UNIVERSIDADE ESTADUAL PAULISTA

"JÚLIO DE MESQUITA FILHO"

Instituto de Química

Campus de Araraquara

ESTUDO DOS RESÍDUOS DE AMINOÁCIDOS DA ENZIMA FRIEDELINA SINTASE DE *Maytenus ilicifolia* ENVOLVIDOS COM SUA ESPECIFICIDADE BIOSSINTÉTICA

MELISSA REMLINGER

Orientador: Prof. Dr. Cleslei Fernando Zanelli Co-orientadora: Dra.Tatiana Maria de Souza Moreira

Araraquara - SP

2017

UNIVERSIDADE ESTADUAL PAULISTA

"JÚLIO DE MESQUITA FILHO"

Instituto de Química

Campus de Araraquara

ESTUDO DOS RESÍDUOS DE AMINOÁCIDOS DA ENZIMA FRIEDELINA SINTASE DE Maytenus ilicifolia ENVOLVIDOS COM SUA ESPECIFICIDADE BIOSSINTÉTICA

MELISSA REMLINGER

Dissertação apresentada ao Programa de Pós Graduação em Biotecnologia, do Instituto de Química da Universidade Estadual Paulista "Júlio de Mesquita Filho", como parte dos requisitos para obtenção do título de Mestre em Biotecnologia.

Orientador: Prof. Dr. Cleslei Fernando Zanelli

Co-orientadora: Dra.Tatiana Maria de Souza Moreira

Araraquara - SP

2017

FICHA CATALOGRÁFICA

Remlinger, Melissa

R384e Estudo dos resíduos de aminoácidos de friedelina sintase de *Maytenus ilicifolia* envolvidos com sua especificidade biossintética / Melissa Remlinger. – Araraquara : [s.n.], 2017 78 f. : il.

> Dissertação (mestrado) – Universidade Estadual Paulista, Instituto de Química Orientador: Cleslei Fernando Zanelli Coorientador: Tatiana Maria de Souza Moreira

1. Espinheira santa. 2. Terpenos. 3. Proteínas-Análise. 4. Mutagênese. 5. *Saccharomyces cerevisiae*. I. Título.

Elaboração: Seção Técnica de Aquisição e Tratamento da Informação Biblioteca do Instituto de Química, Unesp, câmpus de Araraquara

MELISSA REMLINGER

Dissertação apresentada ao Instituto de Química, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Mestra em Biotecnologia.

Araraquara, 24 de abril de 2017.

BANCA EXAMINADORA

Iatiana maria de Soroja macina

Dr^a Tatiana Maria de Souza Moreira (Co-orientadora) Faculdade de Ciências Farmacêuticas – UNESP, Araraquara - SP

Cintia Uilague Prof^a Dr^a Cíntia Duarte de Freitas Milagre

Prof^a Dr^a Cíntia Duarte de Fréitas Milagre Instituto de Química – UNESP, Araraquara - SP

2 glad VC quido

Prof. Dr/Rafael Victorio Carvalho Guido Instituto de Física – USP, São Carlos - SP

