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ABSTRACT:Soil CO2 emission (FCO2) is one of the main sources of carbon release into the at-
mosphere. Moreover, FCO2 is related to soil attributes governing the transfer of gases from soil 
to the atmosphere. This study aimed firstly to describe the spatial variability of hematite (Hm), 
goethite (Gt), iron extracted with sodium dithionite-citrate-bicarbonate (Fed) contents, soil CO2 
emission (FCO2) and free-water porosity (FWP) and secondly, to develop statistical models to pre-
dict the above mentioned factors in an Oxisol cultivated under manual harvesting of sugarcane 
(Saccharum spp.) in southeastern Brazil. The study was conducted on an irregular 50 m × 50 
m grid containing 89 points, each 0.5-10 m apart. The 0-0.1 m soil layer at each sampling point 
was used to assess soil FCO2, moisture and total pore volume. The results were subjected to 
descriptive statistical and geostatistical analyses using auto- and cross-semivariograms. All soil 
attributes exhibited a spatial dependence structure and the experimental semivariograms fitted 
spherical and exponential models. The Gt content was the individual attribute that exhibited the 
highest linear and spatial correlation, especially with FCO2. We were able to use diffuse reflec-
tance spectroscopy to map large areas, which allows for easy identification and estimation of soil 
attributes such as FCO2 and FWP. Geostatistical techniques faciltate the interpretation of spatial 
relationships between soil respiration and the examined properties. 
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Introduction

Soil CO2 emission (FCO2) is a reliable indicator of 
global climate change as it is one of the major sources of 
carbon loss from soil (Cerri et al., 2009). FCO2 is related 
to a number of attributes that govern the release of gas 
into the atmosphere such as soil porosity (Panosso et al., 
2012), temperature, moisture (Panosso et al., 2009), and 
mineralogical composition (La Scala et al., 2000). These 
attributes are closely related to soil aggregation (Cañas-
veras et al., 2010), which in turn is directly associated 
with soil gas emission.

Iron oxides are widely used as pedoenvironmen-
tal indicators on the grounds of their sensitivity to the 
specific conditions of soil formation processes (Schwert-
mann and Taylor, 1989). These minerals influence the 
physical and chemical behavior of tropical and subtropi-
cal soils through changes in their dynamics, a phenom-
enon which testifies to their high significance (Cornell 
and Schwertmann, 2003). For example, sugarcane (Sac-
charum spp.) management of crop residues (cane) can 
alter several factors such as soil moisture and the con-
centration of organic ligands, which are involved in the 
chemical reduction and chelation of iron oxides (Inda 
et al., 2013). This further confirms the relationship be-
tween iron minerals and CO2 via its production or re-
lease from soil.

Diffuse reflectance spectroscopy (DRS) has been 
widely used to identify and quantify iron oxides in soils 
and sediments (Torrent and Barrón, 2008; Viscarra Ros-
sel and Webster, 2011), examine the effects of organic 

matter thereupon (Demattê et al., 2006) and estimate ag-
gregate stability (Cañasveras et al., 2010). The spectral 
behavior of soils depends on their physical, chemical 
and biological properties. Warrick and Nielsen (1980), 
Cambardella et al. (1994), Camargo et al. (2008; 2014) 
reported a high spatial variability in soil attributes, in-
cluding FCO2 (Panosso et al., 2012) and mineralogical 
composition (Bahia et al., 2014). 

Geostatistics is a powerful auxiliary mapping tool 
which, however, is often disregarded in cases of more 
intensive sampling requirements. Thus, the DRS tech-
nique provides an effective choice for this task, since it 
allows for easy identification and estimation of soil at-
tributes. In this context, this study aimed : i) to describe 
the spatial variability of the hematite, goethite, iron ex-
tracted with sodium dithionite-citrate-bicarbonate, soil 
CO2 emission and free water porosity; and ii) to develop 
statistical models to predict the above mentioned factors 
in an Oxisol cultivated under manual harvesting of sug-
arcane in southeastern Brazil.

