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Abstract
Background: Physical exercise is a strategy to control hypertension and attenuate pressure 
overload-induced cardiac remodeling. The influence of exercise on cardiac remodeling during 
uncontrolled hypertension is not established. We evaluated the effects of a long-term low 
intensity aerobic exercise protocol on heart failure (HF) development and cardiac remodeling 
in aging spontaneously hypertensive rats (SHR). Methods: Sixteen month old SHR (n=50) 
and normotensive Wistar-Kyoto (WKY, n=35) rats were divided into sedentary (SED) and 
exercised (EX) groups. Rats exercised in treadmill at 12 m/min, 30 min/day, 5 days/week, for 
four months. The frequency of HF features was evaluated at euthanasia. Statistical analyses: 
ANOVA and Tukey or Mann-Whitney, and Goodman test. Results: Despite slightly higher 
systolic blood pressure, SHR-EX had better functional capacity and lower HF frequency than 
SHR-SED. Echocardiography and tissue Doppler imaging showed no differences between SHR 
groups. In SHR-EX, however, left ventricular (LV) systolic diameter, larger in SHR-SED than 
WKY-SED, and endocardial fractional shortening, lower in SHR-SED than WKY-SED, had values 
between those in WKY-EX and SHR-SED not differing from either group. Myocardial function, 
assessed in LV papillary muscles, showed improvement in SHR-EX over SHR-SED and WKY-EX. 
LV myocardial collagen fraction and type I and III collagen gene expression were increased 
in SHR groups. Myocardial hydroxyproline concentration was lower in SHR-EX than SHR-SED. 
Lysyl oxidase gene expression was higher in SHR-SED than WKY-SED. Conclusion: Exercise 
improves functional capacity and reduces decompensated HF in aging SHR independent of 
elevated arterial pressure. Improvement in functional status is combined with attenuation of 
LV and myocardial dysfunction and fibrosis. 
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Introduction

Systemic arterial hypertension is a major public health problem due to its high prevalence 
and a large percentage of uncontrolled patients in the general population, despite the 
widespread availability of anti-hypertensive drugs [1]. Long-term untreated hypertension 
is a major cause of cardiac remodeling which evolves progressively from compensatory left 
ventricular hypertrophy to left ventricular dysfunction and heart failure [2, 3].

The transition from compensated cardiac hypertrophy to decompensated heart failure is 
characterized by several myocardial alterations such as cardiomyocyte loss and dysfunction, 
interstitial fibrosis, changes in intracellular calcium transients, fetal gene reprogramming, 
and inflammatory activation [2, 4, 5]. Interstitial matrix is a key component involved in heart 
failure development [6, 7]. Experimental studies on spontaneously hypertensive rats have 
suggested that fibrosis and underlying connective tissue response events are important in 
the transition from compensated hypertrophy to failure [6].

Physical exercise is an established non-pharmacological therapeutic adjuvant strategy in 
controlling hypertension and preventing or attenuating chronic pressure overload-induced 
cardiac remodeling [8, 9]. In stable chronic heart failure, clinical studies have shown that 
long-term moderate physical training attenuates abnormal cardiac remodeling and improves 
functional capacity and quality of life [10-13]. In different cardiac injury models, exercise has 
been shown to attenuate left ventricular dilation, myocyte hypertrophy, myocardial fibrosis, 
mitochondrial dysfunction, myocyte calcium handling changes, sympathoexcitation, cardiac 
dysfunction, and improve inflammatory profile [14-22].

However, the effects of an exercise program on cardiac remodeling during uncontrolled 
hypertension have not been established. The spontaneously hypertensive rat (SHR) is a well-
established model of genetic hypertension and hypertensive cardiomyopathy [23, 24]. At one 
month old, arterial hypertension starts to increase stimulating left ventricular hypertrophy 
[25, 26]. If pressure overload is sustained, cardiac decompensation ensues, usually at 18-22 
months of age [23, 24, 27]. In SHR, Schultz et al. [28] observed that long-term (from 6 to 22 
months of age) voluntary wheel running was associated with impaired cardiac remodeling 
shown by increased left ventricular dilation, myocardial collagen content, myocyte cross-
sectional area and volume, and reduced systolic function. Voluntary wheel running is 
characterized as a series of short relatively high-intensity bouts [29]. Therefore, whether 
lighter aerobic exercise protocols can improve cardiac remodeling and function in SHR 
is uncertain. Thus, the aim of this study was to evaluate the influence of a long-term low 
intensity aerobic exercise protocol on heart failure development, cardiac remodeling, and 
left ventricular and myocardial function in aging SHR.