Triterpenos são produtos naturais de plantas estruturalmente complexos com numerosas aplicações medicinais. Como exemplo, friedelina é um triterpeno pentacíclico com atividade gastroprotetora, enguanto que seus derivados quinonametídicos maitenina e pristimerina apresentam promissoras atividades antiinflamatória, antitumoral, antimicrobiana, antimalárica, espermicida e antioxidante. O único triterpeno pentacíclico cetônico formado diretamente na ciclização do oxidoesqualeno é a friedelina. Sua produção se dá a partir da enzima friedelina sintase, uma oxidoesqueleno ciclase que se difere das demais oxidoesqualeno ciclases por estabilizar a ciclização promovida pelo carbocátion formado no sítio catalítico produzindo uma cetona. As oxidoesqualeno ciclases têm o mesmo substrato, porém se diferenciam pela especificidade de seus produtos formados e, por isto, a análise da estrutura primária da friedelina sintase permite estudar sua especificidade pela produção de friedelina. Desta forma, o presente trabalho teve como objetivo realizar o estudo da especificidade da friedelina sintase clonada de Maytenus ilicifolia por meio de mutantes desta enzima. Por meio de análises de docking da molécula de friedelina no sítio ativo da enzima foram observados resíduos de aminoácidos cuja interação poderia se relacionar à produção singular de friedelina. Os mutantes destes resíduos foram então gerados por mutagênese sítiodirigida para avaliar tais interações de acordo com o produto formado heterologamente pelos mutantes expressos em Saccharomyces cerevisiae. Os resíduos estudados e gerados por mutação sítio-dirigida foram: F183L, C369A, W417H, D484E e W612F. Os produtos assim diferencialmente produzidos foram avaliados por cromatografia gasosa acoplada a espectrometria de massas (CG-EM). Assim, foi possível observar que os resíduos D484 e W417 são essenciais para a atividade da enzima, enquanto que os resíduos C369, W612 e F183 são importantes para a especificidade de produto, uma vez que a troca levou a produção de outros compostos terpênicos e/ou também a friedelina. Tais resultados permitiram avaliar resíduos importantes para a biossíntese de friedelina, contribuindo para o entendimento desta singular oxidoesqualeno ciclase.

Palavras-chave: *Maytenus ilicifolia*. Triterpenos. Friedelina sintase. Análise *in silico*. Sistema heterólogo

ABSTRACT

Triterpenes are natural plant products structurally complex with numerous medicinal applications. As an example, friedelin is a pentacyclic triterpene with gastroprotective activity whereas its guinone methide derivates maytenin and pristimerin present promising anti-inflammatory, antitumor, antimicrobial, antimalarial, spermicidal and antioxidant activities. Friedelin is the only pentacyclic ketone triterpene obtained directly from ciclization of oxidosqualene. Its production occurs from the enzyme friedelin synthase, an oxidosquelene cyclase, which differs from the other oxidosqualene cyclases by stabilizing the cyclization promoted by the carbocation formed at the catalytic site forming a ketone. The oxidosqualene cyclases have the same substrate, but are differentiated by the specificity of their products formed and, therefore, the analysis of the primary structure of friedelin synthase allows to study its specificity by the production of friedelin. Thus, the present work aimed to study the specificity of the friedelin synthase cloned from Maytenus ilicifolia using mutants of the enzyme. Through the analysis of docking of the molecule friedelin in the active site of the enzyme, it was observed amino acids residues whose interation could be related to the unique production of friedelin. Mutants of these residues were generated by site-directed mutagenesis to evaluate such interactions according to the product formed heterologously by the mutants expressed in Saccharomyces cerevisiae. Residues studied and generated by site-directed mutation were: F183L, C369A, W417H, D484E and W612F. The products thus differentially produced were evaluated by gas chromatography coupled to mass spectrometry (GC-MS) from the expression and production of the mutants using the heterologous S. cerevisiae system. Thus, the residues D484 and W417 are essential for enzyme activity, whereas residues C369, W612 and F183 are important for product specificity, since the exchange led to the production of other terpene compounds and / or also friedelin. These results allowed the evaluation of important residues for the biosynthesis of friedelin, contributing to the understanding of this unique oxidoesqualene cyclase.

Keywords: *Maytenus ilicifolia*. Triterpenoids. Friedelin synthase. *In silico* analysis. Heterologous system

