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Abstract. The possibility of using a dynamic environment to achieve and optimize phase syn-
chronization in a network of self-excited cells with free-end boundary conditions is addressed in
this paper. The dynamic environment is an oscillatory bath coupled linearly to a network of four
cells. The boundaries of the stable solutions of the dynamical states as well as the ranges of cou-
pling parameters leading to stability and instability of synchronization are determined. Numerical
simulations are used to check the accuracy and to complement the result obtained from analytical
treatment. The robustness of synchronization strategy is tested using a local and global injection of
Gaussian white noise in the network. The control gain parameter of the bath coupling can modu-
late the occurrence of synchronization in the network without prior requirement of direct coupling
among all the cells. The process of synchronization obtained through local injection is independent
of the node at which noise is injected into the system. As compared to local injection, the global
injection scheme increases the range of noise amplitude for which synchronization occurs in the
network.
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1. Introduction

Complex systems are highly organized to allow efficient processing of information [1–5].
Such expeditious process is correlated not only to network’s configurations but also to
cells or oscillators embedded in them. A widespread property shared across the board by
these networks and which is independent of cell’s type is synchronization [6–11], which
can arise although isolated cells may possess either periodic or chaotic oscillatory states.
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In addition to synchronization, other possible outputs from networks of oscillators are:
riddled basins [12], on–off intermittency [13], spatiotemporal chaos, standard and gene-
ralized correlated states etc. [14]. The benefits of synchronization do not lie only in those
situations where it can be found or explained in nature, but also in possible technological
applications such as communication engineering, biology, chemistry and so on [15–24].

In previous attempts to analytically investigate the boundaries of stability of synchro-
nization dynamics in networks of oscillators in non-chaotic states, for the most part,
the focus has been on nearest neighbours and long-range couplings [7,14,19,25–28].
However, the key question of reinforcement of the synchronization process in networks
remains an interesting task to address. This paper aims to investigate synchronization
enhancement via an oscillatory bath in a network of coupled oscillators. An important
problem where the notion of bath coupling applies is the chemistry of the eyes [29,30].
The idea consists of using a bath as inhibitor or catalyser or as external force to increase
the range of synchronization occurring in the network. There is evidence that the eyes
play an important role as the circardian pacemaker that drives the rhythm of ocular mela-
tonin synthesis and that the pacemakers can remain locked even in constant darkness.
Although there is no direct connection between the eyes, they are both connected to the
brain, through the pineal gland located in the epithalamus [29–33]. Another important sit-
uation where part of the brain imposes its rhythm into biological functions is the role that
the suprachiasmatic nuclei (SCN) plays in the circadian rhythms [32,34,35]. Most studies
look at the problem as how the network of neurotransmitters in the SCN produces the nec-
essary frequencies to impose the circadian cycle in the operations of the living beings. In
this paper we have a different perspective: using the neuronal networks in the SCN or the
neurotransmitters in the pineal gland as baths. In this paper we propose to use oscillators
with a time limit cycle as the pacemakers, coupled to an environmental bath, which
will represent the brain, which in this case will be the means of interaction between the
oscillators, without necessarily having a proper frequency to impose the catalyser between
those systems.

Thus, we use the strategy of environmental bath to shed some light on the issue
of synchronization enhancement in a network of oscillators. The outline of the paper
is as follows: In §2, we introduce the physical model and present the problem state-
ment. Section 3 deals with the stability boundaries of the synchronization process while
§4 addresses the effects of locally and globally injected Gaussian white noise on the
synchronization process. Finally, conclusions are given in §4.