Materials and Methods

Study area
The study was conducted in Guariba, in the state 

of São Paulo, Brazil (21º24 S; 48º09′ W; 550 m above sea 
level). The climate is of the B2rB'4a', mesothermal type 
according to the Thornthwaite classification system, 
with rainy summers and dry winters. Average annual 
precipitation is about 1,425 mm mainly concentrated in 
the Oct to Mar period. Average annual temperature for 
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the last 30 years has been 22.2 °C and we used a clayey 
Typic Eutrudox (Soil Survey Staff, 1999) on a 3 % slope. 
The area had been cropped with sugarcane for the pre-
vious 38 years, the last eight with mechanical green-har-
vested (not-burned). The cropping residues left in the 
soil are estimated to amount to 12 t ha–1 each year. The 
study was conducted on a 50 m × 50 m irregular sam-
pling grid containing 89 variably spaced points 0.5-10 m 
apart (Figure 1). 

Field and laboratory analysis
Soil CO2 emission (FCO2) was measured with two 

portable LI-8100 automated soil CO2 flux system (La 
Scala et al., 2000). The LI-8100 uses infrared spectro-
scopic measurements to monitor changes in CO2 con-
centration inside a closed chamber. The chamber is a 
closed system with an internal volume of 854.2 cm3 and 
a circular soil contact area of 83.7 cm2. It was coupled 
to a PVC collar that had been previously installed at ev-
ery 89-sample points. Measurements were taken in the 
morning and afternoon at every sampling point over a 
period of six days to calculate an average FCO2 value. 
Soil temperature (Ts) was monitored at the same time/
simultaneously by using the thermistor-based 0.20 m 
probe included in the LI-8100. The probe was inserted 
5 cm into the soil near the PCV collar. Soil moisture 
(Ms) was recorded with a portable hydrosensing system 
consisting of a TDR probe. 

FCO2, Ts and Ms measurements were followed by 
a sampling of the 0.0-0.1 m soil layer at the 89 points 
on the grid. Samples were allowed to dry in the air, 
ground and screened through a 2 mm mesh prior to 
routine analysis. Soil density (Ds) was determined in 
samples collected with a cylinder sampler provid-
ing specimens 0.04 m high and 0.05 m in diameter. 
Total pore volume (TPV) was calculated from density 

measurements and pore distribution by using a funnel 
furnished with a porous plate loaded with pre-soaked 
samples and placed under a 0.6 m high water column. 
Free water porosity (FWP) was calculated as the dif-
ference between total pore volume (TPV) and the pore 
fraction filled by water, which was equivalent to Ms. 
These soil attributes were determined as in Panosso et 
al. (2012).

The determination of iron content in the total of 
pedogenic iron oxides extracted by sodium dithionite-
citrate-bicarbonate (Fed) followed the methodology of 
Mehra and Jackson (1960) and the levels of iron ex-
tracted by ammonium oxalate (Feo) relating to iron ox-
ide pedogenetical low crystallinity the methodology of 
Schwertmann (1964). 

Diffuse reflectance spectroscopy - hematite and 
goethite contents

Mineralogical attributes were estimated from the 
diffuse reflectance spectroscopy (DRS) of air-dried fine 
soil (ADFS) samples (particle diameter < 2.0 mm) (Tor-
rent and Barrón, 2008). To this end, an amount of 1 g 
of soil was ground to uniform colour in an agate mor-
tar and placed in the specimen holder with 16 mm di-
ameter cylindrical space. Reflectance spectra were ob-
tained with a spectrophotometer UV/Vis/NIR furnished 
with an integrating sphere 150 mm in diameter. Spectra 
were acquired at 0.5 nm intervals over the 380-780 nm 
range (i.e. in the visible region). The DRS technique 
yields a hematite:goethite ratio whereby their contents 
are estimated using mathematical calculations. The 
methodology used is described in greater detail else-
where (Torrent and Barrón, 2008). 

The contents of Hm and Gt were estimated from 
the second derivative of the Kubelka-Munk function 
(Yang and Kruse, 2004) for the DRS data according to 

Figure 1 – Schematic depiction of the study area showing the location of the 89 points on the sampling grid.