Material and Methods

Experimental groups
Sixteen-month-old male SHR and normotensive Wistar–Kyoto (WKY) rats were purchased from 

the Central Animal House at Botucatu Medical School, UNESP. All animals were housed in a room under 
temperature control at 23 °C and kept on a 12-hour light/dark cycle. Food and water were supplied ad 
libitum. All experiments and procedures were approved by Botucatu Medical School Ethics Committee, 
Botucatu, SP, Brazil.

Rats were assigned to four groups: sedentary WKY group (WKY-SED, n=17); exercised WKY group 
(WKY-EX, n=18); sedentary SHR group (SHR-SED, n=25); exercised SHR group (SHR-EX, n=25). The physical 
exercise protocol was started at the age of 16 months and applied for four months. The exercise protocol 
consisted of 30 min/day treadmill running 5 days/week. During an adaptive period, exercise velocity was 
slowly increased from 5 m/min to 12 m/min, and exercise duration from 10 to 30 min [30, 31]. In the first 
two weeks of training, the animals were subjected to low-voltage electrical stimulation to start exercise. No 
animals were lost during exercise training.

Systolic arterial pressure, physical capacity, cardiac structures, and left ventricular function were 
assessed before and after the exercise period. Systolic arterial pressure was measured by pletismography 
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using the tail-cuff method (Narco Bio-System®, model 709-0610, International Biomedical, Inc, USA). At 
euthanasia two observers determined the presence or absence of clinical and pathological congestive 
heart failure features. The clinical finding suggestive of heart failure was tachypnea/labored respiration. 
Pathologic assessment of cardiac decompensation included subjective evaluation of pleuropericardial 
effusion, atrial thrombi, ascites, and liver congestion. Lung congestion and right ventricular hypertrophy 
were determined according to their normalized weight. Rats were considered to have pulmonary congestion 
when lungs weight-to-body weight ratio > 2 standard deviations above the mean for the WKY-SED group, 
and right ventricular hypertrophy when right ventricle weight-to-body weight ratio > 0.8 mg/g [32, 33].  

Maximal exercise capacity
Before evaluating maximal exercise capacity, the rats were adapted to treadmill exercise over 5 days 

(10 min/day). Exercise testing was performed on a graded treadmill. The speed started at 6 m/min and was 
increased by 3 m/min every 3 min until rats were unable to run [19]. Rats were considered to be exhausted 
when they refused to run even after sound stimulation or were unable to coordinate steps. Maximum 
velocity was recorded and total distance calculated.

Echocardiographic study
Echocardiographic evaluation was performed using a commercially available echocardiograph 

(General Electric Medical Systems, Vivid S6, Tirat Carmel, Israel) equipped with a 5 - 11.5 MHz 
multifrequency probe. Rats were anesthetized by intramuscular injection of a mixture of ketamine (50 mg/
kg) and xylazine (0.5 mg/kg). A two-dimensional parasternal short-axis view of the left ventricle (LV) was 
obtained at the level of the papillary muscles. M-mode tracings were obtained from short-axis views of the 
LV at or just below the tip of the mitral-valve leaflets, and at the level of the aortic valve and left atrium [34-
36]. M-mode images of the LV were printed on a black-and-white thermal printer (Sony UP-890MD) at a 
sweep speed of 100 mm/s. All LV structures were manually measured by the same observer (KO) using the 
leading-edge method of the American Society of Echocardiography [37]. Measurements were the mean of at 
least five cardiac cycles on M-mode tracings. The following structural variables were measured: left atrium 
(LA) diameter, LV diastolic and systolic dimensions (LVDD and LVSD, respectively), LV diastolic posterior 
wall thickness (PWT), LV diastolic septal wall thickness (SWT), and aortic diameter (AO). Left ventricular 
mass (LVM) was calculated using the formula [(LVDD + PWT + SWT)3 – LVDD3] x 1,04. LV relative wall 
thickness (RWT) was calculated by the formula 2 x PWT/LVDD. LV function was assessed by the following 
parameters: endocardial fractional shortening (EFS), midwall fractional shortening (MFS), ejection fraction 
(EF), posterior wall shortening velocity (PWSV), early and late diastolic mitral inflow velocities (E and A 
waves), E/A ratio, and isovolumetric relaxation time (IVRT). A joint assessment of diastolic and systolic LV 
function was performed by the myocardial performance index (Tei index). The study was complemented 
with evaluation by tissue Doppler imaging (TDI) of systolic (S’), early diastolic (E’), and late (A’) velocity 
of the mitral annulus (arithmetic average travel speeds of the lateral and septal walls), and E’/A’ and E/E’ 
ratios.