LISTA DE FIGURAS

- Figura 1 Cátions intermediários e produtos da ciclização de 2,3-10 oxidosqualeno por triterpeno-ciclases.
- Figura 2 Via biossintética de diferentes triterpenos a partir da molécula de 12 2,3-oxidoesqualeno com os diferentes cátions intermediários e seus produtos.
- Figura 3 Sequência de aminoácidos de friedelina sintase de *Maytenus* 14 ilicifolia.
- **Figura 4** Efeitos de mutações na estrutura e função da proteína β-amirina 16 sintase de Avena strigosa (sad1).
- Figura 5 Análise do docking de lanosterol e friedelina no sítio ativo da 20 enzima friedelina sintase e os aminoácidos considerados flexíveis.
- Figura 6 Resultados da predição da estrutura molecular de friedelina 29 sintase. 30
- Figura 7 Definição do sítio de ligação para o docking.
- Figura 8 Docking de friedelina no sítio ativo da enzima friedelina sintase 31 predita evidenciando os resíduos de aminoácidos a serem mutados.
- Figura 9 Alinhamento global múltiplo entre a sequência selvagem de 32 MiFRS e as sequências mutadas obtidas.
- Figura 10 Cromatograma da fração apolar das células de S. cerevisiae 33 expressando heterologamente a seguência de MiFRS
- Figura 11 Metabólitos gerados pela produção heteróloga do selvagem e do 34 plasmídeo sem o gene.
- Figura 12 Cromatogramas da fração apolar das células de S. cerevisiae 35 expressando heterologamente a seguência selvagem de MiFRS e os mutantes que perderam a função de produção de friedelina: W417H e D484E.
- Figura 13 Análise *in silico* por modelagem molecular de friedelina sintase e 37 seus mutantes com perda de função: W417H e D484E.
- Figura 14 Cromatogramas da fração apolar das células de S. cerevisiae 38 expressando heterologamente a sequência selvagem de MiFRS e os mutantes W612F e C369A.
- Figura 15 Análise *in silico* por modelagem molecular de friedelina sintase e 39 seus mutantes que favorecem a manutenção da atividade de friedelina sintase.
- Figura 16 Cromatograma da fração apolar das células de S. cerevisiae 41 expressando heterologamente a seguência de *Mi*FRS e mutantes com ganho de função.
- Figura 17 Análise *in silico* por modelagem molecular de friedelina sintase e o 43 mutante com manutenção da atividade de friedelina sintase e o ganho de função: F183L.

LISTA DE TABELAS

- Tabela 1 Lista com os primers forward e reverse utilizados na PCR de 1

 inserção da cauda de histidina
- Tabela 2 Lista com os primers forward e reverse para cada reação de 24 mutação sítio-dirigida.
- Tabela 3 Lista com os primers forward usados no sequenciamento para25cada reação de mutação sítio-dirigida.
- Tabela 4 Resíduos de aminoácidos do sítio ativo da friedelina sintase
 31