Bahia et al. Iron oxides and soil CO2 emission

159

Sci. Agric. v.72, n.2, p.157-166, March/April 2015

Kosmas et al. (1984) and Scheinost et al. (1998): 

 (1)

where R is the sample diffuse reflectance. For this, an 
algorithm “smoothing” process was applied to adjust the 
"cubic spline" curve for the 31 reflectance value series 
(Scheinost et al., 1998). Thereafter, amplitudes of the 
spectral bands associated with the minerals Gt and Hm 
were determined according to Scheinost and Schwert-
mann (1999). For goethite detection 415-425 nm mini-
mum and 440-450 nm maximum intervals were used, 
and for hematite: a minimum of 530-545 nm and maxi-
mum of 575-590 nm. Next the R parameter was obtained 
from the amplitude value (distance between the mini-
mum and maximum values - Figure 2) of goethite and 
hematite absorption spectra:

  (2)

where: AHm is the amplitude of the band of hematite and 
AGt the amplitude band of goethite.

The ratio hematite/(hematite + goethite) (Hm/(Hm 
+ Gt)) was estimated from the K factor as:
	

 (3)

The proportion of hematite (Hm) was calculated 
from the K factor as:
 

   (4)

where: Fed is the iron extracted by sodium dithionite-
citrate-bicarbonate and Feo is the iron extracted with 
oxalate.

The proportion of goethite (Gt) was calculated by 
the following equation: 

 (5)

As suggested by Scheinost et al. (1998), the bands 
in the spectral regions related to Gt and Hm were cor-
related with the contents in the two minerals as deter-
mined by X-ray diffraction. Soil samples can be anal-
ysed by DRS untreated because soil properties are not 
altered by any type of pre-treatment (Kosmas et al., 
1984).

Statistical and geostatistical analysis
The attributes were preliminarily subjected to 

exploratory data analysis to calculate means, standard 
errors, standard deviations, coefficients of variation, 
minimum, maximum, asymmetry and kurtosis coef-
ficients, and to check the normality hypothesis. The 
spatial variability of the target soil attributes was char-
acterized by geostatistical analysis (Webster and Ol-
iver, 1990), using the principles behind the intrinsic 
hypothesis, and simple and cross-semivariograms for 
modelling. The semivariance estimation at a given sep-
aration distance h, was determined by the following 
expression: 

Figure 2 – Diffuse reflectance spectrum (A) and second derivative of the Kubelka–Munk function (B). Amplitudes of the spectral bandwidths 
assigned to goethite (AGt) and hematite (AHm) are shown.
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 (6)

where: (h) is the experimental semivariance at h, z(xi) 
the value of the target property at point i, N(h) the num-
ber of point pairs a distance h apart, z(xi) the value of 
z at point xi and z(xi + h) at point xi + h. The semivar-
iogram describes the spatial continuity or dispersion 
of the variables as a function of the distances between 
locations. 

Cross-semivariograms were modelled to character-
ize the spatial dependence between the main variables 
(FCO2 and FWP) and an auxiliary or secondary variable 
(Hm, Gt or Fed). The semivariograms fitted the following 
equation:

                                  

                                                                                                                                                
                                    (7)

where:   is the experimental cross-semivariance at 
an h distance; z(xi), main variable value estimated at i 
point; y(xi), secondary variable value at point i; and N(h), 
the number of pairs of values separated by an h distance. 
The semivariogram originated from a special type of 
cross-semivariogram where semivariance is calculated 
for a single property and hence a spatial autocorrelation 
measurement for the concerned variable. Only those 
points where both the main variable and the secondary 
variable were simultaneously sampled were used to con-
struct the cross-semivariogram.

Linear, Exponential, Gaussian and Spherical mod-
els were tested. The choice of the adjusted semivario-
gram model was based on the coefficient of determina-
tion (R2), obtained by fitting the theoretical model to the 
experimental semivariograms and in cross-validation. 
Cross-validation was based on root mean square error 
(RMSE) (Equation 8) and mean error (ME) (Equation 9) 
(Cerri et al., 2004; Chirico et al., 2007); the lower the 
RMSE and ME, the higher the accuracy and the lower 
the bias in the estimates, respectively. 

 

(8)

 

 (9)

where n is the number of values used for validation, z(xi) 
the value of the property concerned at point i and )(ˆ ixz  
its estimated counterpart. The RMSE provides informa-
tion on model accuracy for each variable and the ME 
assesses its trend. 

