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Abstract

This study establishes that for a given binary BCH code C0
n of length

n generated by a polynomial g(x) ∈ F2[x] of degree r there exists a
family of binary cyclic codes {Cm

2m−1(n+1)n}m≥1 such that for each m ≥
1, the binary cyclic code Cm

2m−1(n+1)n has length 2m−1(n + 1)n and is

generated by a generalized polynomial g(x
1

2m ) ∈ F2[x, 1
2m Z≥0] of degree

2mr. Furthermore, C0
n is embedded in Cm

2m−1(n+1)n and Cm
2m−1(n+1)n is

embedded in Cm+1
2m(n+1)n for each m ≥ 1. By a newly proposed algorithm,

codewords of the binary BCH code C0
n can be transmitted with high

code rate and decoded by the decoder of any member of the family
{Cm

2m−1(n+1)n}m≥1 of binary cyclic codes, having the same code rate.
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1 Introduction

In [4] Cazaran and Kelarev introduce the necessary and sufficient conditions
for the ideal to be a principal ideal and describe all finite principal ideal rings
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Zm[x1, x2, · · · , xn]/I, where I is generated by univariate polynomials. More-
over, in [5], they obtained conditions for certain rings to be finite commutative
principal ideal rings. However, the extension of a BCH code embedded in a
semigroup ring F[S], where F is a field and S is a finite semigroup, introduced
by Cazaran et al. [6], in which an algorithm is considered for computing the
weights of extensions for codes embedded in F[S] as ideals. Valuable infor-
mation related to several ring constructions and concerning polynomial codes
was given by Kelarev [8] and [9]. Whereas, in [10] and [11], Kelarev discuss
the concerning extensions of BCH codes in several ring constructions, where
the results can also be considered as particular cases of semigroup rings of
particular nature. Andrade and Palazzo [1] elaborated the cyclic, BCH, alter-
nant, Goppa and Srivastava codes over finite rings, which are in real meanings
constructed through a polynomial ring in one indeterminate with a finite co-
efficient ring. Shah et al. [12] and [13], instead of a polynomial ring, the
construction methodology of cyclic, BCH, alternant, Goppa, and Srivastava
codes over a finite ring is used through a semigroup ring, where the results of
[1] are improved in such a way that in the place of cancellative torsion free addi-
tive monoid Z≥0 of non-negative integers, the cancellative torsion free additive
monoids 1

2
Z≥0 and 1

22 Z≥0 are taken, respectively. This converts the whole con-
struction of a finite quotient ring of a polynomial ring into a finite quotient
ring of monoid rings of particular nature. In [12] and [13], R is considered as a

finite unitary commutative ring for the quotient rings R[x; 1
2
Z≥0]/((x

1
2 )2n − 1)

and R[x; 1
22 Z≥0]/((x

1
22 )22n − 1), respectively. However, in [2] Andrade et al.

describe the decoding principle based on modified Berlekamp-Massey algo-
rithm for BCH, alternant and Goppa codes constructed through monoid rings
R[x; 1

2
Z≥0].

The existence of an ((n + 1)3k − 1, (n + 1)3k − 1 − 3kr) binary cyclic code,
where k is a positive integer, corresponding to a (n, n − r) binary cyclic code
established in [14] through the monoid ring F2[x; 1

3k Z≥0]. Furthermore, in [14] a

decoding procedure for an (n, n−r) binary cyclic code by an ((n+1)3k−1, (n+
1)3k −1−3kr) binary cyclic code is also given, which provides an improvement
in the code rate and error corrections capabilities.

Provoked by [14] we initiate the inquiry in support to binary BCH codes
alike binary cyclic codes however we observed that; for a binary BCH code
of length n = 2s − 1 generated by r degree polynomial g(x) ∈ F2[x] it is not
possible to construct a binary BCH code of length 2m−1(n + 1)n generated by

2mr degree generalized polynomial g(x
1

2m ) ∈ F2[x, 1
2m Z≥0]. Though, in this

study, we instituted that corresponding to an (n, n − r) binary BCH code C0
n

there is a family {(2m−1(n + 1)n, 2m−1(n + 1)n − 2mr)}m≥1 of binary cyclic
codes (represented as {Cm

2m−1(n+1)n}m≥1) such that C0
n is embedded in each

Cm
2m−1(n+1)n. Furthermore, we propose an algorithm which enables in decoding
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of a received vector of binary BCH code C0
n of length n through the decod-

ing of corresponding generalized received vector of any member of the family
{Cm

2m−1(n+1)n}m≥1 of binary cyclic codes.

