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Abstract
Oxidative stress (OS)-induced senescence of the amniochorion has been associated with

parturition at term. We investigated whether telomere fragments shed into the amniotic fluid

(AF) correlated with labor status and tested if exogenous telomere fragments (T-oligos) could

induce human and murine amnion cell senescence. In a cross-sectional clinical study, AF

telomere fragment concentrations quantitated by a validated real-time PCR assay were

higher in women in labor at term compared to those not in labor. In vitro treatment of primary

human amnion epithelial cells with 40 μM T-oligos ([TTAGGG]2) that mimic telomere frag-

ments, activated p38MAPK, produced senescence-associated (SA) β-gal staining and

increased interleukin (IL)-6 and IL-8 production compared to cells treated with complemen-

tary DNA sequences (Cont-oligos, [AATCCC]2). T-oligos injected into the uteri of pregnant

CD1mice on day 14 of gestation, led to increased p38MAPK, SA-β-gal (SA β-gal) staining in

murine amniotic sacs and higher AF IL-8 levels on day 18, compared to saline treated con-

trols. In summary, term labor AF samples had higher telomere fragments than term not in

labor AF. In vitro and in situ telomere fragments increased human and murine amnion

p38MAPK, senescence and inflammatory cytokines. We propose that telomere fragments

released from senescent fetal cells are indicative of fetal cell aging. Based on our data, these

telomere fragments cause oxidative stress associated damages to the term amniotic sac and

force them to release other DAMPS, which, in turn, provide a sterile immune response that

may be one of the many inflammatory signals required to initiate parturition at term.

Introduction
Signals that initiate normal labor are still unclear [1] although multitudes of putative biochemi-
cal mediators and their pathways have been suggested as initiators [2,3]. The best documented
signals occur in both maternal and fetal compartments and include endocrine (Corticotrophin
relasing hormone [CRH], Adrenocorticotropic hormone [ACTH], functional progesterone
withdrawal), immune (leukocyte and leukotriene activation) and mechanical factors (enhanced
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uterine stretching and amniochorionic membrane disruption). These factors cause an inflam-
matory activation (mostly mediated by cytokines), and prostaglandin production to transform
a quiescent myometrium to an active contractile state at term [2,4–8]. Pathological activation
of myometrial contractility by cytokines and prostaglandins also has been implicated in spon-
taneous preterm birth (PTB) [9–11]. Identification of the critical signals and understanding
their molecular mechanisms that initiate parturition is essential for reducing the risk of PTB, a
major pregnancy complication.

We have proposed that fetal signals to initiate parturition arise from senescent fetal mem-
brane cells. Senescence is characterized by irreversible growth arrest of cells and is a mecha-
nism associated with aging [12]. Senescence of fetal cells is a natural physiologic process that
occurs throughout gestation [13] and is particularly noticeable at term [13,14]. Increased senes-
cence is likely due to enhanced oxidative stress (OS) generated by the growing fetus, uterine
stretch or other still unknown factors [14]. OS-induced damage to cellular elements causes
structural and functional alterations, resulting in senescence [15]. Morphologic (enlarged
cells, and round and swollen organelles) and biochemical features (senescence associated β-
Galactosidase [SA β-Gal], of senescence are evident in fetal membranes from women in term
labor compared to term not in labor [16]. AF from term labor also had dysregulated inflamma-
tory markers compared to gestational age-matched not in labor samples, suggesting sterile
inflammation (inflammation in the absence of infectious agent) and its associated senescence
associated secretory phenotype (SASP), a unique set of inflammatory markers, that include
cytokines, chemokines, growth factors, matrix degrading enzymes, inhibitors and various other
agionists and antagonists [16]. We posit that the inflammatory milieu generated by senescent
cells [17,18] activates functional progesterone withdrawal, produces uterotonins and signals
parturition. In vitro, we recapitulated these findings in primary human amnion epithelial cells
from term not in labor specimens. Amniotic epithelial cells exposed to OS developed SASP via
activation of p38MAPK [19] resembling such changes seen in membranes from women in
term labor [14]. Therefore, it is likely that senescence inducing risk factors of PTB cause patho-
logic activation of senescence and SASP that lead to preterm labor.

It has been suggested that increased levels of cell-free fetal DNA in the maternal circulation,
released as a result of placental senescence, can activate parturition [20]. A potential source of
cell-free DNA is from the telomeres, the chromosome end caps that stabilize the genome in
humans and other long-lived mammals [21]. Accordingly, we have reported that telomere
length reduction occurs in fetal compartments throughout gestation, with the shortest telo-
meres seen in term fetal membranes, suggesting a natural in utero aging process [13]. In
human cells, telomeres range from 8,000–10,000 bp in length with a single-strand TTAGGG 3’
overhangs of 100–400 bases [22,23]. This terminal triplet of guanines is highly vulnerable to
OS damage and single-strand breaks in this region are more resistant to nucleotide excision
repair compared to the general genome [24]. The conversion of guanine into 8-oxoguanine
(8-oxoG) is the most lethal OS induced lesion and the expectedly G-rich telomeres are highly
susceptible to this damage [25]. We recently reported increased OS-induced DNA damage,
predominated by 8-oxoG, due to reduced base excision repair by 8-oxoG glycosylase (OGG1)
in human fetal membranes [26].

Previous data demonstrated that the majority of long-lived DNA damage foci in stress-
induced senescent cells colocalize with telomeres, indicating that they are major contributors
to a persistent DNA damage repair (DDR) mechanism [27]. Considering that telomere
sequences are particularly vulnerable to OS [28], we tested the hypothesis that senescence of
the fetal membranes, physiologically at term, results in telomere fragment release into amniotic
fluid. Additionally, we demonstrated that oligonucleotides mimicking the telomere overhang
sequence (T-oligos) activate cellular senescence and produce inflammatory cytokines through
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p38MAPK in vitro and in situ in human amnion epithelial cells and in pregnant murine mod-
els, respectively.