Models regressions were developed to predict 
FCO2 and FWP from the Hm, Gt and Fed contents. In 
our study, we separated about 10 % of the total of 89 
data points for external validation, and the remaining 90 
% were used for modelling (Cerri et al., 2004; Chirico et 
al., 2007). External validation provides the opportunity 
to compare observed and estimated data. External vali-
dation analysis was assessed based on the RMSE (eq. 8) 
and ME (eq. 9), which evaluate accuracy and bias of the 
models, respectively (Cerri et al., 2004; Chirico et al., 
2007).

The estimates of the semivariogram models were 
obtained using the GS+ software (version 9.0; Gamma 
Design Software, LLC, Plainwell, MI, USA). Descriptive 
statistics were performed using the SAS software (Statis-
tical Analysis System, Institute, Cary, NC, USA, version 
9.0). 

Results and Discussion

The mean FCO2 (2.19 µmol m–2 s–1) and its coef-
ficient of variation (CV = 37 %), Table 1, were similar 
to those previously reported for similar crops and soils 
(Brito et al., 2010; Panosso et al., 2009; Panosso et al., 
2012). The coefficient of variation is a measure of vari-
ability in soil attributes. Based on the classification of 
Warrick and Nielsen (1980), Hm and Fed had a moderate 
coefficient (12 % < CV < 24 %), and FCO2, FWP and 
Gt had a high coefficient (CV > 24 %). A number of at-
tributes exhibited rather broad variability for the small 
sampling area used. 

The high CV value for FCO2, 37 %, is typical of 
this attribute as has been previously reported for a vari-
ety of soils and crop types (La Scala et al., 2000; Herbst 
et al., 2012). Panosso et al. (2012), who studied the 
fractal dimension and anisotropy of soil respiration in 
a mechanically harvested sugarcane area, observed spa-
tial variability of soil CO2 emission was predominantly 
explained by changes in the oxygen level of the soil, as 
expressed by FWP. Therefore, the high CV values ob-
tained for these two properties suggest that FCO2 and 
FWP have similar variability.

FCO2, Hm and Fed exhibited a non-normal distri-
bution (Anderson-Darling test; p < 0.01; Table 1). Al-
though this is not required for data used in geostatistical 
analysis, we opted to convert FCO2, Hm and Fed data to 
logarithmic form prior to variographic analysis, which 
is a common practice in spatial analyses (Kosugi et al., 
2007; Panosso et al., 2009). The theoretical distribution 
of data from a natural source can only be fitted in an 
approximate manner, so the data need not be normalized 
for geostatistical analysis provided the distribution is not 
exceedingly asymmetric (Cressie, 1991). 

The spatial correlation between mineralogical at-
tributes, FCO2 and FWP was elucidated by using simple 
and cross-semivariograms (Table 2, Figures 3 and 4). All 
attributes exhibited spatial dependence that was eluci-
dated by fitting the semivariograms. The spherical mod-
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el was adjusted to the simple and cross-semivariograms 
for all attributes except Hm content. The exponential 
model provides a better description of an Hm simple 
semivariogram. The spherical model is suitable for most 
soil attributes (Cambardella et al., 1994). The asymptotic 
sill of the exponential model is responsible for mild tran-
sitions in space, which are typical of attributes chang-
ing abruptly in the field. Camargo et al. (2014) applied 
spherical, exponential and gaussian models to a soil of 
the same type. Additionally, La Scala et al. (2000), Brito 
et al. (2010) and Panosso et al. (2009) have used spherical 
models to fit CO2 emission semivariograms on the same 
soil type and crop. 

Based on the classification of Cambardella et al. 
(1994), our FCO2, FWP, Gt and Fed simple semivariograms 
exhibited moderate spatial dependence, with 0.25 < C0/
(C0 + C1) < 0.75. On the other hand, the simple semivar-
iogram for Hm and all of its cross-semivariograms exhib-
ited marked spatial dependence, with C0/(C0 + C1) < 0.25 
- which testifies to the strong spatial correlation between 
the mineralogical attributes, FCO2 and FWP. 

The range distance for FCO2 (3.90 m) was smaller 
than that reported by Brito et al. (2010), who examined soil 
respiration at three different topographic locations con-
taining a 69-point, 90 m × 90 m sampling grid each. How-
ever, our results are similar to those of Kosugi et al. (2007) 
for forest areas; they detected bands of 4.40-27.70 m in a 
50 m × 50 m sampling grid. La Scala et al. (2000) studied 

temporal changes in FCO2 spatial variability in bare soil 
and obtained range distance values from 29.60 to 58.40 m. 