Myocardial functional study
Two days after the final echocardiographic study, myocardial intrinsic contractile performance 

was evaluated in isolated LV papillary muscle preparation as previously described [38-40]. Rats were 
anesthetized (pentobarbital sodium, 50 mg/kg, intraperitoneal) and decapitated. Hearts were quickly 
removed and placed in oxygenated Krebs-Henseleit solution at 28 °C. LV anterior or posterior papillary 
muscle was dissected free, mounted between two spring clips, and placed vertically in a chamber containing 
Krebs-Henseleit solution at 28 °C and oxygenated with a mixture of 95 % O2 and 5 % CO2 (pH 7.38). The 
composition of the Krebs-Henseleit solution in mM was as follows: 118.5 NaCl, 4.69 KCl, 1.25 CaCl2, 1.16 
MgSO4, 1.18 KH2PO4, 5.50 glucose, and 25.88 NaHCO3. The spring clips were attached to a Kyowa model 
120T-20B force transducer and a lever system, which allowed for muscle length adjustment. Preparations 
were stimulated 12 times/min by parallel platinum electrodes delivering 5-ms pulses at a voltage 10 % 
above threshold during equilibrium period and isometric contractions. After a 60 min period, during which 
the preparations were permitted to shorten while carrying light loads, muscles were loaded to contract 
isometrically and stretched to the apices of their length-tension curves (Lmax). After a 5 min period, during 
which preparations performed isotonic contractions, muscles were again placed under isometric conditions, 
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and the apex of the length-tension curve was determined. A 15 min period of stable isometric contraction 
was imposed prior to the experimental period. One isometric contraction was then recorded for later 
analysis. The following parameters were measured from isometric contraction: peak of developed tension 
(DT, g/mm2), resting tension (RT, g/mm2), and maximum rate of tension development (+dT/dt, g/mm2/s). 
To evaluate myocardial contractile reserve, papillary muscle mechanical performance was evaluated at 
basal condition and after the following positive inotropic stimulation: post-rest contractions (10, 30, and 
60 s), extracellular Ca2+ concentration increase (external calcium concentrations of 0.625, 1.25, and 2.5 
mM), and β-adrenergic agonist isoproterenol (10-8, 10-7, and 10-6 M) addition to the nutrient solution [41]. 
Papillary muscle cross-sectional area was calculated from muscle weight and length by assuming cylindrical 
uniformity and a specific gravity of 1.0. All force data were normalized for muscle cross-sectional area.

After dissecting papillary muscle, the ventricles, lungs, and atria were dissected and weighed. The 
tibia was removed and dried and its length measured. Left and right ventricular wet weight normalized by 
body weight and tibia length was used as indexes of ventricular hypertrophy. LV samples were immediately 
frozen in liquid nitrogen and stored at −80 °C. Lungs were weighed before and after drying sessions (65 °C 
for 72 h) to evaluate wet/dry weight ratio.

Morphologic study
Frozen LV samples were transferred to a cryostat and cooled to -20 °C. Serial transverse 8 μm thick 

sections were stained with hematoxylin and eosin. At least 50 cardiomyocyte diameters were measured from 
each LV as the shortest distance between borders drawn across the nucleus [41]. Other slides were stained 
with Sirius red F3BA and used to quantify interstitial collagen fraction [42]. On average, 20 microscopic 
fields were analyzed with a 40X lens. Perivascular collagen was excluded from this analysis. Measurements 
were taking using a compound microscope (Leica DM LS; Nussloch, Germany) attached to a computerized 
imaging analysis system (Media Cybernetics, Silver Spring, MD, USA).

Myocardial hydroxyproline measurement
Myocardial hydroxyproline concentration was estimated using a colorimetric assay (QuickZyme 

Hydroxyproline Assay, Leiden, Netherlands) according to manufacturer instructions.