 selecionados para mutagênese sítio dirigida

ABREVIATURAS

BLASTp: Basic Local Alignment Search Tool of Proteins

BLOSUM: Blocks Substitution Matrix

DCTAE: motivo conservado e catalítico da enzima, Asp-Cys-Thr-Ala-Glu

DNA: ácido desoxirribonucléico

DOPE: *Discrete Optimized Protein Energy*

EDTA: Ethylenediamine tetraacetic acid

LB: Luria Bertani

OSC (s): oxidoesqualeno ciclases

PBS: tampão fosfato salino

PCR: reação em cadeia da polimerase

PDB: *Protein Data Bank*

PEG: polietilenoglicol

Ta: temperatura de anelamento

YNB: yeast nitrogen base without amino acids

YPD: yeast extract peptone dextrose

SUMÁRIO

1 INTRODUÇÃO	9
1.1 Triterpenos	9
1.2 Estudo mutagênico da biossíntese dos triterpenos	14
2 OBJETIVO	18
3 MATERIAIS E MÉTODOS	19
3.1 Determinação dos resíduos a serem mutados	19
3.2 Adição de cauda de histidina no gene da friedelina sintase	20
3.3 Transformação em Escherichia coli	21
3.4 Sequenciamento e confirmação da inserção de 6x-His	22
3.5 Reações de mutagênese sítio-dirigida	23
3.6 Transformação dos mutantes para levedura	25
3.7 Expressão heteróloga dos mutantes de friedelina sintase em	26
Saccharomyces cerevisiae	
3.8 Extração dos produtos gerados heterologamente em S. cerevisiae	26
3.9 Análise dos produtos gerados	27
4 RESULTADOS E DISCUSSÕES	28
4.1 Determinação dos resíduos a serem mutados	28
4.2Obtenção dos mutantes do sítio ativo de <i>Mi</i> FRS	32
4.3 Análise dos produtos triterpênicos gerados heterologamente	32
4.3.1 Mutantes com perda de função	34
4.3.2 Mutantes com manutenção da atividade da friedelina sintase	38
<u>4.3.3 Mutante com ganho de função</u>	40
5 CONCLUSÕES	45
REFERÊNCIAS	46
APÊNDICE A	50
APÊNDICE B	51
APENDICE C	66
ANEXO A	78

1 INTRODUÇÃO

1.1 Triterpenos

Os triterpenos formam um dos grupos mais numerosos e diversificados de produtos naturais de plantas, sendo também produzidos em outros organismos como bactérias, fungos e mamíferos. Os triterpenos simples e conjugados têm uma ampla gama de aplicações pelo homem, sendo as principais no setor de alimentos, de saúde e da indústria biotecnológica (THIMMAPPA et al., 2014). Entre as atividades biológicas dos triterpenos, podem-se destacar anti-inflamatória (ANDRE et al., 2012), anticâncer (SALVADOR et al., 2012) e antiplasmodial (BERO; FREDERICH, QUETIN-LECLERCQ, 2009).

A via biossintética dos triterpenoides é iniciada a partir da união de seis unidades de isopreno para formar o esqualeno. Em procariotos, o esqualeno é diretamente ciclizado a triterpenos hopanoides, enquanto que em eucariotos, ele é primeiramente convertido a 2,3-oxidoesqualeno e, em seguida, ciclizado. As ciclizações são altamente regio-estereo-específicas e realizadas pelas enzimas oxidoesqualeno ciclases (OSCs) (WANG et al., 2010).

O passo inicial de dobramento do substrato é um passo crítico, pois o tipo de conformação do substrato leva à formação de vias de diferentes produtos. Por exemplo, a conformação cadeira-barco-cadeira leva a um cátion protosteril intermediário, o qual dá origem a triterpenos esteroidais (GASPASCUAL et al., 2014). Já a conformação do tipo cadeira-cadeira-cadeira leva a ciclização ao carbocátion damarenil, dando origem aos diferentes esqueletos triterpênicos (XUE et al., 2012), como mostrado na Figura 1.

O dobramento do substrato dirige a ciclização do 2,3-oxidosqualeno. O substrato 2,3-oxidosqualeno adota padrões de dobramento distintos que, quando diretamente ciclizados por enzimas oxidosqualeno-ciclase (OSC), produzem produtos de cátions estereoquimicamente distintos (XUE et al., 2012).

Desta forma, o início da reação de ciclização das enzimas oxidoesqualeno ciclase, ocorre pela protonação do epóxido de 2,3 oxidoesqualeno. Em seguida ocorre o dobramento do substrato podendo este, assumir a conformação cadeiabarco-cadeira levando a formação do cátion protosteril, ou cadeira-cadeira-cadeira levando a formação do cátion damarenil, como mostrado na figura 1. Após a formação dos cátions, ocorre uma série de ataques eletrofílicos por ligações duplas próximas, resultando numa cascata de reações para formações de anel C-C. Seguindo-se a via do cátion protosteril produz-se os esteróis, que ocorre através da formação de diferentes cátions intermediáiros (C2->C6->C10->C14->C20), resultando no cátion intermediário C-20. Assim ocorre uma série adicional de migrações distintas de metilas e hidretos, conduzindo à formação de lanosterol (fungos e animais) pela lanosterol sintase ou cicloartenol (plantas) pela cicloartenol sintase (figura 2). Porém, a via do cátion protosteril pode também produzir cucurbitadienol, através da cucurbitadienol sintase ou de outros metabólitos considerados especializados porem não ligados a síntese de esteróis primários.