2. System configuration and problem statement

For the sake of simplicity, we limit the number of oscillators embedded in the network.
Thus, the device shown in figure 1 represents a network of five oscillators. We use as
oscillators circuit consisting of a condenser C, an inductor L and nonlinear resistor NR, all
connected. The first four oscillators (1, 2, 3 and 4) are coupled to their nearest neighbour
through the identical inductance Lc, while the fifth oscillator is connected to each of
the first four oscillators through a different inductance Lκ5 (1 ≤ κ ≤ 5). The current
flowing through the nonlinear resistor is generally a function of the voltage (e.g., IOsc

κ =
F(ν1Vκ +ν2V

2
κ +ν3V

3
κ +· · ·+νNV N

κ ), where ν1, ν2, ν3, ..., νN are constants. Throughout
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Figure 1. Network of four coupled self-excited cells (1, 2, 3, 4) in an oscillatory bath
through the oscillator 5.

this paper, we assume the oscillators to be self-sustained/self-excited. This incentive is
because the synchronization dynamics of complex systems composed of self-excited cells
occurs in many fields such as in biology, physics and neuroscience. Here, each self-
excited cell is modelled by a classical van der Pol oscillator (vdPol) (figure 2). Under
such circumstances, the voltage–current equation of the NR [36] is defined as follows:

I vdP
κ = −a1Vκ + a3V

3
κ , (1)

where a1 and a3 stand for positive constants. The NR, which incorporates a dissipative
mechanism to damp oscillations that become too large and a source of energy to pump up
those that become too small, can be realized by using a block consisting of two transistors
[36]. In such situations, the device traces a particular path through phase space, and if
a perturbation excites it out of its accustomed rhythm, it soon returns to its former path.
Oscillators that have a standard waveform and amplitude to which they return after small

Figure 2. Electrical model of a self-excited oscillator.
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perturbations are known as stable limit-cycle oscillators, which are self-sustained. In
physiological expressions, the capacitor C represents a cellular membrane where ions are
drained by a nonlinear resistance NR. The inductance L models the finite switching time
of the ion channels in the membrane.

As shown in the Appendix, the model is described by the following second-order non-
dimensional, nonlinear differential equations:

ẍ1 − μ(1 − x2
1)ẋ1 + x1 = K(x2 − x1) + G(x5 − x1),

ẍ2 − μ(1 − x2
2)ẋ2 + x2 = K(x3 − 2x2 + x1) + G(x5 − x2),

ẍ3 − μ(1 − x2
3)ẋ3 + x3 = K(x4 − 2x3 + x2) + G(x5 − x3),

ẍ4 − μ(1 − x2
4)ẋ4 + x4 = K(x3 − x4) + G(x5 − x4),

ẍ5 − μ(1 − x2
5)ẋ5 + x5 = G(x1 − x5) + G(x2 − x5)

+ G(x3 − x5) + G(x4 − x5), (2)

where the overdot denotes the derivative with respect to time t . xi represents the dimen-
sionless electric current at the κ th oscillator, μ is a positive coefficient denoting the non-
linear parameter, K is the coupling parameter and G is the control gain parameter of the
system. The final state of the vdPol is purely sinusoidal for small values of μ, developing
into quasisinusoidal and relaxation oscillations as μ increases [37,38].

3. Stability analysis of phase synchronization

3.1 Analytical treatment

The network under consideration is interesting only if its resulting dynamical state is
stable. This requires all perturbed trajectories to return to the original limit cycle. It
is then particularly important to develop criteria that guarantee the asymptotic stability
of the synchronization process if applications are sought. Moreover, one can tolerate
synchronization failure but not its instability because it could damage the system.

The linear stability analysis of the dynamical states can be performed by linearizing
eqs (2) around the unperturbed limit cycle (or orbit) xo according to the following
equations:

ε̈1 − μ(1 − x2
o)ε̇1 + (1 + 2μxoẋo)ε1 = K(ε2 − ε1) + G(ε5 − ε1),

ε̈2 − μ(1 − x2
o)ε̇2 + (1 + 2μxoẋo)ε2 = K(ε3 − 2ε2 + ε1) + G(ε5 − ε2),

ε̈3 − μ(1 − x2
o)ε̇3 + (1 + 2μxoẋo)ε3 = K(ε4 − 2ε3 + ε2) + G(ε5 − ε3),

ε̈4 − μ(1 − x2
o)ε̇4 + (1 + 2μxoẋo)ε4 = K(ε3 − ε4) + G(ε5 − ε4),

ε̈5 − μ(1 − x2
o)ε̇5 + (1 + 2μxoẋo)ε5 = G(ε1 + ε2 + ε3 + ε4 − 4ε5), (3)