Real time RT-PCR analysis
Total RNA was extracted from the LV with TRIzol Reagent (Invitrogen Life Technologies, Carlsbad, CA, 

USA) according to a previously described method [43-45]. Frozen muscles were mechanically homogenized 
on ice in 1 ml of ice-cold TRIzol reagent. Total RNA was solubilized in RNase-free H2O, incubated in DNase I 
(Invitrogen Life Technologies) to remove any DNA in the sample, and quantified by measuring optical density 
(OD) at 260 nm. RNA purity was ensured by obtaining a 260/280 nm OD ratio of approximately 2.0. One 
microgram of RNA was reverse transcribed using High Capacity cDNA Reverse Transcription Kit in a total 
volume of 20 μL, according to standard methods (Applied Biosystems, Foster City, CA, EUA). Aliquots of 2.5 
μL (10-100 ng) of cDNA were then submitted to real-time PCR reaction using 10 μL 2X TaqMan® Universal 
PCR Master Mix (Applied Biosystems) and 1 μL of customized assay (20X) containing sense and antisense 
primers and Taqman (Applied Biosystems, Foster City, CA, EUA) probe specific to each gene, collagen type 
I (Taqman assay Rn00567418_m1; Ref. seq. Genbank NM_053304.1), collagen type III (Taqman assay 
Rn00598571_m1; Ref. seq. Genbank NM_032085.1), and lysyl oxidase (Taqman assay Rn00565920_m1; 
Ref. seq. Genbank NM_017061.2). Amplification and analysis were performed using Step One PlusTM Real 
Time PCR System (Applied Biosystems, Foster City, CA, EUA) according to manufacturer recommendations. 
Expression data were normalized to cyclofilin (reference gene; Taqman assay Rn00667869_m1; Ref. seq. 
Genbank NM_017101) expression. Reactions were performed in triplicate and expression levels calculated 
using the CT comparative method (2-ΔΔCT).

Statistical analysis 
Results are expressed in descriptive measurements. Variables were compared by two-factor ANOVA, 

followed, respectively, by the Tukey test, for parametric distributions, and the Dunn test, for non-parametric 
data. Frequency of heart failure features was assessed by the Goodman test. Statistical significance was 
accepted at p<0.05.
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Results

Characterization of experimental groups and anatomic variables 
During the experiment, 6 SHR-SED and 3 SHR-EX died; no rat from WKY groups died. 

Figure 1 shows the frequency of heart failure features. The SHR-SED had a higher frequency 
of pleural effusion, ascites, and tachypnea than WKY-SED and SHR-EX.

Systolic blood pressure and anatomical data are shown in Table 1. Blood pressure was 
higher in SHR than WKY before and after the exercise protocol and higher in SHR-EX than 
SHR-SED after training. Initial and final body weight (BW), tibia length, right ventricle weight 
(RV) and atria weight were decreased in SHR groups compared to their respective controls. 
LV, LV/BW, LV/tibia length, RV/BW, atria/BW and wet/dry lung weight ratios were higher in 
SHR groups compared to controls. WKY-EX had higher values of LV, LV/BW, LV/tibia length, 
RV and RV/BW than WKY-SED. 

Exercise tolerance testing
Functional capacity was evaluated as maximal exercise performance in running test 

until exhaustion. SHR groups presented better performance in the initial and final test than 
their respective controls. The exercise protocol increased run time and distance in both 
exercise compared to sedentary groups (Fig. 2).

Fig. 1. Heart failure (HF) feature frequencies. WKY-SED: sedentary Wistar-Kyoto rats; WKY-EX: exercised 
Wistar-Kyoto rats; SHR-SED: sedentary spontaneously hypertensive rats; SHR-EX: exercised spontaneously 
hypertensive rats; Goodman test; * p<0.05 vs WKY-SED; § p<0.05 vs SHR-SED.