A via do cátion damarenil é responsável pela mais diversa produção de triterpenos pentacíclicos, através da ciclizaçao inicial do cátion damarenil C-20, em seqüência rearranjos de diferentes cátions intermediários (C13->C14->C8->C9-> C10->C5->C4), expansão do anel e migração de metilas e hidretos. As enzimas

oxidosequaleno ciclases que seguem na via do cátion damarenil produzem os diferentes triterpenos pentacíclicos, por exemplo: a produção de lupeol pela lupeol sintase antes da expansão do anel E; a produção de β -amirina pela β -amirina sintase contendo no anel A uma hidroxila; e, a produção de friedelina pela friedelina sintase contendo no anel A uma cetona. Importante notar-se que nesta via ocorre também a produção da shionona, único triterpeno tetracíclico com uma cetona no anel A, produzido pela shionona sintase, através do cátion damarenil seguido dos cátion intermediários cátion bacarenil (C18) e cátion C4 (C4) (figura 2).

Figura 2 - Via biossintética de diferentes triterpenos a partir da molécula de 2,3oxidoesqualeno com os diferentes cátions intermediários e seus produtos.

Acetil-CoA: acetil coenzima A; HMG-CoA = 3-hidroxi-3-metil-glutaril-coenzima A redutase; IPP = isopentenila; DMAPP = pirofosfato de dimetilalila; GPP = pirofosfato de geranila; FPP = pirofosfato de farnesila. A numeração dos átomos de carbono nos triterpenos pentacíclicos e o sistema de

referência para os anéis (A-E) são mostrados na parte inferior esquerda da figura. Adaptado de SOUZA-MOREIRA et al. (2016).

A friedelina sintase tem capacidade de produzir a friedelina através da realização do número máximo de rearranjos, com formação de uma cetona pela desprotonação do intermediário hidroxilado pelo resíduo de aspartato que iniciou o ciclização, sem auxílio de uma enzima oxidorredutase (ABE; PRESTWICH, 1995; WANG et al., 2010). A carga positiva da posição C-20 para a posição C-2 envolve o número máximo possível de troca 1,2 (10 no total). Quando o cátion chega a posição C-2 é atacado pelo grupo 3β-OH para formar uma cetona em C-3, formando assim a o triterpeno pentacíclico friedelina. Friedelina também é precursora dos quinonametídeos triterpênicos maitenina e pristimerina (CORSINO et al., 2000), para os quais foram descritas diversas atividades biológicas como anti-inflamatória, anticâncer, antimicrobiana, antimalárica, espermicida e antioxidante (DEEB et al., 2015; HE et al., 2016; MOORE; RUBEN; ROSEN, 1993; SANTOS, V et al., 2010).

Assim, a enzima friedelina sintase clonada de *Maytenus ilicifolia* (*Genbank* KX147270), também denominada como (3S)-2,3-epoxi-2,3-dihidroesqualeno mutase (EC 5.4.99.50) contém em sua seqüência os domínios conservados domínino da esqualeno ciclase subgrupo 1 (SQCY_1) e domínio da redutase de isopreno-C2 (ISOPREN_C2), os quais estão presentes em tritepeno sintase de classe II, que inclui as OSC's. Há também a presença do *motif* Asp-Cys-Thr-Ala-Glu (DCTAE), que contém o resíduo de ácido aspártico catalítico e os quatro *motif* QW (motivos ricos em aminoácidos aromáticos iniciando com Q-Gln e terminando em W-Trp), importantes na manutenção da estrutura enzimática. A presença dos resíduos característicos de Ser-Phe (SF) e o *motif* Met-X-Cys-Arg (MXCYCR) conservado em triterpenos sintase de triterpeno pentacíclicos nas posições previstas na figura 3, estão de acordo com a sua classificação funcional (SOUZA-MOREIRA et al., 2016).

Figura 3 - Sequência de aminoácidos de friedelina sintase de Maytenus ilicifolia.