where εκ (1 ≤ κ ≤ 5) are the perturbations introduced. For small values of μ, the
dynamics of each of the oscillator can be described in the first approximation by a pure
sinusoidal trajectory of the form:

xo = A cos(ωt − φ), (4)
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where A, ω and φ are, respectively the amplitude, frequency and the phase of the unper-
turbed limit cycle. As reported in [39] dealing with the synchronization of two vdPols,
such a first-order approximation gives a fairly good agreement between the analytical and
numerical results. For μ = 0.1, the values of A and ω are 2 and 0.999, respectively. Using
the solution (4), the variational eqs (3) can be rewritten as follows:

ε̈1 +
[
α + μA2

2ω
cos 2τ

]
ε̇1 + 1

ω2
(δ1 − μA2ω sin 2τ )ε1 = K

ω2
ε2 + G

ω2
ε5,

ε̈2 +
[
α+ μA2

2ω
cos 2τ

]
ε̇2+ 1

ω2
(δ2−μA2ω sin 2τ)ε2 = K

ω2
ε1+ K

ω2
ε3+ G

ω2
ε5,

ε̈3 +
[
α+ μA2

2ω
cos 2τ

]
ε̇3+ 1

ω2
(δ3−μA2ω sin 2τ)ε3 = K

ω2
ε2+ K

ω2
ε4+ G

ω2
ε5,

ε̈4 +
[
α + μA2

2ω
cos 2τ

]
ε̇4 + 1

ω2
(δ4 − μA2ω sin 2τ )ε4 = K

ω2
ε3 + G

ω2
ε5,

ε̈5 +
[
α + μA2

2ω
cos 2τ

]
ε̇5 + 1

ω2
(δ5 − μA2ω sin 2τ )ε5

= G

ω2
ε1 + G

ω2
ε2 + G

ω2
ε3 + G

ω2
ε4, (5)

with

α = μ

ω

(
A2

2
− 1

)
, δ1 = δ4 = 1

ω2
(1 + K + G),

δ2 = δ3 = 1

ω2
(1 + 2K + G), δ5 = 1

ω2
(1 + 4G).

As assessing the stability of synchronized states around resonant states is difficult, our first
approach is to investigate the stability analysis far from those states. Thus, the stability
matrix of eq. (5) is block-diagonalized to determine the following eigenvalues λν (1 ≤
ν ≤ 10):

λ1 = −1 −
√

−399 − 400G + 400(
√

2 − 2)K

20
,

λ2 = −1 +
√

−399 − 400G + 400(
√

2 − 2)K

20
,

λ3 = −1 −
√

−399 − 400G − 400(
√

2 + 2)K

20
,

λ4 = −1 +
√

−399 − 400G − 400(
√

2 + 2)K

20
,

λ5 = −1 − √−399 − 400G − 800K

20
,
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λ6 = −1 + √−399 − 400G − 800K

20
,

λ7 = −1 − √−399 − 2000G

20
,

λ8 = −1 + √−399 − 2000G

20
,

λ9 = −1 − j
√

399

20
,

λ10 = −1 + j
√

399

20
· (6)

Complete stability occurs only if all eigenvalues possess negative real parts. Accordingly,
the stability of the synchronization process is guaranteed if the following criteria are
fulfilled:

G ∈ (−0.2,+∞) (7)

K ∈
(−1 − G

2 + √
2

,+∞
)

. (8)

If conditions (7) and (8) are not simultaneously fulfilled, the synchronization will be
unstable and therefore, as t increases, ε(t) will never go to zero but will possess a bounded
oscillatory behaviour or goes to infinity.