Materials and Methods

Institutional review board approval of the study
Amniotic fluid (AF) samples used for this study were from the Nashville Birth Cohort Biobank,
established to study genetic and biomarker differences contributing to racial disparity in pre-
term birth. Samples were collected at Centennial Medical Center Nashville, TN, USA from
2008–2011. The study protocols for recruitment and collection of AF samples were approved
by the Western Institutional Review Board, Seattle, WA; the reuse of samples for preterm birth
related projects was approved by the Institutional Review Board (IRB) at The University of
Texas Medical Branch (UTMB), Galveston, TX, USA. The authors complied with the World
Medical Association Declaration of Helsinki regarding ethical conduct of research involving
human subjects. Informed written consent was obtained from subjects prior to sample collec-
tion. Enrollment occurred at the time of admission for delivery.

Subject recruitment and phenotype definitions
In this nested cross-sectional analysis, pregnant women between the ages of 18–40 years pro-
vided amniotic samples. Term specimens were obtained from women with a gestation
age� 370/7 weeks; labor was defined as the presence of spontaneous, regular uterine contrac-
tions at a minimum frequency of 2 contraction/10 minutes, leading to delivery (term in labor
group) and cervical dilatation. Women at term but not in labor (NIL) also were recruited.
Details of this cohort and samples can be found in our other publications [29–33].

Amniotic fluid sample collection
For vaginal deliveries, AF samples were collected during labor immediately before artificial
rupture of the membranes by transvaginal amniocentesis of intact membranes using a 22
gauge needle through the dilated cervical os. In cases undergoing cesarean delivery, samples
were collected by transabdominal amniocentesis. In order to isolate the telomere fragments
from intact telomere repeat sequences from amniocytes and other cells in the AF, samples were
immediately centrifuged three times at 3000 x g to remove all cells and particulate debris
(amniotic sludge) [34] and supernatant aliquots were processed rapidly and stored in the dark
at -80°C in filled tubes to minimize auto-oxidation during storage.

Demographic data were collected from patient interviews and clinical data were extracted
from the patient medical records. Data collection included age, ethinicity, socioeconomic status
(education, annual income and marital status), smoking, pre-pregnancy body mass index, and
a complete medical and obstetrical history.

Quantitation of telomere fragments in amniotic fluid
The final supernatants from stored AF samples were collected for DNA isolation using a com-
mercial kit (DNeasy Blood and Tissue Kit, Qiagen, Germantown, MD) following the manufac-
turer’s recommendations. The quality and concentration of extracted DNA were determined
by 260/280 nm absorbance ratio (Gen5, Epoch, Bio Tek, Winooski, VT, USA), and the relative
concentration of telomere fragments was analyzed using quantitative real-time PCR (qPCR).
References for relative number of telomere fragments were generated by performing serial dilu-
tions from a reference DNA sample to produce concentrations of DNA ranging from 20 to
0.625 ng/μL. Quadruplicate (for standard curves) and triplicate (for samples) PCR reactions
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using 5 ng DNA for each sample were carried out in a 20μL volume using 2x DNAMaster
SYBR Green kit (Applied Biosystems (ABI), Foster City, CA, USA) on an ABI 7500 real-time
PCR machine with SDS software, version 1.3.1. Primers for telomere (tel1b, 5'-CGG TTT GTT
TGG GTT TGG GTT TGG GTT TGG GTT TGG GTT-3'; and tel2b, 5'-GGC TTG CCT TAC
CCT TAC CCT TAC CCT TAC CCT TAC CCT-3') were added to the final concentration of
0.2 μM. The thermal cycling profiles were as follows: 95°C for 10 min, followed by 20 cycles of
95°C for 5 s, 56°C for 10 s, and 72°C for 60 s. Template controls were included in all plate reac-
tions. The relative number of telomere fragments in each specimen was normalized to the ref-
erence sample [2-(ΔCt(sample) – ΔCt(control) = 2-ΔΔCt] and β-Globin was used as for internal control
gene.

Primary human amnion cell cultures
Fetal membrane collection. Fetal membranes were dissected immediately after placental

delivery from women undergoing elective repeat cesarean section for uncomplicated pregnan-
cies at term, not in labor, at the John Sealy Hospital at UTMB, TX, USA. The IRB approval for
discarded tissues was obtained prior to sample collection. The amnion layer was peeled from
the underlying choriodecidua, washed in warm saline and small pieces (0.5 cm2) were digested
twice with trypsin (1 mg/mL) and collagenase (0.5 mg/mL) for 30 minutes at 37°C. The diges-
tion buffer was inactivated by DMEM complete media [(DMEM/F12 (Sigma-Aldrich, Saint
Louis, MO, USA) supplemented with 15% fetal bovine serum (Sigma-Aldrich) and antibiotics
(100 U/ml penicillin and 100 mg/ml streptomycin, (Sigma-Aldrich)] and the cells were col-
lected by centrifugation. Cells were counted with a hemocytometer, and 1.5–2.0K cells were
seeded in 10 cm culture flasks with DMEM complete media, at 37°C in a humidified atmo-
sphere containing 5% CO2. The purity of the epithelial cells was greater than 95%, as deter-
mined by staining with cytokeratin antibodies (Pan-Cytokeratin, Abcam, Cambridge, MA,
USA, #ab80826) [35,36]. The culture media were replaced every 48h. To control for effects
of replicative senescence, all experiments were performed 8–10 days after primary culture.
First passage cells were exposed to 40 μM telomere overhang mimetic sequence (T-oligos,
[TTAGGG]2) or 40 μM control oligonucleotides (Cont-oligos, [AATCCC]2) for 48 hours. This
working concentration was based on previously reported cytotoxic and/or cytostatic effects
[37–40]. The oligonucleotides were purchased fromMidland Certified Reagent Co. (Midland,
TX, USA). Untreated cells were analyzed as a control. Results are representative from 5 inde-
pendent cultures.