2 Cyclic code of length 2m−1(n+1)n constructed

through F2[x; 1
2mZ≥0]

Let D[x;S] be a monoid ring. A nonzero element f of D[x;S] has unique
representation

∑n
i=1 fix

si, where fi �= 0 and si �= sj for i �= j. If S is Z0 and D
is an integral domain, particularly the binary field F2, the monoid ring D[x;S]
is simply the polynomial ring D[x]. Clearly D[x] = D[x; Z≥0] ⊂ D[x; 1

2
Z≥0].

Since 1
2
Z≥0 is an ordered monoid, it follows that we can define the degree of

an element in D[x; 1
2
Z≥0].

The indeterminate of generalized polynomials in monoid ring F2[x; 1
2m Z≥0]

is x
1

2m and it behave like an indeterminate x in F2[x]. For instance for a torsion
free cancellative monoid S the monoid ring F2[x;S] is a Euclidean domain if
F2 is a field and S ∼= Z or S ∼= Z≥0 [7, Theorem 8.4]. Corresponding to

principal ideal (f(x
1

2m )) in F2[x; 1
2m Z≥0] generated by f(x

1
2m ) there is a factor

ring
�2 [x; 1

2m�≥0]

(f(x
1

2m ))
and it is a field if and only if f(x

1
2m ) is irreducible over F2.

Clearly, it follows the following proposition.

Proposition 2.1 Let g(x) ∈ F2[x, Z≥0] be an r degree polynomial. If n =
2s − 1, where s is a positive integer and g(x) divides xn − 1, then the general-

ized polynomial g(x
1

2m ) ∈ F2[x, 1
2m Z≥0] of degree 2mr, where m ∈ Z

+, divides

(x
1

2m )2m−1(n+1)n − 1 in F2[x, 1
2m Z≥0].

If f(x
1

2m ) = (x
1

2m )2m−1(n+1)n−1, then an element of
�2 [x; 1

2m�≥0]

((x
1

2m )2m−1(n+1)n−1)
is a0+

a 1
2m

ζ+a 2
2m

ζ2+· · ·+a (2m−1(n+1)n−1)
2m

ζ2m−1(n+1)n−1, where a0, a 1
2m

, · · · , a (2m−1(n+1)n−1)
2m

are in F2 and ζ is the coset x
1

2m +(f(x
1

2m )). So f(ζ) = 0, where ζ satisfies the re-

lation ζ2m−1(n+1)n−1 = 0. If x
1

2m = ζ , then the ring
�2 [x; 1

2m�≥0]

((x
1

2m )2
m−1(n+1)n−1)