3.2 Numerical analysis

Numerical simulations of eqs (2) are carried out to determine the accuracy and to com-
plement the analytical results obtained. The numerical simulation uses the fourth-order
Runge–Kutta algorithm with a time step �t = 0.01 and the following initial condi-
tions (x1(0); ẋ1(0)) = (1.0; 1.0), (x2(0); ẋ2(0)) = (1.5; 1.5), (x3(0); ẋ3(0)) = (2.0; 2.0),
(x4(0); ẋ4(0)) = (2.5; 2.5) and (x5(0); ẋ5(0)) = (2.5; 2). Synchronization between two
oscillators u and v is defined with a criterion that the distance of the phase trajectories is

duv = |u − v| < h, (9)

where h = 10−4 represents the accuracy. The synchronization among all four oscillators
is effective if the total separation (TS) of all oscillator pairs is smaller than the accuracy,
i.e.,

TS =
∑

pairs(uv)

duv < h. (10)

For higher precision, computational time has been extended to 104.
In the absence of an oscillatory bath (G = 0 and (x5(0); ẋ5(0)) = (0; 0)), only the

first four oscillators are considered. In such a condition, the network is fully synchro-
nized for K ∈ [−0.2363,−0.0017] ∪ [0.037,+∞) as previously reported [28]. But
once an oscillatory bath is taken into account (G 	= 0) as part of the network through
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the fifth oscillator, the synchronization domains expand beyond the boundaries obtained
in the absence of a bath. Moreover, the network can be fully synchronized even if the
first oscillators are not initially coupled (i.e., K = 0). These findings demonstrate the
enhancement effect that the oscillatory bath has in the synchronization of the oscilla-
tors. For instance, when the bath strength G = 0.3, the network displays a complete
synchronization for K ∈ [−0.35,−0.110] ∪ [−0.076, 0.105] ∪ [0.234,+∞) while for
K ∈ [−0.109,−0.077] ∪ [0.106, 0.233], no synchronization occurs in the system. As
G increases (e.g., G = 0.6), all the oscillators in the network are synchronized for
K ∈ [−0.35,−0.203] ∪ [−0.169, 0.266] ∪ [0.403,+∞) while instability occurs for
K ∈ [−0.202,−0.170] ∪ [0.267, 0.402]. The process of synchronization is considered
unstable if, as time increases, TS never goes to zero, but shows bounded oscillations or
goes to infinity. Time histories of TS showing synchronization and instability of oscil-
lations for three sets of (K,G) are plotted in figure 3. In order to determine a broader
picture of the system’s behaviour for wider ranges of coupling parameters (K,G), a
stability chart summarizing domains of synchronized states which occur in the network
are plotted in figure 4. Besides, as not all values of K and G are able to lead either to
stability or instability of the processes, it becomes interesting to define their admissible
values for the network under consideration. Thus, critical boundaries of the coupling
parameters K and G are provided in the plane (G, K) as shown in figure 5, where the set

(a) (b)

(c)

Figure 3. Time histories of TS displaying synchronized states: (a) and (b) show
instability of the process while (c) shows full synchronization.
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Figure 4. Chart displaying all dynamical states of the network and their stability
boundaries. When any set of (K,G) leads to TS = 0, the synchronization is fully stable.
But when TS 	= 0, the process of synchronization is unstable for the corresponding
sets of (K,G). The regions of instability are mostly found for K > −0.1.

of coupling parameters leading to either bounded or unbounded oscillatory states, or to
full synchronization is above the curve while the region below the curve corresponds to
sets of forbidden values of the coupling parameters.

3.3 Influence of an injected noise on the synchronization process

Here, we consider both the local and global injection schemes. The local injection tech-
nique consists of a unidirectional coupling between the external command oscillator and a

Figure 5. Critical boundaries of the coupling parameters G and K . For (G,K) con-
sidered above the curve, the process of synchronization is either stable or unstable.
The region below the curve defines non-admissible values of (G,K) for the system.
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(a)

(b)