Cell viability assay. Cell viability was quantified based on a fluorescence assay. The mem-
brane-impermeable dye propidium iodide (Sigma-Aldrich, #P4864) stains the nuclei of non-
viable cells with red fluorescence, whereas the nuclei of all cells are stained with membrane-
permeable Hoechst 33342 dye (Invitrogen, Carlsbad, CA, USA #H1399) [41]. Confluent cul-
tures of amnion cells growing on glass chamber slides were evaluated for cell viability after
48h-treatment using 2.0 mg/ml propidium iodide and 1.0 mg/ml Hoechst 33342 for 20 minutes
at 37°C under an Olympus BX43 fluorescence microscope with a URFL-T digital camera, and
QCapture Pro software (Micropublisher 6.0, Burnaby, BC, Canada).

Assessment of DNA damage
Immunofluorescence (IF) for phosphorylated (γ) histone H2AX. In order to evaluate

the activation of the DNA damage response in amnion cells, we performed IF for phosphory-
lated histone γ-H2AX. Cells were fixed in ethanol 95% for 10 min at RT and blocked for 1h in
PBS containing 1% BSA. Primary antibody (γ-H2AX, Abcam #ab22551) was diluted in block-
ing buffer and incubated for 3h. The cells were washed, incubated with secondary antibody
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(Dye Light 488, Abcam #ab96875) for 20min at RT, washed again, counter stained with 4’-
6-diamidino-2-phenylindole (DAPI) and mounted with mount media. Images were acquired
and analyzed under 40x magnification.

Western Blot—p53, p38
Cultured amnion cells were lysed in RIPA lysis buffer with freshly added protease and phos-
phatase inhibitors (0.01%). The lysate was collected after scraping the culture plate and the
insoluble material was removed by centrifugation at 10,000 rpm for 20 min at 4°C. The concen-
tration of protein in each lysate was determined by using the BCA protein assay kit (Pierce
BCA Protein Assay Kit, Thermo Scientific, Waltham, MA, USA). Equal protein (30 μg) from
each sample was loaded onto a 10% SDS-PAGE gel and electrophoresed at 120 V. The resolved
proteins were transferred to a PVDF membrane using the iBlot transfer apparatus (Bio-Rad
Laboratories, Hercules, CA, USA). The membranes were blocked in Tris-Buffered Saline (TBS)
containing 0.1% Tween 20 (TBS-T) and 5% skim milk for 2h at room temperature. Blots were
incubated separately with antibodies against total p38MAPK (Cell Signaling, Danvers, MA,
USA, #9212), phosphorylated (P)-p38MAPK (Cell Signaling, #9211S), p53 (Abcam, #ab1101),
P-p53 (Abcam, #ab1431) or β-actin (Sigma-Aldrich, #A5441) at 4°C and shaken overnight.
Blots were washed three times with TBS-T and incubated with appropriate peroxidase-conju-
gated IgG secondary antibody for 1h at RT. All blots were developed using chemiluminescence
reagents ECLWestern Blotting Detection System (Amersham Piscataway, NJ, USA), in accor-
dance with the manufacturer’s recommendations, followed by autoradiography.

Senescence-associated β-galactosidase (SA β-gal) assay
The SA β-gal activity, a senescent cell marker [42], was evaluated using a commercial histo-
chemical staining assay, following the manufacturer’s instructions (Senescence Cells Histo-
chemical Staining Kit; Sigma-Aldrich). Briefly, cells cultured in chamber slides were washed
twice in PBS, fixed for 6–7 min with the provided Fixation Buffer, washed again in PBS and
incubated for 1h at 37°C with fresh β-gal solution. Following incubation, cells were evaluated
using a standard light microscope. The number of β-gal positive cells was scored by counting at
least 300 cells per representative field and expressed as percentage of total cells [41].

RNA isolation, cDNA preparation, and quantitative reverse transcription
PCR
RNA was extracted from amnion cells using Direct-zol RNAMini Prep kits (Zymo-Research,
Irvine, CA, USA), according to the manufacturer’s instructions. The quality and concentration
of extracted total RNA were measured by using Gen 5 Software, version 2.1 (Biotek Synergy
H4 Hybrid Reader, Winooski, VT, USA) and the RNA samples (0.1 mg/mL) were subjected to
reverse transcription using the High-Capacity cDNA Archive Kit (Applied Biosystems, Carls-
bad, CA, USA), in accordance with the manufacturer’s instructions. The cDNA was used to
quantify gene expression using TaqMan-validated primers and TaqMan MGB probes (Applied
Biosystems) were used to amplify IL-6, IL-8, Toll like receptor (TLR)-9 and 16S (reference)
genes (ID Hs00174131_m1, Hs00174103_m1, Hs00152973_m1 and Hs99999901_s1, respec-
tively). The comparative 2-ΔΔCt method was used for calculating relative gene expression.

Luminex immunoassay for IL-6 and IL-8
Multiplex luminex-based immunoassays were performed for the cytokines IL-6 and IL-8
with the use of antibody-coated beads (Biosource International, Camarillo, CA, Luminex
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Corporation, Austin, TX, USA). Standard curves were developed with duplicate samples of
known quantities of recombinant proteins that were provided by the manufacturer. Sample
concentrations were determined by relating the samples absorbances to the standard curve by
linear regression analysis. Concentrations below the assay detection limits (IL-6 = 5.89 pg/mL
and IL-8 = 5.93 pg/mL) were considered as half of each value.

Inhibition of p38MAPK induced senescence by SB203580 (p38MAPK
inhibitor)
Considering the results regarding p38MAPK expression, additional experiments were performed
using SB203580, a p38MAPK inhibitor, in order to verify the influence of p38MAPK activation
on senescence profiles. Primary amnion cells were seeded for 24 hours before pretreatment with
30 μM SB203580 (Sigma-Aldrich, #S8307) for 6h. Subsequently, T-oligos, Control-oligos or
complete media (untreated control) were added to the cells as described above. Senescence asso-
ciated β-gal staining and IL-6 and IL-8 cytokine production were analyzed as described above.