Table 1. Systolic blood pressure 
and anatomical data. Data as mean 
± standard deviation. WKY-SED: 
sedentary Wistar-Kyoto rats; WKY-
EX: exercised Wistar-Kyoto rats; 
SHR-SED: sedentary spontaneously 
hypertensive rats; SHR-EX: exer-
cised spontaneously hypertensive 
rats; SBP: systolic blood pressure; 
BW: body weight; LV: left ventricle 
weight; RV: right ventricle weight. 
ANOVA and Tukey or Dunn test; * 
p<0.05 vs WKY-SED; # p<0.05 vs 
WKY-EX; § p<0.05 vs SHR-SED
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Echocardiographic analysis
Echocardiography evaluation was performed before the exercise protocol to ensure 

homogeneity between groups (data not shown). At the end of the study, both SHR-SED and 
SHR-EX presented increased LV diastolic diameter/body weight ratio, LV posterior and 
septal wall thickness, left atrial diameter, LV mass, and relative wall thickness than their 
respective controls. SHR-EX LV systolic diameter was between that in WKY-EX and SHR-SED 
and did not significantly differ from either group (Table 2).

LV functional data are shown in Table 3. SHR-SED and SHR-EX had lower midwall 
fractional shortening and posterior wall shortening velocity, and a higher Tei index than 
their respective controls. Endocardial fractional shortening was lower in SHR-SED than 
WKY-SED; in SHR-EX, this parameter was not significantly different from WKY-EX and SHR-
SED. Isovolumic relaxation time was higher in SHR than WKY. The other parameters did not 
differ between groups. 

Fig. 2. Distance (A) and time (B) evaluated in treadmill running test until exhaustion. WKY-SED: sedentary 
Wistar-Kyoto rats; WKY-EX: exercised Wistar-Kyoto rats; SHR-SED: sedentary spontaneously hypertensive 
rats; SHR-EX: exercised spontaneously hypertensive rats. ANOVA and Tukey test; mean ± standard deviation; 
* p<0.05 vs WKY-SED; # p<0.05 vs WKY-EX; § p<0.05 vs SHR-SED.  

Table 2. Echocardiographic 
structural data. Data as mean ± 
standard deviation. WKY-SED: 
sedentary Wistar-Kyoto rats; 
WKY-EX: exercised Wistar-
Kyoto rats; SHR-SED: sedentary 
spontaneously hypertensive 
rats; SHR-EX: exercised 
spontaneously hypertensive 
rats; HR: heart rate; LVDD and 
LVSD: left ventricular (LV) 
diastolic and systolic diameter, 
respectively; BW: body weight; 
PWT: LV posterior wall 
thickness; SWT: LV septal wall 
thickness; AO: aorta diameter; 
LA: left atrial diameter; LVM: LV 
mass; LVMI: LV mass index; RWT: relative wall thickness. ANOVA and Tukey or Dunn test; * p<0.05 vs WKY-
SED; # p<0.05 vs WKY-EX
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Figure 4 shows the percentage of 
variation (Δ) between final and initial 
echocardiographic parameters calculated 
as [(final value minus initial value)/initial 
value] X 100. SHR-SED presented higher Δ LV 
diastolic diameter than WKY-SED and SHR-
EX groups. Δ LV mass was higher in SHR-
SED than WKY-SED and Δ midwall fractional 
shortening was lower in both SHR than their 
respective controls. Δ relative wall thickness 
did not differ statistically between groups. 

Myocardial function
Basal papillary muscle functional 

data are shown in Figure 3. There were no 
differences between normotensive groups. 
SHR-EX presented higher developed tension 
than SHR-SED and WKY-EX. Table 4 presents 
developed tension after different inotropic 
stimulation. 

Table 3. Echocardiographic 
evaluation of left ventricle fun-
ction. Data as mean ± standard 
deviation. WKY-SED: seden-
tary Wistar-Kyoto rats; WKY-
EX: exercised Wistar-Kyoto 
rats; SHR-SED: sedentary 
spontaneously hypertensive 
rats; SHR-EX: exercised spon-
taneously hypertensive rats; 
EFS: endocardial fractional 
shortening; MFS: midwall frac-
tional shortening; PWSV: pos-
terior wall shortening veloci-
ty; TDI-S’: mitral annular sys-
tolic velocity by tissue Doppler 

Fig. 3. Basal papillary muscle functional data. A: 
Developed tension. B: Maximum rate of tension de-
velopment (+dT/dt). C: Resting tension. WKY-SED: 
sedentary Wistar-Kyoto rats; WKY-EX: exercised 
Wistar-Kyoto rats; SHR-SED: sedentary sponta-
neously hypertensive rats; SHR-EX: exercised spon-
taneously hypertensive rats. ANOVA and Tukey test; 
mean ± standard deviation; # p<0.05 vs WKY-EX; § 
p<0.05 vs SHR-SED.