Figure 6. Effects of the white noise on the synchronization process. (a) K = 0, G =
0.6; (b) K = 5, G = 0.3.
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fixed representative of the nonlinear coupled system [40]. Such a technique is interesting
and widely used in many scientific areas, ranging from physics, engineering and biology
[26,27,41–43]. One example is electrophysiological experiments for drug delivery at a
specific site of a neuron/neuronal network [44]. Also, in order to investigate propagation
of somatic or dendritic action potential at a single cell level, this technique is required
during patch clamp experiments for current injection (current-clamp mode) in the cell
body or dendrite [45,46]. In this way, the dynamics of a neuron/neuronal network can
be monitored by a locally injected current in electrical and/or synaptic coupling among
cells [47,48]. In our model, Gaussian white noise is locally injected in the first cell within
the array to monitor the stability boundaries of synchronization patterns that occur. In
such a condition, the state variables of the network are described by the following set of
second-order non-dimensional, nonlinear differential equations:

ẍ1 − μ(1 − x2
1)ẋ1 + x1 = K(x2 − x1) + G(x5 − x1) + ξ(t),

ẍ2 − μ(1 − x2
2)ẋ2 + x2 = K(x3 − 2x2 + x1) + G(x5 − x2),

ẍ3 − μ(1 − x2
3)ẋ3 + x3 = K(x4 − 2x3 + x2) + G(x5 − x3),

(a) (b)

(c) (d)

Figure 7. Effect of white noise injection on the synchronization process when locally
injected in different oscillators for K = 5, G = 0.3, D = 0.5. (a) In oscillator 1; (b) in
oscillator 2; (c) in oscillator 3; (d) in oscillator 4.
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ẍ4 − μ(1 − x2
4)ẋ4 + x4 = K(x3 − x4) + G(x5 − x4),

ẍ5 − μ(1 − x2
5)ẋ5 + x5 = G(x1 − x5) + G(x2 − x5)

+ G(x3 − x5) + G(x4 − x5), (11)

where ξ(t) plays the role of the command signal and also stands for the dynamics of the
external oscillator. The stochastic term ξ(t) is a Gaussian white noise of zero mean (i.e.,
〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = 0) and correlation 〈ξ(t)ξ(t ′)〉 = 2Dδ(t − t ′) with D being
the intensity of the noise. Here, the effects of noise on the synchronization process is
investigated at two different scales: locally and globally. In the case of a locally injected
white noise through the oscillator 1 as defined earlier, it is found very interesting that
when all oscillators are only coupled via an oscillatory bath (G 	= 0, K = 0), the full
synchronization can still occur in the network as shown in figure 6a. When the coupling
strength among the oscillators 1, 2, 3 and 4 are not null, the full synchronization can

Figure 8. Effect of white noise injection on the synchronization process when
globally injected in the oscillators 1, 2, 3 and 4. K = 5, G = 0.3.
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still be found in the network. Nevertheless, as the amplitude of noise becomes bigger,
the robustness of synchronization via an environmental bath is disrupted, leading in some
cases (e.g., D = 1, 5) to full instability of the process. The location of noise injection in
the network has no influence on the network output as reported in figure 7.

In physiological conditions where multiple connections exist among cells, each of them
receive noisy input. In such conditions, the noise is not localized but spatially extended
through the whole system [49]. Additionally, the injection of common random noises has
been proven efficient in synchronizing chaotic systems [50]. In order to mimic the effects
of spatially extended noise on the synchronization dynamics in the system under consid-
eration, a zero-mean Gaussian white noise is globally injected in all the four oscillators.
Under these circumstances, the network is now described by the equations below:

ẍ1 − μ(1 − x2
1)ẋ1 + x1 = K(x2 − x1) + G(x5 − x1) + ξ(t),

ẍ2 − μ(1 − x2
2)ẋ2 + x2 = K(x3 − 2x2 + x1) + G(x5 − x2) + ξ(t),

ẍ3 − μ(1 − x2
3)ẋ3 + x3 = K(x4 − 2x3 + x2) + G(x5 − x3) + ξ(t),

ẍ4 − μ(1 − x2
4)ẋ4 + x4 = K(x3 − x4) + G(x5 − x4) + ξ(t),

ẍ5 − μ(1 − x2
5)ẋ5 + x5 = G(x1 − x5) + G(x2 − x5)

+ G(x3 − x5) + G(x4 − x5). (12)

The results of numerical simulation in this case reveal that compared to local injection,
global injection of noise makes the process of synchronization more robust for some range
of D. This robustness of global injection of noise can be visualized by comparing the plots
shown in figure 6b and figure 8.