Quatro *motif* QW e o *motif* DCTAE estão sublinhados, indicando os ácidos envolvidos na formação do carbocátion do substrato. Outros resíduos conservados em OSC's são: MXCYCR (sublinhado por uma linha tracejada) e SF (sublinhado por duas linhas). O alinhamento global ilustra as duas OSC's clonadas de *M.ilicifolia*, sendo *Mi*CAS1, uma cicloartenol sintase. (SOUZA-MOREIRA et al., 2016).

Isolar OSC's de forma que permaneçam ativas e caracterizar suas propriedades enzimáticas *in vitro* tem sido de extrema dificulade. Assim, análises funcionais envolvendo experimentos com mutantes tem sido conduzidos *in vivo*, porém as funções dos sítios ativos das OSC's ainda não foram claramente elucidadas (HOSHINO, 2017).

1.2 Estudo mutagênico da biossíntese dos triterpenos

O entendimento da especificidade das oxidoesqualeno ciclases em formar os diferentes esteróides e triterpenos vem sendo realizado por estudos de mutagênese e com o uso de análogos do substrato, avaliando-se os rearranjos na ciclização que os resíduos de aminoácidos proporcionam, como demonstrado no estudo recente de Hoshino (2017), em que foi realizado o mecanismo catalítico e o mecanismo de reconhecimento do substrato de β-amirina sintase, revelados por mutagenese sítiodirigida e experimentos com substratos análogos, e que serão comentados na seção de Resultados e Discussão desta tese.

Um estudo recente (SALMON et al., 2016) realizado com mutantes de βamirina sintase de Avena strigosa (SAD1) identificou resíduos de aminoácidos conservados envolvidos com a especificidade do produto e do substrato de triterpeno sintases de diversas plantas. Análise dos triterpenos produzidos pelo mutante Cys563Tyr de SAD1 na planta e utilizando o modelo de expressão heteróloga em Saccharomyces cerevisiae permitiu observar que houve bloqueio do início da ciclização (Figura 4A), sem formação de triterpenos e, que a mutação Ser728Phe de SAD1 favoreceu a produção dos triterpenos tetracíclicos epoxidamarano e damaranediol ao invés de pentacíclicos. Por meio do estudo de modelagem molecular de SAD1, os autores observaram que o resíduo de cisteína na posição 563 é importante por formar uma ligação de hidrogênio com o aspartato da posição 484 favorecendo a protonação do grupo epóxido do oxidoesqualeno, levando à perda de atividade pela enzima, enquanto que a troca de serina na posição 728 por fenilalanina promoveu a estabilização do carbocátion damarenil, produzindo os triterpenos truncados (Figura 4B). Esse estudo também fez a confirmação do envolvimento do resíduo de serina correspondente em lupeol sintase de Arabidospis thaliana pela mutação Ser728Phe, além de ter demonstrado que estes mutantes têm preferência pelo substrato dioxidoesqualeno ao invés de 2,3oxidoesqualeno, desenvolvendo assim uma nova oportunidade de síntese de novos triterpenos a partir de diferentes substratos (SALMON et al., 2016).

Figura 4 - Efeitos de mutações na estrutura e função da proteína β-amirina sintase de Avena strigosa (sad1).

A) O mutante *sad1* 358 tem uma mutação em Cys563 (vermelho), um resíduo que está ligado através do hidrogênio do aspartato catalítico (D484). Ligações de hidrogênio são mostradas por linhas tracejadas. O substrato é apresentado em verde.; B) mutantes de *sad1* 384 e 1023 têm uma mutação em Ser728 (vermelho), que está na proximidade de resíduos envolvidos no substrato (Iaranja) e Phe725 (roxo), envolvidos na estabilização do cátion intermediário tetracíclico em C-20. As interações de cátion- π são mostradas por linhas tracejadas em cinza. Adaptado de SALMON et al. (2016).