imaging (average between lateral and septal wall velocity); E/A: ratio between early (E)-to-late (A) diastolic 
mitral inflow; IVRT: isovolumic relaxation time; TDI-E’: mitral annular early velocity by tissue Doppler ima-
ging (TDI); TDI-A’: mitral annular late velocity by TDI; average: average between lateral and septal wall 
velocity. ANOVA and Tukey or Dunn test; * p<0.05 vs WKY-SED; # p<0.05 vs WKY-EX
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Fig. 4. Percentage of variation (Δ) between final and initial LV diastolic diameter (A), LV mass (B), LV relative 
wall thickness (C), and LV midwall fractional shortening (D) calculated as [(final minus initial value)/initial 
value] X 100. WKY-SED: sedentary Wistar-Kyoto rats; WKY-EX: exercised Wistar-Kyoto rats; SHR-SED: se-
dentary spontaneously hypertensive rats; SHR-EX: exercised spontaneously hypertensive rats. ANOVA and 
Tukey test; mean ± standard deviation; * p<0.05 vs WKY-SED; # p<0.05 vs WKY-EX; § p<0.05 vs SHR-SED. 

Table 4. Developed 
tension (DT) after po-
sitive inotropic stimu-
lation. Data as mean 
± standard deviation. 
WKY-SED: sedentary 
Wistar-Kyoto rats; 
WKY-EX: exercised 
Wistar-Kyoto rats; 
SHR-SED: sedentary 
spontaneously hyper-

Table 5. Morphometric 
data. Data as mean ± stan-
dard deviation. WKY-SED: 
sedentary Wistar-Kyoto 
rats; WKY-EX: exercised 

tensive rats; SHR-EX: exercised spontaneously hypertensive rats; DT: developed tension. ANOVA and Tukey 
test; * p<0.05 vs WKY-SED; # p<0.05 vs WKY-EX; § p<0.05 vs SHR-SED

Wistar-Kyoto rats; SHR-SED: sedentary spontaneously hypertensive rats; SHR-EX: exercised spontaneously 
hypertensive rats; ICF: interstitial collagen fraction. ANOVA and Tukey test; * p<0.05 vs WKY-SED; # p<0.05 
vs WKY-EX

Morphologic evaluation
Left ventricular myocyte diameter was higher in SHR-SED than WKY-SED (Table 5). 

Interstitial collagen fraction was higher in hypertensive than normotensive groups.
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Collagen assessment
Left ventricular myocardial hydroxyproline concentration was higher in both SHR 

groups than WKY and lower in SHR-EX than SHR-SED (Fig. 5). Collagen type I and III gene 
expression was higher in SHR than WKY groups. Lysyl oxidase gene expression was higher 
in SHR-SED than WKY-SED; in SHR-EX, this parameter did not differ from either WKY-EX or 
SHR-SED (Table 6). 

Discussion 

In this study, we showed that aging spontaneously hypertensive rats subjected to a 
long-term low intensity aerobic exercise protocol present improved functional capacity and 
a reduced frequency of decompensated heart failure. Improved clinical status was combined 
with enhanced left ventricular and myocardial function and reduced myocardial interstitial 
collagen.

SHR have been widely used to study cardiac remodeling and the transition from 
compensated left ventricular hypertrophy to decompensated heart failure. These rats were 
introduced by Okamoto and Aoki [46] as a genetic model of hypertension very similar to 
hypertension in humans. After developing early arterial hypertension and left ventricular 
hypertrophy, SHR remain compensated for a long period [23, 47]. From 18 months of age, 
SHR start to present clinical and pathological heart failure features such as tachypnea, 
ascites, pleural effusion, atrial thrombus, lung congestion, and right ventricular hypertrophy 
[24, 48]. Left untreated, rats evolve to death within two to four weeks. We therefore initiated 
the exercise protocol at age 16 months when no SHR had tachypnea. 