Confirmation of p53 inducibility in amnion epithelial cells
We verified the inducibility of p53 in primary amnion cells by treatment with 100 μM etopo-
side (Sigma-Aldrich, #E1383) for 24h. The drug was dissolved in 0.01% DMSO in DMEM
complete media, and the control cells were treated with the same DMSO-media without the
addition of etoposide [43]. Western blots were used to detect p53 expression.

Murine model of telomere fragment exposure
To test induction of senescence by T-oligos, in situ studies were conducted using pregnant CD-
1 mice (Charles River Laboratories, Wilmington, MA, USA). Animals were shipped on day 10
of gestation and acclimated in a temperature-and humidity-controlled facility with automati-
cally controlled 12:12 hour light and dark cycles. Mice were allowed to consume regular chow
and drinking solution ad libitum. The Institutional Animal Care and Use Committee (IACUC)
at the University of Texas Medical Branch at Galveston, TX, USA approved the study protocol.

On day 14 of pregnancy, the mice (n = 5/group) were subjected to mini-laparotomy and each
uterine horn was injected with saline (control), 60 nM T-oligo or Cont-oligo diluted in saline,
either with or without 30 μMof SB 203580 in a final volume of 150uL. The T-oligo concentration
was based on previous experimental data that demonstrated senescence in tumor cells after
T-oligo injections [44]. Injections were done in between 2–3 gestational sacs (those most proxi-
mal to the cervix) on the left side of gravid uteri as previously described in the infection animal
model [45]. Animals were allowed to recover in a warm environment and daily monitoring. We
sacrificed the animals on day 18 by carbon dioxide inhalation according to the IACUC and
American Veterinary Medical Association guidelines. Fetal weight, demise/absorption was
recorded. Maternal serum, AF and amniotic sacs were collected from each animal and stored at
-80°C. Amniotic sacs were analyzed regarding oxidative stress marker staining (3-nitrotyrosine
modified proteins, 3-NT) by immunohistochemistry, p38MAPK activation by western blot and
SA β-gal by specific immunostaining (as described above). Maternal serum and AF were ana-
lyzed for IL-6 and IL-8 by Luminex assay (as described above).

Statistical analysis
Telomere fragments analyses. We categorized the clinical pregnancies into two outcome

groups (term labor and term NIL). Comparisons between outcome groups and demographic
and pregnancy characteristics were made using Pearson’s Chi-Square or Fisher’s exact tests
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when the cell size was less than 5. For continuous variables which were non-normally distrib-
uted, Mann-Whitney test was used to test for equality of the medians. For telomere analysis,
telomere fragments were transformed to the square root. Means and confidence intervals were
back-transformed for reporting. Representative means and standard deviation (SD) of amplifi-
able telomere fragments were assessed with t-tests and p< 0.05 was used for significance.

Based on group means, standard deviation and effect size (f = 0.46), a post-hoc power analy-
sis revealed that we had>80% power for our t-test to detect a difference in amplifiable telo-
mere fragments between groups at a 0.05 significant level. Square root transformation of the
data was used due to the skewed distribution.

Data analysis from in vitro and in situ experiments. GraphPad Prism (version 5) soft-
ware was used to calculate significant differences regarding densitometric quantitation of
p38MAPK activation, percentage of SA β-gal positive cells and mRNA and protein expressions.
ANOVA followed by Tukey's Multiple Comparison post-hoc test, or Kruskal-Wallis test, were
used for comparison among the studied groups according to normal or non normal distribu-
tions, respectively.

Results

Clinical demographics
We compared demographic and clinical characteristics between 50 women in term labor and
51 women at term NIL. Women in term labor had a lower median maternal age, were less likely
to be married and less likely to have a gravidity>2 when compared to term NIL, while no dif-
ferences were seen in the other variables between the groups (Table 1). We used samples that
are gestational age matched to assure that the effect we report in this study are not impacted by
gestational age differences. Gestational age for term labor and term NIL women at delivery
were, respectively, 39 (1.6) and 39 (0.8) (median, IQR); p = 0.55 (Table 1).

Similarities and differences in telomere fragment levels
The mean levels of amplifiable AF telomere fragments were higher in term in labor than NIL
[mean 2.4±0.2 (standard deviation SD) vs.mean 1.8±0.3; p = 0.04) (Fig 1).

Telomere fragments are not cytotoxic to human amniotic epithelial cell
cultures
Concentrations of telomere fragments circulating in AF are higher under conditions that we
previously documented to be associated with increased OS and short cellular telomeres, partic-
ularly term labor [13,14]. To test our hypothesis that telomere fragments might be toxic to pri-
mary human amnion epithelial cells (Fig 2A), we incubated synthesized telomere mimetic
oligonucleotides (T-oligos), with amnion cells and evaluated their viability. As shown in Fig
2B–2D, there were no differences in propidium iodide exclusion (red staining) among
untreated, Cont-oligo and T-oligo treated cells, confirming their viability after 48h in culture.
We interpret these findings to indicate that the subsequent results reflect experimentally
induced changes that are not originating from general loss of cell membrane integrity in
culture.

Amnion cell p38MAPK activation by T-oligo treatment
Previous reports from our lab indicated that amnion cells under oxidative stress develop senes-
cence features primarily through p38MAPK activation [19], similar to those seen in human
liver cancer cells [46]. As shown in Figs 2E–2G, T-oligo treatment induced higher P-
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Table 1. Demographic, obstetric and clinical characteristics of studied patients according to the preg-
nancy outcome.