The accuracy of the estimates provided by the 
simple semivariograms for each variable was assessed 
in terms of RMSE and ME (Table 2). The variables FCO2 
and FWP accounted for more than 50 % of the variabil-
ity at the points used for cross-validation (RMSE < 0.71) 
(Hengl, 2007). FWP was slightly overestimated (ME = 
0.27), whereas all other variables were underestimated 
(ME < 0) - particularly Gt, with ME = -0.28. Based on the 
results, the spatial modelling methodology used provides 
estimates that are very close to the measured values and 
is, therefore, an effective predictor of soil attributes.

There were positive correlations between soil respi-
ration and the mineralogical attributes Hm (r = 0.64, p < 
0.01) and Gt (r = 0.65, p < 0.01) (Figure 5A, B). La Scala 
et al. (2000) studied spatial variability in soil respiration 
in the same region and obtained significant correlations 
between FCO2 and the amounts of organic carbon and 
iron extracted from clays, which are closely related to the 
spectral reflectance of soil (Demattê et al., 2006; Viscarra 
Rossel and Webster, 2011). The positive correlations be-
tween Hm, Gt and FCO2 may have resulted from the fa-
vorable effect of iron oxides on soil respiration (La Scala 
et al., 2000); in fact, these clay minerals influence aggre-
gation of soil particles (Duiker et al., 2003; Cañasveras et 
al., 2010) and, together with moisture, govern CO2 release 
from the soil into the atmosphere (Nazaroff, 1992). There-

Table 1 – Mean, standard deviation, minimum and maximum value, and coefficient of variation of the target soil attributes as measured in the 
0.00-0.10 m soil layer at 89 sampling points.

Attribute Mean ME SD CV (%) Min. Max. CA Kurt. AD (p)
FCO2 (µmol m–2 s–1) 2.19 0.09 0.81 36.7  0.79 4.87  0.72  0.56 < 0.01
FWP (%) 15.42 0.66 5.72 38.1  1.81 27.03 -0.65  0.75  0.13
Hm (g kg–1) 103.15 1.95 17.60 17.1 47.40 133.58 -0.74 -0.02 < 0.01
Gt (g kg–1) 42.17 1.90 10.35 24.5 18.11 113.81 -0.45  0.11  0.11
Fed (g kg–1) 105.64 1.20 17.08 16.2 48.94 129.59 -0.81 -0.07 < 0.01

N = 89. FCO2 = Soil CO2 emission, FWP = free water porosity; Hm = hematite content; Gt = goethite content; Fed = iron extracted by sodium dithionite-citrate-
bicarbonate; ME = standard error of the mean; SD = standard deviation; CV = coefficient of variation; Min. = minimum value; Max. = maximum value; CA = coefficient 
of asymmetry; Kurt. = kurtosis; AD = Anderson–Darling normality test.

Table 2 – Model type and parameters of the simple and cross-semivariograms fitted to the FCO2, FWP, Hm, Gt and Fed values.
Parameter Model C0 C0 + C1 C0/(C0+C1) Range (m) R2 RMSE ME
FCO2 Sph. 0.24 0.57 0.42 3.90 0.97 0.09 -0.03
FWP Sph. 11.34 25.15 0.45 3.24 0.93 0.51 0.27
Hm Exp. 45.00 257.08 0.17 1.60 0.96 1.53 -0.13
Gt Sph. 24.64 53.67 0.46 1.90 0.90 0.75 -0.28
Fed Sph. 114.15 259.20 0.44 2.22 0.87 1.37 -0.18
FCO2 × Hm Sph. 1.30 5.15 0.25 2.58 0.86 - -
FCO2 × Gt Sph. 0.15 2.21 0.07 2.92 0.95 - -
FCO2 × Fed Sph.  0.97 5.99 0.16 3.14 0.95 - -
FWP × Hm Sph. 1.45 37.55 0.04 3.26 0.97 - -
FWP × Gt Sph. 2.01 16.25 0.12 3.60 0.92 - -
FWP × Fed Sph. 3.05 34.41 0.09 3.50 0.85 - -
FCO2 = Soil CO2 emission; FWP = free water porosity; Hm = hematite content; Gt = goethite content; Fed = iron extracted by sodium dithionite-citrate-bicarbonate; C0 
= nugget effect; C0 + C1 = sill; C0/(C0 + C1) = degree of spatial dependence; RMSE = root mean square error; ME = mean error; Sph. = spherical; Exp. = exponential.
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Figure 3 – Simple semivariograms fitted to soil CO2 emission (FCO2), free water porosity (FWP), hematite (Hm), goethite (Gt) and iron extracted 
by sodium dithionite-citrate-bicarbonate (Fed).