We used a low intensity protocol of aerobic exercise, adapted from published studies on 
aged untreated SHR [30, 49]. Younger untreated SHR (11 months) had experienced sudden 
death at a running speed of 17.5 m/min [30]. We therefore subjected our rats to physical 
exercise at 12 m/min, a tolerable intensity for all rats. This protocol proved efficient as 
functional capacity was increased in exercised compared to sedentary groups. In both the 

Fig. 5. Left ventricular myocardial hydroxyp-
roline concentration (HOP). WKY-SED: seden-
tary Wistar-Kyoto rats; WKY-EX: exercised 
Wistar-Kyoto rats; SHR-SED: sedentary spon-
taneously hypertensive rats; SHR-EX: exercised 
spontaneously hypertensive rats. ANOVA and 
Tukey test; mean ± standard deviation; * p<0.05 
vs WKY-SED; # p<0.05 vs WKY-EX; § p<0.05 vs 
SHR-SED.

Table 6. Collagen and lysyl 
oxidase gene expression Data 
as mean ± standard deviation. 
WKY-SED: sedentary Wistar-
Kyoto rats; WKY-EX: exercised 
Wistar-Kyoto rats; SHR-SED: 

sedentary spontaneously hypertensive rats; SHR-EX: exercised spontaneously hypertensive rats. ANOVA 
and Tukey test; * p<0.05 vs WKY-SED; # p<0.05 vs WKY-EX
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beginning and end periods of the exercise protocol, SHR presented better functional capacity 
than WKY rats. Previous studies have shown that SHR are more physically active, therefore 
presenting better functional capacity than normotensive rats [50, 51]. Improved functional 
capacity in SHR occurred despite a slight increase in arterial blood pressure compared to 
SHR-SED. The effects of exercise on SHR blood pressure are variable; some authors have 
shown an anti-hypertensive effect of exercise [19], others found hypertension unchanged 
[52, 53] or even exacerbated [54]. The low intensity exercise protocol did not change body 
weight. As usually seen in literature, our SHR presented lower body weight than WKY groups 
[23, 24]. 

At euthanasia, SHR-SED showed a significantly higher frequency of tachypnea, pleural 
effusion, and ascites than the WKY-SED group. In SHR-EX, the frequency of tachypnea, pleural 
effusion, and ascites was lower than SHR-SED and did not significantly differ from WKY-SED. 
This shows that even in the face of slightly increased arterial hypertension, low-intensity 
exercise training was capable of reducing the occurrence of decompensated heart failure in 
untreated SHR. Similar results have previously been observed in male [30] and female [49] 
aged SHR. 

We next evaluated whether improved ventricular and myocardial function was involved 
in better functional capacity and a reduction in decompensated heart failure frequency.

Cardiac structures and LV function were analyzed by conventional transthoracic 
echocardiogram and tissue Doppler imaging, and myocardial function was evaluated in LV 
papillary muscle preparations. Exercise in WKY rats did not change any cardiac parameters 
showing that increased functional capacity is not related to improved cardiac performance 
in normotensive rats. SHR-SED presented concentric left ventricular hypertrophy, 
characterized by increased LV posterior and septal wall thickness, relative wall thickness and 
LV mass, with systolic dysfunction, verified by decreased endocardial and midwall fractional 
shortening and posterior wall shortening velocity, and increased Tei index. Concerning 
diastolic function, only isovolumetric relaxation index was changed. Myocardial function 
did not differ from WKY-SED group. Therefore SHR-SED presented impaired in vivo systolic 
ventricular function with unchanged in vitro myocardial function. SHR usually present 
enhanced myocardial performance up to 18 months of age compared to WKY rats. As they 
age, SHR present unchanged function, and finally a depressed myocardial function [6, 23]. 
Thus, impaired in vivo ventricular function probably reflects the effect of increased afterload 
on LV systolic function. 

To the best of our knowledge, this is the first study to evaluate the effects of exercise 
in aging SHR using tissue Doppler imaging and papillary muscle preparations. In 
echocardiographic assessment, no parameters differed between SHR-EX and SHR-SED 
groups. However, the percentage of variation between final and initial LV diastolic diameter 
was lower in SHR-EX than SHR-SED, showing that exercise attenuated LV dilation in SHR. 
Furthermore, SHR-EX LV systolic diameter, which was higher in SHR-SED than WKY-SED, and 
endocardial fractional shortening, which was lower in SHR-SED than WKY-SED, had values 
between WKY-EX and SHR-SED and did not differ statistically from either of these groups, 
suggesting LV dysfunction was attenuated by exercise. 