Variable Term labor (n = 50) Term not in labor (n = 51) p value

**Maternal Age Median (IQR) 25 (7) 29 (8) 0.0032

Black Race n (%)

No 33 (67.4) 34 (68.0) 0.9446

Yes 16 (32.7) 16 (32.0)

Missing n = 3

Married n(%)

No 24 (49.0) 12 (24.5) 0.0119

Yes 25 (51.0) 37 (75.5)

Missing n = 5

Educational Grade achieved n(%)

< 12 6 (12.5) 2 (4.2) 0.2678

12 42 (87.5) 46 (95.8)

Missing n = 7

Unemployed n(%)

No 26 (57.8) 20 (41.7) 0.1204

Yes 19 (42.2) 28 (58.3)

Missing n = 11

Income n(%)

$50k+ 8 (16.3) 14 (28.6) 0.0342

$30–50k 12 (25.0 19 (38.8)

$15–30k 17 (34.7 6 (12.2)

< $15k 12 (25.0) 10 (20.4)

Missing n = 4

**BMI

Median(IQR) 25 (10.5) 27.5 (9.3) 0.1565

Missing n = 4

Smoked n(%)

No 43 (87.8 46 (93.9 0.4865

Yes 6 (12.2) 3 (6.1)

Missing n = 3

Gravidity n(%)

<2 19 (40.3) 5 (10.6) 0.0009

2–5 28 (59.6) 42 (89.4)

Missing n = 8

Infant Sex n(%)

Female 25 (52.1) 29 (63.0) 0.2827

Male 23 (47.9) 17 (37.0)

Missing n = 7

APGAR n(%)

<7 1 (2.1) 3 (6.0) 0.2659

7–9 46 (97.9) 47 (94.0)

Missing n = 4

**GA at delivery (median, IQR) 39 (1.6) 39 (0.8) 0.5528

**Birth Weight (median, IQR) 3361.5 (572.5) 3355.0 (566.0) 0.8528

P-values were derived by Pearson Chi-square test or Fishers exact.

**P-value for maternal age, body mass index, gestational age at delivery and birth weight were derived by

Mann-Whitney test.

doi:10.1371/journal.pone.0137188.t001
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p38MAPK than unstimulated controls (p = 0.02, ANOVA), but statistically significant differ-
ences were not achieved between T-oligo and Cont-oligo treated cells. Active (phosphorylated)
p53 (P-p53) was not seen in amnion cells after treatment with T- or Cont-oligos. This raises a
question of p53 inducibility in primary human amnion cells, as we have not seen p53 activation
using any stimulants that cause OS and senescence. However, we did verify that p53 could be
activated in these cells with 100 μM etoposide treatment for 24 h, a well-documented activator
of the anticancer agent p53 tumor suppressor. (Fig 2H).

T-oligos induce senescence phenotype and increase sterile
inflammatory markers in human amnion epithelial cell cultures
Senescence was tested by SA β-gal staining after treatment with either T- or Cont-oligos. T-
oligo treatment resulted in 1.7- and 1.6- fold increases in SA β-gal positive cells compared to
Cont-oligo and untreated cells respectively (p = 0.004) (Fig 2I–2K). Although, we noticed some
p38MAPK activation after Cont-oligo treatment, it did not result in development of senescence
phenotype. To verify that senescence activation was mediated by p38MAPK, incubation with
the p38 inhibitor, SB203580, was performed. As shown in Fig 2L, co-treatment with SB203580
decreased SA-β-gal positive cells compared to T-oligo treatment alone. The data are summa-
rized in Fig 2M.

Fig 1. Quantitation of telomere fragments in human amniotic fluid. Scatter plot representing the number
of telomere fragments detected in amniotic fluid from normal term not in labor (NIL) and term in labor
samples. The distribution of telomere fragments significantly differs between groups (p = 0.04; t-test).

doi:10.1371/journal.pone.0137188.g001
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Senescence associated secretory phenotype (SASP) activation
Inflammatory activation in senescing cells can modify the cellular environment. The expres-
sion of two inflammatory cytokines, interleukin (IL)-6 and IL-8, was studied in response to T-
oligo treatment. A slight increase in IL-6 mRNA expression was noted, but did not reach statis-
tical significance (Fig 2N), while IL-8 gene expression was significantly stimulated in T-oligo
treated cells relative to Cont-oligo or untreated cultures (Fig 2O). Co-treatment with SB203580
significantly reduced IL-8 expression, confirming p38MAPK mediation. We further verified

Fig 2. Human amniotic cells primary cultures. (A) Immunofluorescent staining of cytokeratin positive amnion epithelial cells. Inset, a. cytokeratin positive
cells and b. nuclear staining DAPI. Original magnification x40. (B-D) Cell viability. Representative fluorescence photomicrographs of merged propidium
iodide and Hoechst 33342-stained amnion cells.B. Untreated cells,C. Cont-oligo treated cells andD. T-oligo treated cells. Original magnification x40. (E-G)
Representative image of Western blot analysis and densitometric quantitation of p38MAPK activation in amnion cells. E. Top panel = phosphorylated (P)-
p38MAPK, middle panel = total p38MAPK and bottom panel = β-actin in untreated, Cont-oligo and T-oligo treated cells, respectively. F. Quantitation of P-
p38MAPK densitometry normalized to total p38MAPK. T-oligo treatment produced significant (*) increase in P-p38MAPK compared to both untreated and
Cont-oligo treated cells. G. Densitometric quantitation of P-p38MAPK normalized to β-actin. Post hoc tests indicated that T-oligo treatment produced
significant (*) increase in P-p38MAPK compared to untreated control, but was not significant compared to Cont-oligo treatment. (*ANOVA, p<0.05). (H)
Representative image of Western blot analysis of p53 activation in human amnion cells. Top panel = P-p53, middle panel = total p53 and bottom panel = β-
actin in untreated and etoposide treated amnion cells, respectively. (I-M) Senescence associated β-galactosidase (SA-β-gal) staining of amnion cells. Single
blue stained cells indicate positive β-gal activity. I. Untreated cells, J. Cont-oligo treated cells, K. T-oligo treated cells and L. T-oligo+SB203580 (p38MAPK
inhibitor) treated cells. M. Quantification of the positive SA-β-gal cells. Bar graphs represent the differences in the percentage of SA-β-gal staining cells in
each group. T-oligo treatment produced a significant increase (*) in the number of senescing cells, which was inhibited by SB203580 treatment. (*ANOVA,
p<0.001). (N-Q) Senescence associated sterile inflammation in amnion cells. N. Relative quantification of IL-6 mRNA (p>0.05),O.Relative quantification of
IL-8 mRNA in amnion cells (*p = 0.02), P. Protein concentration of IL-6 in conditioned media (*p<0.0001), and Q. Protein concentration of IL-8 in conditioned
media (*p = 0.001). The production of IL-8 and IL-6 was inhibited by simultaneous treatment with SB203580. * ANOVA, T-oligo treated samples significantly
higher compared with untreated, cont-oligo or T-oligo+SB samples. (Results are representative from 5 amnion cultures/ group. Telomere mimetic overhang
sequence (T-oligo, [TTAGGG]2); control oligonucleotides (Cont-oligo, [AATCCC]2); untreated cells (Control CTR).