fore, FCO2 must also be correlated with Fed, which is a 
structural component of these clay minerals (Figure 5C). 
Cañasveras et al. (2010) used DRS to estimate stability in-
dices for Mediterranean soil aggregates and found iron ox-
ides, as well as the contents in clay, calcium carbonate and 
organic matter, among other soil properties, to influence 
them. We found a positive correlation (r = 0.64, p < 0.01) 
between Fed and FCO2, which is suggestive of a direct pro-
portionality between the two parameters and contradicts 
previous results of La Scala et al. (2000) for soil respiration 
in a bare Oxisol. These authors obtained negative linear 
correlation coefficients of -0.22, -0.36 and -0.42, respec-
tively, between Fed and FCO2 on three different dates. 

La Scala et al. (2000) and Bahia et al. (2014) sug-
gest more complex relationships between minerals in clay 

fraction and biological activity in soil. Inda et al. (2007) 
studied tropical and subtropical soils and found that sta-
bility of organomineral complexes was directly related to 
organic matter content and clay fraction mineralogy. In 
addition to these factors, the iron content of soil is judged 
important to the assessment of the impact of preparation 
and management practices in tropical soils (La Scala et al., 
2000). Therefore, elucidating iron contents and CO2 losses 
in Brazilian soils implies using additional techniques (es-
pecially DRS) due to the high variability.

Free water porosity (FWP) was positively corre-
lated with Hm (r = 0.65, p < 0.01), Gt (r = 0.62, p 
< 0.01) and Fed (r = 0.69, p < 0.01) (Figure 5D, E, 
F). Again, this may have resulted from the effect of 
mineralogical attributes (particularly iron oxides) on 
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soil aggregation (Duiker et al., 2003; Cañasveras et al., 
2010). Soil aggregation results from the complexing of 
clay particles by organic matter and multivalent metals 
such as iron; the organic constituents act as ligands and 
occupy the central portion of the aggregates, thereby 
increasing their stability (Tisdall and Oades, 1982). One 
can therefore expect that FCO2 is directly related to 
clay mineral content in such a way that the greater the 
bonding agent amount in soil, the lower the water con-
tent and the easier it will be for CO2 to be released into 
the atmosphere as in Fick’s law (Ghildyal and Tripathi, 
1987; Nazaroff, 1992). Respiration in bare soils comes 
directly from microbial activity, which is influenced by 
the presence of iron oxides as constituents of clay ma-
terials.

The goethite content exhibited the highest linear 
correlation (Figure 5B) and also the highest spatial cor-

relation, especially with FCO2 (Table 2), with a nugget 
effect C0 = 0.15 and a degree of spatial dependence C0/
(C0 + C1) = 0.07. Such results testify to the usefulness 
of mineralogical information (particularly the content in 
Gt) for the spatial characterization of FCO2. As observed 
for simple linear correlation (Figure 5), all attributes pre-
sented positive spatial correlation, generating positive 
nugget effect (C0) and range (C0 + C1) (Figure 3). Stoyan 
et al. (2000) previously found positive spatial correla-
tions between FCO2, soil moisture and carbon content in 
forest areas. Camargo et al. (2008) studied an Oxisol on 
various forms of relief and observed spatial correlation 
between mineralogical attributes and soil aggregates. 
This result confirms the hypothesis that soil oxygenation 
is related to microaggregation since the iron oxides Hm 
and Gt are constituents of the clay fraction and can thus 
affect soil CO2 emission.