becomes

F2[x; 1
2m Z≥0]2m−1(n+1)n in which the relation (x

1
2m )2m−1(n+1)n−1 = 0 holds, that

is (x
1

2m )2m−1(n+1)n = 1. The multiplication ∗ in the ring F2[x; 1
2m Z≥0]2m−1(n+1)n

is modulo ((x
1

2m )2m−1(n+1)n−1). So, given c(x
1

2m ), d(x
1

2m ) ∈ F2[x; 1
2m Z≥0]2m−1(n+1)n,

we write c(x
1

2m )∗d(x
1

2m ) to denote their product in the ring F2[x; 1
2m Z≥0]2m−1(n+1)n

and c(x
1

2m )d(x
1

2m ) to denote their product in the ring F2[x; 1
2m Z≥0]. If deg(a(x

1
2m ))+

deg(b(x
1

2m )) < 2m−1(n + 1)n, then c(x
1

2m ) ∗ d(x
1

2m ) = c(x
1

2m )d(x
1

2m ). Oth-

erwise, c(x
1

2m ) ∗ d(x
1

2m ) is the remainder left on dividing c(x
1

2m )d(x
1

2m ) by
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(x
1

2m )2m−1(n+1)n − 1. In other words, if c(x
1

2m ) ∗ d(x
1

2m ) = r(x
1

2m ), then

c(x
1

2m )d(x
1

2m ) = r(x
1

2m ) + ((x
1

2m )2m−1(n+1)n − 1)q(x
1

2m ) for some generalized

polynomial q(x
1

2m ). To get c(x
1

2m ) ∗ d(x
1

2m ), we compute the ordinary prod-

uct c(x
1

2m )d(x
1

2m ) and put (x
1

2m )2m−1(n+1)n = 1, (x
1

2m )2m−1(n+1)n+1 = x
1

2m ,

(x
1

2m )2m−1(n+1)n+2 = (x
1

2m )2 and so on. Now, consider x
1

2m ∗ c(x
1

2m ), and it

would be c (2m−1(n+1)n−1)
2m

+c0x
1

2m +c 1
2m

(x
1

2m )2+· · ·+c (2m−1(n+1)n−2)
2m

(x
1

2m )2m−1(n+1)n−1.

In particular, take the product x
1

2m ∗ c(x
1

2m ) in F2[x; 1
2m Z≥0]2m−1(n+1)n. The

F2-space F2[x; 1
2m Z≥0]2m−1(n+1)n is isomorphic to F2-space F

2m−1(n+1)n
2 ; indeed,

corresponding to the generalized polynomials c(x
1

2m ) = c0 + c 1
2m

x
1

2m + · · · +
c (2m−1(n+1)n−1)

2m
(x

1
2m )2m−1(n+1)n−1 in F2[x; 1

2m Z≥0]2m−1(n+1)n having 2m−1(n + 1)n

terms, there is an 2m−1(n+1)n-tuple (c0, c 1
2m

, · · · , c (2m−1(n+1)n−1)
2m

) in F
2m−1(n+1)n
2 .

Thus, the isomorphism between the vector spaces F2[x; 1
2m Z≥0]2m−1(n+1)n and

F
2m−1(n+1)n
2 is defined by c 	−→ c(x

1
2m ).

The multiplication by x
1

2m in the ring F2[x; 1
2m Z≥0]2m−1(n+1)n corresponds to

cyclic shift σ in F
2m−1(n+1)n
2 , that is, x

1
2m ∗ c(x

1
2m ) = σ(c)(x

1
2m ). A subspace C

of F2-space F
2m−1(n+1)n
2 is a linear code. As already agreed, we recognize every

vector c in F
2m−1(n+1)n with the polynomial c(x

1
2m ) in F2[x; 1

2m Z≥0]2m−1(n+1)n,
so Cm

2m−1(n+1)n ⊂ F2[x; 1
2m Z≥0]2m−1(n+1)n. The elements of the code Cm

2m−1(n+1)n

are now referred as codewords or code (generalized) polynomials. By use
of the techniques of [14], the following results can easily be established for
2m−1(n + 1)n instead of (n + 1)3k − 1.

Theorem 2.2 [14] If Cm
2m−1(n+1)n, m ≥ 1 is a linear code over F2, then

Cm
2m−1(n+1)n is cyclic if and only if x

1
2m ∗ c(x

1
2m ) ∈ Cm

2m−1(n+1)n for every

c(x
1

2m ) ∈ Cm
2m−1(n+1)n.

Theorem 2.3 [14] A subset Cm
2m−1(n+1)n of F2[x; 1

2m Z≥0]2m−1(n+1)n is a cyclic

code if and only if Cm
2m−1(n+1)n is an ideal of the ring F2[x; 1

2m Z≥0]2m−1(n+1)n.

Note that (p(x
1

2m )) = {b(x 1
2m ) ∗ p(x

1
2m ) : b(x

1
2m ) ∈ F2[x; 1

2m Z≥0]2m−1(n+1)n},
where p(x

1
2m ) ∈ F2[x; 1

2m Z≥0], represents the principal ideal generated by the

polynomial p(x
1

2m ) in the ring F2[x; 1
2m Z≥0]2m−1(n+1)n.