doi:10.1371/journal.pone.0137188.g002
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the release of IL-6 and IL-8 proteins from treated cells. Both cytokine levels were significantly
higher following T-oligo treatment compared to all other groups, and levels in the conditioned
media were reduced to untreated concentrations when co-incubated with SB203580 (Fig 2P
and 2Q).

Evidence of γ-H2AX formation
With the purpose of demonstrating the activation of DNA damage repair, we performed
immunofluorescence staining of phosphorylated (γ)-H2AX formation at so-called DNA dam-
age foci (DDF). We found the DDF to be more pronounced in cells treated with T-oligo com-
pared to untreated cells (Fig 3A), verifying more DNA repair activation.

TLR-9 expression
In order to address a possible mechanistic pathway by which T-oligos activate intracellular sig-
naling, we quantified TLR-9 mRNA. TLR-9 is known to trigger maternal immune cells activa-
tion in response to placenta-derived DNA [47]. However, we did not observe any difference in
TLR-9 expression in amnion cells treated with T-oligos compared to controls (untreated and
Cont-oligo samples) (Fig 3B).

T-oligos induce fetal membrane senescence in pregnant mice
In order to validate our findings in an in vivomodel, T-oligos were injected into the intrauter-
ine compartment of pregnant CD-1 mice on day 14 of gestation. Specimens of amniotic fluid
and amniotic sac were collected after sacrificing the dams on day 18. Table 2 depicts the
descriptive general data regarding studied animals according to the treatment groups. There
were no significant differences regarding placenta weight, animal or pup weight among the
studied groups. The numbers of fetal demises and/or resorptions were significantly higher in
T-oligo treated animals compared to vehicle (saline), Cont-oligo and T-oligo cotreatment with
SB203580 (p = 0.001); however, preterm delivery was not observed in the studied animals. We
cannot rule out a possible effect on late preterm delivery, as the injections were performed at
~70% of the colony gestational period and sacrifice was performed on day 18.

Evidence of OS induction in murine fetal membranes by T-oligos
In animals treated with vehicle (saline) or Cont-oligos, microscopic examination of the fetal
membranes showed minimal evidence of OS, as expected in healthy metabolizing tissues (Fig
4A and 4B). However, we observed intense staining of 3-nitrotyrosine (3-NT) modified pro-
teins confirming OS induced by T-oligos (Fig 4C). Co-treatment with T-oligos and SB203580
reduced the 3-NT staining intensity (Fig 4D).

T-oligos activate p38MAPK in murine fetal membranes
As shown in Fig 4E–4G, T-oligo-injected mice showed increased P-p38MAPK in the amniotic
sac compared to saline, which was reduced to control levels in animals simultaneously treated
with SB203580.

T-oligos cause senescence of murine amnion
The senescence marker SA β-gal was evaluated histochemically in the mouse amniotic sacs.
Intense blue staining representing senescent cells was observed particularly within the amnion
epithelium of the membranes after T-oligo injection, compared to controls (saline and Cont-
oligo) and T-oligo co-treatment with SB203580 (Fig 5A–5D).
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T-oligos increase biomarkers of sterile inflammation, indicators of SASP
The activation of sterile inflammation by T-oligos, as a result of amniotic sac senescence,
was examined by measuring maternal serum and amniotic fluid cytokine levels in the mouse
model. Amniotic fluid from animals injected with T-oligos manifested increased concentra-
tions of all evaluated cytokines (IL-6 and IL-8), however, only IL-8 reached statistical signifi-
cance (Fig 5E). Co-treatment with SB203580 decreased cytokine concentrations. No
differences in cytokine levels were observed in maternal serum samples from the same
dams.

Fig 3. DNA damage foci and Toll like receptor (TLR)-9 expression in human amnion cells. (A)
Immunofluorescence staining of phosphorylated (γ) H2AX, a marker for DNA damage response activation.
Top panel = T-oligo treated amnion cells, bottom panel = untreated cells. Left panel = γH2AX. Right
panel = merged images with DAPI nuclear stain. The bright nuclear dots represent DNA damage foci and are
more pronounced in cells treated with T-oligo. (B) Relative quantification of TLR-9 mRNA expression in
amnion cells in the studied groups, untreated cells, Cont-oligo and T-oligo treated cells, respectively.
Box plots represent the quantification relative to endogenous 16S RNA. Kruskal-Wallis test, p>0.05.(control
oligonucleotides (Cont-oligo, [AATCCC]2); Telomere mimetic overhang sequence (T-oligo, [TTAGGG]2).

doi:10.1371/journal.pone.0137188.g003
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Table 2. Descriptive data from studied CD-1 pregnant mice according to treatments groups (n = 5 animals/group): Saline, Cont-Oligo, T-oligo and
T-oligo co-treatment with SB203580.