4. Conclusion

In this paper, we have examined the possibility of using an external environment to opti-
mize the process of synchronization in a network of self-excited cells. Each cells within
the network was modelled as a van der Pol oscillator whose phase depends on initial
conditions. The properties of eigenvalues have allowed to analytically predict stability
boundaries of the coupling parameters K and G for which the phase synchronization
is successful. These boundaries have been validated using numerical simulations. The
critical frontiers of both coupling parameters for which all possible dynamical states exist
have been provided. A key finding here has been to use an external dynamic environment
to enhance the process of synchronization in the network of self-excited cells. Moreover,
in a bath environment, synchronization can be achieved without prior requirement of
direct coupling (i.e., K = 0) among self-excited cells which are embedded in a network
with free-end boundary conditions. The influence of a stochastic signal in the form of
Gaussian white noise locally and globally injected in the network has been investigated.
In both cases, the robustness of synchronization in the presence of a bath was stronger
for higher noise intensity in global injection. But as for the local injection, the test has
been successful for lower noise intensity. Although this model specifically focusses on
self-excited cells, this study can be extended to different types of oscillators.
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Appendix

The Kirchhoff’s laws for each of the oscillator are as follows:
Oscillator 1:

V1 − V2 = LC

dI1

dτ

V5 − V1 = L15
dI5

dτ

I5 = IOsc
5 + I1.

Oscillator 2:

V2 − V3 = LC

dI2

dτ

V2 − V5 = L25
dIL

1

dτ

I1 = IL
1 + IOsc

1 + I2.

Oscillator 3:

V3 − V4 = LC

dI3

dτ

V3 − V5 = L35
dIL

2

dτ

I2 = I3 + IL
2 + IOsc

2 .

Oscillator 4:

V3 − V4 = LC

dI3

dτ

V4 − V5 = L45
dI4

dτ

I3 = I4 + IOsc
3 .
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Oscillator 5:

V4 − V5 = L45
dI4

dτ

V5 − V1 = L15
dI5

dτ

V2 − V5 = L25
dIL

1

dτ

V3 − V5 = L35
dIL

2

dτ

I4 = I5 + IOsc
4 − IL

1 − IL
2 .

From the above equations, the dynamics of the network in the case of vdPol oscillators is
described by the following equations:

d2V1

dτ
− a1

C

(
1−3

a3

a1
V 2

1

)
dV1

dτ
+ 1

LC
V1 = 1

LCC
(V2−V1)+ 1

L15C
(V5 − V1),

d2V2

dτ
− a1

C

(
1 − 3

a3

a1
V 2

2

)
dV2

dτ
+ 1

LC
V2

= 1

LCC
(V1 − 2V2 + V3) + 1

L25C
(V5 − V2),

d2V3

dτ
− a1

C

(
1 − 3

a3

a1
V 2

3

)
dV3

dτ
+ 1

LC
V3

= 1

LCC
(V2 − 2V3 + V4) + 1

L35C
(V5 − V3),

d2V4

dτ
− a1

C

(
1 − 3

a3

a1
V 2

4

)
dV4

dτ
+ 1

LC
V4 = 1

LCC
(V3−V4)+ 1

L45C
(V5−V4),

d2V5

dτ
− a1

C

(
1 − 3

a3

a1
V 2

5

)
dV5

dτ
+ 1

LC
V5

= 1

L15C
(V1−V5)+ 1

L25C
(V2−V5)+ 1

L35C
(V3−V5)+ 1

L45C
(V4−V5),

where

μ = a1

√
L

C
, ω2 = 1

LC
, Vκ =

√
a1

3a3
xκ, t = ωτ,

K = L

LC

, Gi = L

Li5
, 1 ≤ i ≤ 5, L15 = L25 = L35 = L45.
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