Theorem 2.4 [14] For any m ≥ 1, if Cm
2m−1(n+1)n is a nonzero ideal in

F2[x; 1
2m Z≥0]2m−1(n+1)n, then

1. there exists a unique monic polynomial g(x
1

2m ) of least degree in Cm
2m−1(n+1)n,

2. g(x
1

2m ) divides (x
1

2m )2m−1(n+1)n − 1 in F2[x; 1
2m Z≥0]2m−1(n+1)n,
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3. g(x
1

2m ) divides a(x
1

2m ) for all a(x
1

2m ) ∈ Cm
2m−1(n+1)n,

4. Cm
2m−1(n+1)n = (g(x

1
2m )).

Conversely, if Cm
2m−1(n+1)n, where m ≥ 1, is the ideal generated by p(x

1
2m ) in

F2[x; 1
2m Z≥0]2m−1(n+1)n, then p(x

1
2m ) is a generalized polynomial of least degree

in Cm
2m−1(n+1)n if and only if p(x

1
2m ) divides (x

1
2m )2m−1(n+1)n − 1 in the ring

F2[x; 1
2m Z≥0]2m−1(n+1)n.

By Theorem 2.4, if follows that only ideals in the ring F2[x; 1
2m Z≥0]2m−1(n+1)n

are linear codes which are generated by the factors of (x
1

2m )2m−1(n+1)n−1. Thus
we can obtain all cyclic codes of length 2m−1(n+1)n over F2 if we find all factors

of (x
1

2m )2m−1(n+1)n − 1 in F2[x; 1
2m Z≥0]. In the case of trivial factors, we get

trivial codes. If g(x
1

2m ) = (x
1

2m )2m−1(n+1)n − 1, then g(x
1

2m ) = 0. Whereas

g(x
1

2m ) = 1 implies (g(x
1

2m )) = F2[x; 1
2m Z≥0]2m−1(n+1)n.

Definition 2.5 Let Cm
2m−1(n+1)n be a nonzero ideal in F2[x; 1

2m Z≥0]2m−1(n+1)n,

where m ≥ 1. If g(x
1

2m ) is the unique monic generalized polynomial of least de-

gree in Cm
2m−1(n+1)n, then g(x

1
2m ) is called the generator generalized polynomial

of the cyclic code Cm
2m−1(n+1)n.

If Cm
2m−1(n+1)n = (p(x

1
2m )) is the ideal generated by p(x

1
2m ), then p(x

1
2m )

is the generator generalized polynomial of Cm
2m−1(n+1)n if and only if p(x

1
2m ) is

monic and divides (x
1

2m )2m−1(n+1)n − 1 in F2[x; 1
2m Z≥0].

3 Relationship of a BCH code and a cyclic

code

Let C0
n be an (n, n − r) binary BCH code based on the positive integers c, δ1,

q = 2 and n such that 2 ≤ δ1 ≤ n with gcd(n, 2) = 1 and n = 2s − 1, where
s ∈ Z

+. Consequently, the binary BCH code C0
n has generator polynomial

g(x) = lcm{mi(x) : i = c, c + 1, · · · , c + δ1 − 2} of degree r, where mi(x) are
minimal polynomials of ζ i, for i = c, c + 1, · · · , c + δ1 − 2. Whereas ζ is the
primitive nth root of unity in F2l. Since mi(x) divides xn−1 for each i, it follows
that g(x) divides xn − 1. This implies C0

n = (g(x)) is a principal ideal in the
factor ring F2[x]n. As it is established in Proposition 2.1 that the generalized

polynomial g(x
1

2m ) ∈ F2[x, 1
2m Z≥0] of degree 2mr divides (x

1
2m )2m−1(n+1)n−1 in

F2[x, 1
2m Z≥0], so there is a family {Cm

2m−1(n+1)n}m≥1 of cyclic codes generated

by {g(x
1

2m )}m≥1, in {F2[x; 1
2m Z≥0]2m−1(n+1)n}m≥1. Since (x

1
2m )2mn − 1 divides
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(x
1

2m )2m−1(n+1)n − 1 in F2[x, 1
2m Z≥0], it follows that ((x

1
2m )2m−1(n+1)n − 1) ⊂

((x
1

2m )2mn − 1). By third isomorphism theorem for rings

F2[x, 1
2m Z≥0]/((x

1
2m )2m−1(n+1)n − 1)

((x
1

2m )2mn − 1)/((x
1

2m )2m−1(n+1)n − 1)
� F2[x, 1

2m Z≥0]

((x
1

2m )2mn − 1)
and

F2[x]

(xn − 1)
↪→ F2[x, 1

2m Z≥0]

((x
1

2m )2mn − 1)
.