Saline Cont-oligo T-oligo T-oligo + SB203580 P*

Number of fetal demise and/or resorption sites 1.66 (±0.57) 0.33 (±0.57) 3.33 (±1.15)* 0.60 (±0.54) 0.001

Pup weight (g) 1.26 (±0.14) 1.22 (±0.39) 1.41 (±0.98) 1.05 (±0.20) 0.87

Placenta weight (g) 0.11 (±0.02) 0.10 (±0.02) 0.16 (±0.01) 0.09 (±0.04) 0.25

Animal weight Day 14 (g) 42.93 (±4.35) 39.50 (±0.85) 42.14 (±1.15) 39.63 (±2.46) 0.21

Animal weight Day 18 (g) 51.34 (±7.93) 49.50 (±0.51) 47.47 (±9.5) 46.43 (±5.47) 0.77

(g: grams; SB203580: p38MAPK inhibitor)

*Anova, Tukey's Multiple Comparison Test, p = 0.001.

doi:10.1371/journal.pone.0137188.t002

Fig 4. Animal models of T-oligo induced senescence. (A-D) Representative image of 3-nitrotyrosine (3-NT) modified proteins, an oxidative stress marker,
in murine fetal membranes. Intrauterine injection of pregnant CD-1 mice were performed with either: A. Saline, B. Cont-oligo, C. T-oligo and D. T-oligo
+SB23580 (p38MAPK inhibitor). (E-G) Representative image of Western blot analysis and densitometric quantitation of p38MAPK activation in murine
amniotic sac. E. Top panel = phosphorylated (P)-p38MAPK, middle panel = total p38MAPK and bottom panel = β-actin in Cont-oligo, saline, T-oligo
+SB203580 (p38MAPK inhibitor) and T-oligo treated mice, respectively. F. Densitometric quantitation P-p38MAPK normalized to total p38MAPK in amniotic
sac tissue or G. normalized to β-actin. T-oligo treatment produced a significant (*) increase in P-p38MAPK compared to saline and Cont-oligo treated groups.
The co-treatment of T-oligo and SB203580 showed similar results to controls (saline and Cont-oligo). (*ANOVA, p<0.05). Results are representative from 3
animals/ group. (Telomere mimetic overhang sequence (T-oligo, [TTAGGG]2); control oligonucleotides (Cont-oligo, [AATCCC]2).

doi:10.1371/journal.pone.0137188.g004
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Discussion
The initiation of parturition is a complex process, whose precise signals remain unclear. Several
systems maintain pregnancy through homeostatic balance including the endocrine, nervous,
immune, hematological, microbiome, matrix metabolism and electro-physiological; antago-
nism of any of these tends to promote labor [2,7,9,48–50]. Breakdown of these balanced sys-
tems leads to cervical ripening, proteolysis, weakening and rupture of the fetal membranes and
myometrial contraction leading to parturition [4,5]. Besides the well reported endocrine initia-
tors, two general effectors of term parturition are oxidative stress and sterile inflammation,
likely resulting from the augmented metabolic demands and depleted antioxidant reserves of
the growing fetus [11,49,51]. This report opens a novel inquiry into the role of OS in the physi-
ology of human parturition. The search for parturition triggers and prior data led us to hypoth-
esize that OS at term signals fetal maturity and physiological aging of the fetal membranes,
causing telomere shortening and sterile inflammation resulting in parturition [14,19,51]. This
study provides insights into the telomere-dependent mechanism of senescence and inflamma-
tory activation. The principal findings from this study are as follows: 1) The concentration of
telomere fragments was higher in term labor than in term NIL samples. 2) T-oligos, that mimic
shed telomeres, induced primary amnion epithelial cell senescence in vitro through the activa-
tion of p38MAPK and SASP, manifested by increased SA β-Gal and IL-8 gene and protein
expression. Each of these steps can be mitigated using a p38MAPK inhibitor. 3) T-oligos
caused murine fetal membrane OS, p38MAPK-mediated senescence and sterile inflammation
(also reflected by elevated IL-8 concentrations). OS and cellular damage occur persistently dur-
ing feto-placental growth [49,52,53], while cellular antioxidant proteins and repair responses
prevent or minimize these damages, to avoid development of pathology. Diminished antioxi-
dant capacity, or overwhelming OS, compromise tissue function and integrity and prompt
aging [54]. Based on these principles, we propose a novel pathway whereby OS-induced DNA
damage and telomere shortening in the fetal membranes accelerate senescence-associated

Fig 5. Senescence and inflammation induced by T-oligos in CD-1 pregnant mice. (A-D) Senescence associated β-galactosidase (SA-β-gal) staining of
murine amniotic sac. Single blue stained cells indicate β-gal activity. A. saline, B. Cont-oligo, C. T-oligo and D. T-oligo+SB203580 (p38MAPK inhibitor)
treated mice. SA-β-gal staining is pronounced in T-oligo treated mice. (E) Concentration of interleukin (IL)-8 protein in murine amniotic fluid. Higher levels of
IL-8 were found in T-oligo treated animals compared to controls (saline and Cont-oligo). The production of IL-8 was inhibited by simultaneous treatment with
SB203580. (*ANOVA, p<0.05). Results are representative from 3 animals/ group. (Telomere mimetic overhang sequence (T-oligo, [TTAGGG]2); control
oligonucleotides (Cont-oligo, [AATCCC]2).

doi:10.1371/journal.pone.0137188.g005
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inflammation, which acts as a fetal signal for parturition. In support of this hypothesis, OS
related risk factors (e.g., cigarette smoking and low grade infection) contribute to telomere-
dependent premature aging and inflammation as seen in a subset of early PTB and pPROM
cases [51].