Figure 4 – Cross-semivariograms fitted to soil CO2 emission (FCO2), free water porosity (FWP), hematite (Hm), goethite (Gt) and iron extracted by 
the sodium dithionite-citrate-bicarbonate (Fed).
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Figure 5 – Linear regression models for the observed data of soil CO2 emission (FCO2) with hematite (Hm) (A), goethite (Gt) (B) and iron extracted 
by sodium dithionite-citrate-bicarbonate (Fed) (C) and free water porosity (FWP) with Hm (D), Gt (E) and Fed (F).

The prediction capacity of regression models was 
determined using external validation as it provides an op-
portunity to compare observed and estimated data. Re-
gression coefficients between observed values of FCO2 
(using reference method, field-measurement) and pre-
dicted values (DRS-estimated) were 0.96; 0.96; and 0.89 
for Hm; Gt; and Fed, respectively. In the case of FWP, 
coefficients were 0.96; 0.91; and 0.92 for Hm; Gt; and 
Fed, respectively (Table 3); estimate quality was assessed 
by accuracy indexes (RMSE and ME). According to Hengl 

(2007), RMSE values below 0.71 indicate that the model 
concerned accounts for more than 50 % of the variability 
at the points used for external validation. One other fact 
that should be considered is the low ME values obtained, 
that is an indicator of bias model in the estimative, i.e. 
assesses the trend on model (Hengl, 2007). According to 
the ME values, the estimates for the FCO2 using Hm (0.08) 
and Fed (-0.06) as predictor variables were those exhibit-
ing the least bias, whereas for the FWP estimatives, Hm 
(0.08) and Gt (-0.06) exhibited smaller bias. The Gt was 
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the predictor variable with the greatest data underestima-
tion for FCO2, with an ME value of -0.26.

Certainly, direct measurements of the proper-
ties are more accurate than predictions generated from 
mathematical models. However, conventional laboratory 
analyses are expensive and require a long time. So, the 
DRS technique provides an effective choice for this pur-
pose as it allows for easy identification and estimation of 
soil attributes, including the attributes involved in soil 
respiration (e.g. Hm, Gt and Fed). Diffuse reflectance 
spectroscopy is thus a promising tool in spatial variabil-
ity studies of FCO2 and FWP that are closely related to 
spatial variability in soil respiration (Panosso et al., 2012; 
Bahia et al., 2014). 

The accuracy of the proposed models is well 
spent in tropical regions in the same range of iron ox-
ide concentrations with the same cropping system as 
we use a on a small-spatial scale. However, we believe 
that this method is also suitable for other conditions, 
such as tropical soil types, iron oxide content, sam-
pling scale, and crop history which, however, require 
prediction model adjustments. In this way, the tech-
nique can be a useful tool for precision agriculture 
once it assists CO2 emission and free water porosity 
mapping for large areas. Thus, our results will contrib-
ute to elaborate greenhouse gas emission inventories 
in agricultural soils, collaborating with global climate 
change studies as far as the soil CO2 emission remains 
one of the major sources of carbon release into the 
atmosphere.

Conclusions

Contents in hematite, goethite and sodium di-
thionite-citrate-bicarbonate iron were positively cor-
related with field-measured soil CO2 emission and 
free water porosity. All studied attributes and their 
interactions exhibited spatial dependence structure, 
which was elucidated by modelling the spherical and 

Table 3 – Accuracy-related parameters of external validation of soil 
CO2 emission (FCO2) and free water porosity (FWP) as estimated 
by the regression models.

 r RMSE ME AD (p)
FCO2
FCO2Hm 0.96** 0.24 0.08 0.211
FCO2Gt 0.96** 0.29 -0.26 0.207
FCO2Fed 0.89** 0.34 -0.06 0.127
FWP
FWPHm 0.96** 0.28 0.08 0.914
FWPGt 0.91** 0.56 -0.06 0.200
FWPFed 0.92** 0.39 0.16 0.089
(n = 9); **significant as p < 0.01. FCO2 = Soil CO2 emission, FWP = free water 
porosity; Hm = hematite content; Gt = goethite content; Fed = iron extracted 
by sodium dithionite-citrate-bicarbonate; r = Pearson correlation coefficients; 
RMSE = root mean square error; ME = mean error; AD = Anderson-Darling 
normality test applied to the equation residuals.

exponential semivariograms. Using geostatistical tech-
niques facilitated interpretation of the spatial relation-
ships between soil respiration and the soil properties 
examined. 
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