Papillary muscle preparations allow the evaluation of myocardial function without 
influence from cardiac load and ventricular chamber geometry which can alter in vivo cardiac 
performance. At baseline, SHR-EX presented higher developed tension than WKY-EX and 
SHR-SED. Positive inotropic stimulation has been used to evaluate myocardial contractile 
reserve and to identify contraction and relaxation changes that are not observed under basal 
conditions [39]. After inotropic stimulation, SHR-SED did not differ from WKY-SED. However 
SHR-EX, although not differing from SHR-SED, presented higher developed tension than 
WKY-EX after post-rest contractions, in contractions with 0.625 and 1.25 mM extracellular 
calcium concentrations, and after the addition of 10-8 M isoproterenol to nutrient solution. 
Thus echocardiogram and papillary muscle preparation results suggest that exercise 
attenuated myocardial function deterioration thus improving functional capacity and 
reducing the occurrence of decompensated heart failure.
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Long-term pressure overload-induced cardiac remodeling mainly consists of 
cardiomyocyte hypertrophy and changes in phenotype and the amount of myocardial 
collagen. We therefore evaluated the degree of myocyte hypertrophy and myocardial fibrosis. 
SHR-SED had higher values of myocyte small diameter than WKY-SED. Despite unchanged left 
ventricle weight, SHR-EX myocyte diameter was between those of WKY-EX and SHR-SED and 
did not significantly differ from either group suggesting that hypertrophy was attenuated by 
exercise, independent of the elevated systemic arterial pressure. In contrast, other authors 
have observed increased SHR myocyte hypertrophy after exercise. The different response 
can be attributed to differences in exercise intensity [28], or animal gender [30] and age [14]. 

In this study, myocardial fibrosis was evaluated by myocardial morphometry, 
biochemical analysis, and gene expression. The interstitial collagen fraction increased in 
both SHR groups compared to WKY and was unchanged by physical exercise. However, 
myocardial hydroxyproline concentration was reduced in SHR-EX compared to SHR-SED. 
Hydroxyproline, an amino acid, is the main component of the collagen molecule and can 
only be found in small concentrations in a limited number of other proteins. Evaluation 
of myocardial fibrosis using hydroxyproline is more precise than histological analyses 
[55]. Cardiac mechanical properties are not only modulated by the amount of myocardial 
collagen but also by the type of collagen in the myocardium. Fibrillar collagen types I 
and III are the predominant components of the cardiac extracellular matrix [56]. Tissue 
predominantly containing type I collagen is stiffer than tissue composed of higher type III 
fiber concentrations [57, 58]. In this study, both type I and type III collagen gene expression 
were increased in SHR groups and unchanged by exercise. Gene expression of lysyl oxidase, 
an enzyme important in collagen cross-link formation, was higher in SHR-SED than WKY-
SED; it did not differ from the other groups in SHR-EX. We therefore conclude that long-term 
physical exercise attenuated increase in myocardial collagen content and lysyl oxidase gene 
expression. It has previously been shown that exercise training in both normotensive and 
hypertensive aging rats attenuates myocardial fibrosis and modulates myocardial collagen 
gene expression [19, 59].

Studies on aging SHR have shown that heart failure development is associated with 
marked myocardial fibrosis and impaired contractile function, which suggests that 
fibrosis or changes in connective tissue response are important during the transition 
from compensated hypertrophy to failure [6]. Therefore myocardial fibrosis, by restricting 
myofibrillar motion [6], may have contributed to the impaired cardiac function. Thus, in 
this study, exercise-induced attenuation of myocyte hypertrophy and fibrosis is probably 
involved in improved functional capacity and myocardial and cardiac function and a reduced 
frequency in heart failure development. Additional studies are necessary to evaluate other 
potential mechanisms underlying the beneficial effects induced by exercise. 

This study has important clinical implications as geriatric patients are usually resistant 
to exercise programs specially if exercise intensity is high. Therefore, our results suggest 
that an aging population with chronic pressure overload can gain beneficial effects in clinical 
status from low intensity aerobic physical exercise. 

In conclusion, a long-term low intensity physical exercise protocol improves functional 
capacity and reduces the frequency of decompensated heart failure in aging spontaneously 
hypertensive rats independent of elevated systemic arterial pressure. Improvement in 
functional status is combined with attenuation in left ventricular and myocardial dysfunction 
and myocardial fibrosis. 
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