Do telomere fragments trigger parturition?
The dose of telomere fragments used in our in vitro and in situ studies or design of our study
did not demonstrate that telomere fragments can induce labor; instead, the telomere fragments
presence is brought up as a possible stimulator of partiturion signals, since a feedback loop
they cause oxidative stress associated damages to the term amniotic sac and forces them to
release other Damage Associated Molecular Patterns (DAMPs) and SASP factors. We believe
that this is one of the many mechanisms that can force amnion membrane to undergo further
damage and send signals to the neighboring layers to initiate parturition process. These signals
can force changes in decidua (activation of leukocytes) and myometrium (functional progester-
one withdrawal). Telomere reduction is a natural consequence of repeated cell division [55].
Chronic OS increases the rate of telomere shortening and reduces a cell’s replicative life span
[56,57]. Telomere shortening was previously observed in fetal leukocytes and placental mem-
branes from term and pPROM pregnancies [13]. In line with this, here we demonstrate that
more telomere fragments are shed into the amniotic fluid in term labor, compared to NIL sub-
jects. In vitro, telomere shortening and replicative senescence can be accelerated using OS
inducers like cigarette smoke [41], which exerts its effects through p38MAPK activation in
amnion cells [19]. We suggest that the differences in cases of term labor vs. NIL status repre-
sents a buildup of OS mediators, inducing a senescent state. Premature senescence also can be
induced by telomere-independent mechanisms [58].

Telomere shortening, sensed as DNA damage, can lead to further senescence by phosphory-
lation of histone H2AX (γ-H2AX), a highly conserved histone family member that encodes a
DNA repair and transcription regulator [59,60]. To confirm that telomere fragments might
induce DNA damage in isolated amnion cells, we tested the phosphorylation of H2AX. T-oli-
gos activated DNA damage repair by γ-H2AX expression at so-called DNA damage foci (DDF)
[61]. DDF, therefore, could be a surrogate for oxidative stress-induced telomere shortening in
feto-placental tissues as previously reported in certain pathologic pregnancies [13,62,63].

DNA oligonucleotides homologous to the telomere 30 overhang (T-oligos) have been stud-
ied in several cancer cell lines as a mechanism of cellular arrest and, consequently, represent
new anti-cancer therapeutic opportunities [40,44,64,65]. However, their specific cytotoxic
effects depend on cell type and environment. T-oligos induced senescence activation in human
breast carcinoma [66], lung cancer [67] and prostate cancer [68] cells, while normal mammary
epithelial cells [66] and human and murine lymphocytes [69] failed to show senescence under
T-oligo treatment. Cell and tissue specificity are seen in pathways and responses [70]. Some
senescent cells exhibit p53 activation [71], which has long been considered a key T-oligo signal-
ing mechanism [37,39,72]. Senescence is triggered through multiple pathways; the p53 path-
way in particular is known to accelerate aging in mammals [73,74]. During pregnancy,
premature decidual senescence in mice with conditional deletion of maternal uterine p53
(p53d/d) was associated with PTB [75,76]. Moreover, cells from diverse tissue types lacking
functional p53 undergo cell cycle arrest and senescence [69]. p53 activation was not evident in
human amnion or murine fetal membrane cells exposed to T-oligos in our experiments;
however, etoposide treatment verified that p53 is inducible in human amnion cells. Etoposide
acts as pro-oxidant on intracellular thiols in cells, but the phenoxyl radicals formed from eto-
poside neither trigger phosphatidylserine (apoptosis-associated molecule) oxidation and
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externalization, nor do they induce lipid peroxidation. Instead, etoposide acts as an antioxidant
against H2O2-induced phospholipid peroxidation in HL-60 cells [77,78]. These data indicate
that the etoposide effect in our cells is not related to OS induction. Studies also show that
p38MAPK activation represents an alternate senescence mechanism [46,65,79–81]. Intrave-
nous administration of T-oligos rescued mice from a fatal inoculum of human breast cancer
[66] and lung cancer cells treated with T-oligos showed reduced tumor volume through senes-
cence pathways that are not dependent on p53 (56). Accordingly, our previous results indicated
that p38MAPK triggers senescence in oxidatively stressed human fetal membranes and amnion
epithelial cells [14,19]. Furthermore, attenuation of inflammatory cytokines after p38MAPK
inhibitor treatment confirms the primacy of this pathway in the generation of sterile inflamma-
tion following T-oligo treatment in fetal cells and tissues.

The p38MAPK pathway is a major network of inflammation and stress responses [82] and
in pregnancy, mediates IL-1β-induced MMP-9 in the fetal membranes [83], leading to labor.
Recent findings from our laboratory reinforce the participation of p38MAPK in adverse preg-
nancy outcomes in vitro and in vivo [14,19]. Three p38 isoforms (α, χ and δ) activate distinct
downstream cascades leading to DNA damage responses, whereby only p38δ is reported to be
p53- and p16-independent [82]. However, the SB203580 inhibitor, which effectively reverses
the senescence phenotype in our models, is believed to be selective for the p38 α and χ proteins.
We did not explore the specific p38 isoforms expressed in amnion cells, hence we cannot dis-
card the hypothesis that multiple p38δ isoforms might be activated in our cells.

Previous experiments using human breast carcinoma cells showed that T-oligos are effi-
ciently taken up by cells within 30 to 60 minutes after in vitro administration and localize to
the nucleus [66], where they are inherently more stable than non-G-quadruplex structures
[84]. The Toll like receptor (TLR)-9 is a candidate receptor for T-oligo uptake, as it senses
microbial DNA and endogenous cell-free-DNA [85,86]. However, we did not observe any
difference in TLR-9 expression in amnion cells treated with T-oligos compared to controls
(untreated and Cont-oligo samples). Thus, further experiments are needed to address the
specific mechanism by which telomere fragments activate intracellular signaling in fetal
cells.

Our data indicate that in addition to telomere shortening caused by ROS, the intracellular
release of telomere fragments contributes to senescence of amnion cells via p38MAPK activa-
tion. The telomere fragments themselves can amplify fetal cell senescence triggering an inflam-
matory cytokine signature (SASP), which, in turn, can activate uterotonins and promote
parturition. Activation of this axis prematurely, for example by excessive OS, may trigger pre-
term labor. A better understanding of the pathways activated by telomere fragments, their bio-
chemistry and their contribution to fetal membrane senescence should contribute to the design
of more effective labor assessment (perhaps including PTB risk), and direct diagnostic and
therapeutic interventions for labor induction or prevention.
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