Thus C0
n is embedded in Cm

2m−1(n+1)n under the monomorphism defined as

a(x) = a0 + a1x + · · ·+ an−1x
n−1 	→ a0 + a1(x

1
2m ) + · · ·+ a(n−1)(x

1
2m )2m(n−1)(=

a(x
1

2m )). Also, if g(x
1

2m ) is the generator polynomial of the code Cm
2m−1(n+1)n in

F2[x; 1
2m Z≥0]2m−1(n+1)n, then g(x

1
2m+1 ) is the generator polynomial for the cyclic

code Cm+1
2m(n+1)n in the monoid ring F2[x; 1

2m+1 Z≥0]2m(n+1)n. Thus Cm
2m−1(n+1)n is

embedded in Cm+1
2m(n+1)n which is defined as a(x

1
2m ) 	→ a(x

1
2m+1 ). The above

discussion shapes the following theorem.

Theorem 3.1 For a positive integer s, if C0
n is a binary BCH code of length

n = 2s − 1 generated by the polynomial g(x) =
∑r

i=0 gix
i ∈ F2[x] of degree r,

then

1. there exists a family {Cm
2m−1(n+1)n}m≥1 of binary cyclic codes such that

for each m ≥ 1 Cm
2m−1(n+1)n has length 2m−1(n + 1)n, generated by the

generalized polynomial g(x
1

2m ) = g0 + g1(x
1

2m )2m
+ · · · + g2m(x

1
2m )2mr ∈

F2[x, 1
2m Z≥0] of degree 2mr,

2. the binary BCH code C0
n is embedded in each binary cyclic code Cm

2m−1(n+1)n

for m ≥ 1,

3. there are embeddings C1
(n+1)n ↪→ C2

21(n+1)n ↪→ · · · ↪→ Cm
2m−1(n+1)n ↪→ · · ·

for the members of the family {Cm
2m−1(n+1)n}m≥1 of binary cyclic codes.

Is it possible for a binary BCH code C0
n = (g(x)) that there is a binary

BCH code Cm
2m−1(n+1)n generated by polynomial g(x

1
2m )? The answer is no,

indeed, as we know that generator polynomial of a binary BCH code is the
least common multiple of irreducible polynomials over F2. For instance, if
g(x) =

∑r
i=0 gix

i is the generator polynomial of the binary BCH code C0
n, then

g(x
1

2m ) = g0+g1(x
1

2m )2m
+· · ·+gr(x

1
2m )2mr = (g0+g1(x

1
2m )1+· · ·+gr(x

1
2m )r)2m

is not the least common multiple of irreducible polynomials in F2[x, 1
2m Z≥0].

Hence, g(x
1

2m ) is not qualified for a generator of a binary BCH code.
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4 General decoding principle

McEliece, Berlekamp and Van Tilborg [3] proved that the maximum likelihood
decoding is an NP-hard problem for general linear codes. Though by the
principle of maximum likelihood decoding we obtain a codeword after decoding
which is closest to the received vector while the errors are corrected. We use
the decoding procedure which follows the same principle.

Now, we interpret the decoding terminology for a 2m0−1(n + 1)n length
binary cyclic code Cm0

2m0−1(n+1)n
from the family {Cm

2m−1(n+1)n}m≥1 of binary

cyclic codes. Let parity check matrix of a binary cyclic code Cm0

2m0−1(n+1)n
be

H . If a vector b is received, then we obtain the syndrome vector for b as
S(b) = bHT . In this way, we calculate syndrome table which is useful in
finding the error vector e such that S(b) = S(e). So the decoding of the
received vector b has done as the transmitted vector a = b − e.

