3

; ðA3Þ

0 ¼ Vϕ1
ðΛHs1V2

H þ Λ0
11V

2
Φ1

þ Λ0
21V

2
Φ2

þ 2λs1V2
ϕ1

þ Δ12V2
ϕ2

þ Δ13V2
ϕ3

þ Δ1XV2
ϕX

− 2μ2s1Þ
þ β13VΦ1

VΦ2
Vϕ3

; ðA4Þ

0 ¼ Vϕ2
ðΛHs2V2

H þ Λ0
12V

2
Φ1

þ Λ0
22V

2
Φ2

þ Δ12V2
ϕ1

þ 2λs2V2
ϕ2

þ Δ23V2
ϕ3
þ Δ2XV2

ϕX
− 2μ2s2Þ; ðA5Þ

0 ¼ Vϕ3
ðΛHs3V2

H þ Λ0
13V

2
Φ1

þ Λ0
23V

2
Φ2

þ Δ13V2
ϕ1

þ Δ23V2
ϕ2

þ 2λs3V2
ϕ3

þ Δ3XV2
ϕX

þ 3β3XVϕ3
VϕX

− 2μ2s3Þ þ β13VΦ1
VΦ2

Vϕ1
; ðA6Þ

0 ¼ VϕX
ðΛHsxV2

H þ Λ0
1XV

2
Φ1

þ Λ0
2XV

2
Φ2

þ Δ1XV2
ϕ1
þ Δ2XV2

ϕ2
þ 2λsxV2

ϕX
− 2κH2XVHVΦ2

− 2μ2sxÞ
−

ffiffiffi
2

p
κH1XVHVΦ1

þ β3XV3
ϕ3

þ Δ3XV2
ϕ3
VϕX

: ðA7Þ

In Eqs. (A1)–(A7) above, VH; VΦ1
; VΦ2

; Vϕ1
; Vϕ2

; Vϕ3
; VϕX

are the VEVs ofH0
R;Φ

0
1R;Φ

0
2R;ϕ1R;ϕ2R;ϕ3R;ϕXR, respectively.
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