Recentemente (SOUZA-MOREIRA et al., 2016), nosso grupo avaliou mutantes de leucina na posição 482 de friedelina sintase de *Maytenus ilicifolia*, realizando a troca por um aminoácido de cada classe. Nas duas enzimas friedelina sintases descritas até o momento, (uma de *Kalanchoe daigremontiana*, *Kd*FRS e uma de *M. ilicifolia*, *Mi*FRS) o resíduo de leucina nesta posição é único em comparação com as demais OSCs e se encontra ao lado do motivo conservado e catalítico da enzima, Asp-Cys-Thr-Ala-Glu (DCTAE). Foi observado que a troca de Leu482 por Thr resultou na produção de β-amirina, enquanto que ao realizar a troca por Val, houve a produção tanto de friedelina quanto de β-amirina, sendo que a troca por Ile não interferiu na produção de friedelina. A partir dos produtos formados, modelagem molecular e *docking* do cátion oleanil, precursor comum de β-amirina e de friedelina foi possível descrever que o papel da leucina e a conformação que confere ao sítio ativo durante a ciclização são importantes para a continuidade dos rearranjos do carbocátion, possibilitando a formação do composto com mais rearranjos, a

friedelina, ao invés de estabilizar previamente o carbocátion na formação de β amirina. Por outro lado, a troca do resíduo de leucina por valina, este conservado em β -amirina e lupeol sintases, além da produção de β -amirina, manteve a produção de friedelina, indicando que a troca apenas deste resíduo não foi o ponto divergente entre a especificidade das enzimas.

Estudos com outras oxidoesqualeno ciclases também já demonstraram a importância de diferentes resíduos envolvidos com sua especificidade biossintética. Desta forma, sabe-se, por exemplo, que a troca do resíduo lle481 em cicloartenol sintase de *Arabidopsis thaliana* (AthCAS1) pelo resíduo conservado de valina em lanosterol sintase levou à produção de lanosterol, sendo complementar funcionalmente à linhagem nocaute de *ERG7* de *S. cerevisiae* (MATSUDA et al., 2000); enquanto que o *motif* Met-Trp-Cys-Tyr-Cys-Arg de β-amirina sintase de *Panax ginseng* (PNY) e o Met-Leu-Cys-Tyr-Cys-Arg de lupeol sintase de *Olea europaea* (OEW) estão envolvidos na especificidade de cada enzima, levando à interconversão do composto triterpênico majoritário formado e/ou formação de mais de um composto, ou mesmo à estabilização do carbocátion com um menor número de rearranjos, formando intermediários da síntese de triterpenos pentacíclicos quando trocados entre si (KUSHIRO; SHIBUYA; EBIZUKA, 2000).

Baseado nos estudos de mutagênese com outras OSCs, este trabalho teve como objetivo propor e avaliar os resíduos de aminoácidos de friedelina sintase de *M. ilicifolia* envolvidos com a sua especificidade desse triterpeno cetônico singular.

2 OBJETIVO

Este projeto teve como objetivo realizar o estudo da especificidade da enzima friedelina sintase de *M. ilicifolia* por meio da predição da estrutura tridimensional da enzima e dos conseguintes mutantes gerados por meio de mutagênese sítio-dirigida.

Para tanto, o trabalho foi realizado de acordo com as seguintes etapas:

- Determinação de resíduos a serem mutados;
- Obtenção dos mutantes de friedelina sintase;
- Expressão e produção dos mutantes;
- Avaliação da especificidade da friedelina sintase.

3 MATERIAL E MÉTODOS

3.1 Determinação dos resíduos a serem mutados

O estudo da especificidade da via biossintética da friedelina sintase de *M. ilicifolia* foi realizado a partir da análise dos resíduos de aminoácidos que constituem o sítio catalítico da enzima utilizando-se, para tanto, a estrutura primária, secundária e terciária desta enzima. Uma vez que ainda não foi obtido o cristal e a estrutura tridimensional desta enzima, a mesma foi obtida por modelagem molecular por homologia.