The general principle of decoding is; choose the codeword which is closest
to the received vector. For this determination, we make a look-up table that
gives the nearest codeword for every possible received vector. The algebraic
structure of a linear code as a subspace offers a suitable method for making such

a table. As Cm0

2m0−1(n+1)n
is a subspace of F2-space F

2m0−1(n+1)n
2 . So Cm0

2m0−1(n+1)n

is a subgroup of the additive group F
2m0−1(n+1)n
2 . Recall that for every a ∈

F
2m0−1(n+1)n
2 , a + Cm0

2m0−1(n+1)n
= {a + c : c ∈ Cm0

2m0−1(n+1)n
} is called a coset of

Cm0

2m0−1(n+1)n
. These cosets form a partition of the space F

2m0−1(n+1)n
2 . Hence

F
2m0−1(n+1)n
2 is the disjoint union of distinct cosets.

Let y be any vector in F
2m0−1(n+1)n
2 , and suppose x ∈ Cm0

2m0−1(n+1)n
is the

codeword nearest to y. Now x lies in the coset y + Cm0

2m0−1(n+1)n
= {y − c :

c ∈ Cm0

2m0−1(n+1)n
}. For all c ∈ Cm0

2m0−1(n+1)n
it follows that d(y,x) ≤ d(y, c),

i.e., w(y − x) ≤ w(y − c). Hence, y − x is the vector of least weight in the
coset containing y. Writing e = y− x, we have x = y− e. Thus the following
theorem is obtained.

Theorem 4.1 Let Cm0

2m0−1(n+1)n
⊂ F

2m0−1(n+1)n
2 be a cyclic code. Given a

vector y ∈ F
2m0−1(n+1)n
2 , the codeword x nearest to y is given by x = y − e,

where e is the vector of least weight in the coset containing y. If the coset
containing y has more than one vector of least weight, then there are more
than one codewords nearest to y.

Definition 4.2 Let Cm0

2m0−1(n+1)n
be a linear code in F

2m0−1(n+1)n
2 . The coset

leader of a given coset of Cm0

2m0−1(n+1)n
is defined to be the vector with the least

weight in the coset.
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Theorem 4.3 Let Cm0

2m0−1(n+1)n
be an (2m0−1(n+1)n, 2m0−1(n+1)n−2m0r)

code over F2, and let H be a parity-check matrix of Cm0

2m0−1(n+1)n
. Then,

Cm0

2m0−1(n+1)n
= {x ∈ F

2m0−1(n+1)n
2 : xHT = 0 = HxT}.

By Theorem 4.3, it follows that S(y) = 0 if and only if y ∈ Cm0

2m0−1(n+1)n
.

For y, y/ ∈ F
2m0−1(n+1)n, S(y) = S(y′) holds if and only if (y−y′)HT = 0, that

is, y − y′ ∈ Cm0

2m0−1(n+1)n
. Hence two vectors have the same syndrome if and

only if they lie in the same coset of Cm0

2m0−1(n+1)n
. Thus there is a one-to-one

correspondence between the cosets of Cm0

2m0−1(n+1)n
and the syndromes. A table

with two columns showing the coset leader ei and the corresponding syndromes
S(ei) is called the syndrome table. To decode a received vector y, we compute
its syndrome S(y) and then look at the table to find the coset leader e for
which S(e) = S(y). Then y is decoded as x = y − e. The syndromes are
given by S(ei), where ei for i = 1, 2, · · · , 22m0r are the coset leaders, F = F2

and S(ei) = eiH
T , for i = 1, 2, · · · , 22m0r.

Consider a binary BCH code C0
n based on the positive integers c, δ, q = 2

and n such that 2 ≤ δ ≤ n with n = 2s −1, where s is a positive integer. Let ζ
be a primitive nth root of unity in F2l. Let mi(x) ∈ F2[x] denote the minimal
polynomial of ζ i. Let g(x) be the product of distinct polynomials among mi(x),
for i = c, c+1, · · · , c+δ−2, that is, g(x) = lcm{mi(x) : i = c, c+1, · · · , c+δ−2}.

Assume that for a fixed m = m0, Cm
2m−1(n+1)n is a binary cyclic code of

length 2m−1(n + 1)n = n′) with minimum distance d and with generator gen-

eralized polynomial g(x
1

2m ) from the corresponding family {Cm
2m−1(n+1)n}m≥1

of binary cyclic codes, which has the check generalized polynomial h(x
1

2m ) =

h (n′−2mr)
2m

(x
1

2m )n′−2mr + h (n′−2mr−1)
2m

x
1

2m n′−2mr−1 + · · ·+ h 1
2m

x
1

2m + h0, which sat-

isfies x
1

2m n′ − 1 = g(x
1

2m ) ∗ h(x
1

2m ). Thus, the matrix H is given by

⎡
⎢⎢⎢⎢⎣

h (n′−2mr)
2m

h (n′−2mr−1)
2m

· · · · · · h0 0 0 · · · 0

0 h (n′−2mr)
2m

· · · · · · h 1
2m

h0 0 · · · 0

...
...

. . .
. . .

. . .
. . .

...
...

...
0 0 0 h (n′−2mr)

2m
h (n′−2mr−1)

2m
· · · · · · h 1

2m
h0

⎤
⎥⎥⎥⎥⎦

is the (2m−1(n+1)n−k)×2m−1(n+1)n parity-check matrix for Cm
2m−1(n+1)n with

k = 2m−1(n+1)n−2mr. Syndrome of the vector a ∈ F
2m−1(n+1)n
2 is denoted as

S(a) = aHT . For the vector a = (a0, a 1
2m

, a 2
2m

, · · · , a (n−1)
2m

, · · · , a (2m−1(n+1)n−1)
2m

) ∈
F

2m−1(n+1)n
2 , the generalized polynomial is a(x

1
2m ) = a0 + a 1

2m
x

1
2m + · · · +

a (n−1)
2m

x
1

2m (n−1) + · · · + a (2m−1(n+1)n−1)
2m

x
1

2m 2m−1(n+1)n−1 in F2[x; 1
2m Z≥0]2m−1(n+1)n,

and thus S(a) = aHT . Assume that the codeword v ∈ C is transmitted and
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the received vector is a = v + e, where e = (e0, e 1
2m

, e 2
2m

, · · · , e (2m−1(n+1)n−1)
2m

)

is the error vector having polynomial form e(x
1

2m ) = e0 + e 1
2m

x
1

2m + · · · +

e (2m−1(n+1)n−1)
2m

(x
1

2m )2m−1(n+1)n−1. Thus, S(e) = S(a). Now, the syndromes

for the binary cyclic code Cm
2m−1(n+1)n are given by S(ei), where ei for i =

1, 2, · · · , 22m−1(n+1)n−k are the coset leaders, k = 2m−1(n + 1)n − 2mr and
S(ei) = eiH

T for i = 1, 2, · · · , 22m−1(n+1)n−k.
Now, we introduce a decoding procedure for a binary BCH code of length n

through a binary cyclic code of length 2m−1(n+1)n in the corresponding family
{Cm

2m−1(n+1)n}m≥1 of binary cyclic codes. Though, here we sum up the proce-
dure which indicates the steps in decoding a received word of the cyclic code
of length 2m−1(n+1)n and clarify the method finding the enveloped codeword
of a binary BCH code of length n. The decoding procedure is given by

Step 1: Evaluate the check generalized polynomial h(x
1

2m ) of binary cyclic
code Cm

2m−1(n+1)n.
Step 2: Construct the Syndrome table for the binary cyclic code Cm

2m−1(n+1)n.

Step 3: Calculate the received generalized polynomial b′(x
1

2m ) in the ring
F2[x; 1

2m Z≥0]2m−1(n+1)n corresponding to received polynomial b(x) ∈ F2[x]n.
Step 4: Calculate the syndrome vector for the vector

b′ = (b0, b 1
2m

, b 2
2m

, · · · , b (n−1)
2m

, · · · , a (2m−1(n+1)n−1)
2m

) ∈ F
2m−1(n+1)n
2

corresponding to the received generalized polynomial b′(x
1

2m ) = b0+b 1
2m

x
1

2m · · ·+
b (n−1)

2m
(x

1
2m )n−1+ · · · + b (2m−1(n+1)n−1)

2m
x

1
2m 2m−1(n+1)n−1 in F2[x; 1

2m Z≥0]2m−1(n+1)n.

Step 5: By looking at syndrome table (step 2), find the coset leader e for
which S(b′) = S(e).

Step 6: Decode b′ as b′ − e = a′.
Step 7: The corresponding corrected codeword polynomial a(x) in binary

BCH code C0
n is obtained.
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