A predição da estrutura molecular da enzima friedelina sintase clonada das folhas de *M. ilicifolia* (número de acesso *Genbank* KX147270) foi realizada com base em modelagem molecular por homologia com a estrutura cristalográfica de lanosterol sintase de humano (*Protein Data Bank* ID 1W6K). O alinhamento das sequências de resíduos de aminoácidos foi feito a partir da ferramenta align2D do software Modeller. A construção das coordenadas do modelo estrutural foi realizada utilizando-se os algoritmos do software Modeller empregando a ferramenta ViTaMIn, com os seguintes parâmetros: 50 modelos; 500 ciclos de otimização de modelo; refinamento lento; e perturbação aleatória das coordenadas do modelo inicial durante os ciclos de refinamento. O melhor modelo foi selecionado de acordo com a análise dos resíduos de aminoácidos por gráficos de Ramachandran e potencial DOPE (*Discrete Optimized Protein Energy*). A ultima etapa foi a realização do docking das moléculas de friedelina e lanosterol no sítio ativo da enzima friedelina sintase.

O docking foi realizado usando-se o algoritmo genético lamarckiano (LGA) através do AutoDock 4.2 e o AutoDock Vina. Também foram definidos como flexíveis no centro do cubo a 4 Å de distância, os aminoácidos: Trp257, Tyr259, Val263, Val410, Trp417, Phe473, Leu482, Asp484, Cys485, Trp534, Met549, Leu552, Ile555, Phe278, Leu734 e Tyr736) (figura 5). As estruturas 3D dos cátions intermediários e da friedelina foram geradas usando parâmetros geométricos padrões disponíveis em MarvinSketch (Marvin 162.22), 2016, ChemAxon (<u>http://www.chemaxon.com</u>). A melhor conformação dos cátions ligantes foi energicamente minimizada utilizando os parâmetros pré-definidos da MarvinSketch e analisados com auxílio do programa PyMOL[™] Molecular Graphics System (versão 1.7.2.1). Esta etapa foi realizada em

colaboração com o Professor Dr. Rafael Guido e com o aluno de doutorado Gustavo M. A. de Lima, do Instituto de Física da USP de São Carlos.

Figura 5 - Análise do *docking* de lanosterol e friedelina no sítio ativo da enzima friedelina sintase e os aminoácidos considerados flexíveis.

Os resíduos considerados flexíveis com distância de 4 Å no sítio ativo da friedelina sintase (amarelo), conforme o *docking* dentro do sítio ativo definido através de um cubo de aresta de 12 Å. A molécula de lanosterol (rosa) e de friedelina (ciano) dockados no sítio ativo utilizando-se os parâmetros padrões de disponíveis em MarvinSketch e, visualizados através do PyMOL[™] Molecular Graphics System (versão 1.7.2.1). (Autora)

3.2 Adição de cauda de histidina no gene da friedelina sintase

Para expressão constitutiva da sequência de friedelina sintase, foi utilizado o plasmídeo pSP-GM1 (PARTOW et al., 2010). Na posição C-terminal da sequência codificadora de friedelina sintase foi inserida uma cauda de seis histidinas (6x-His) por meio de reação em cadeia da polimerase (PCR) (LIU; NIUSMITH, 2008). Essa reação foi realizada com a enzima Phusion[®] High-Fidelity DNA Polymerase (New England Biolabs) utilizando os seguintes reagentes: 1,0 µL de DNA plasmidial (20 ng/ µL); 5,0 µL de tampão para Phusion High-Fidelity (5X; New England Biolabs); 0,2 µL MgCl₂ (25 mM); 0,6 µL dNTPs (10 mM); 0,8 µM de cada *primer* (Tabela 1); 0,5 µL da enzima Phusion[®] High-Fidelity DNA Polymerase (2 U/µL); e água q.s.p. volume

final de 25 µL. A reação foi conduzida nas seguintes condições: *hotstart* de 95 °C por 5 min, seguido de 18 ciclos de desnaturação a 95 °C por 1 min, anelamento a temperatura de 56 °C por 5 min e polimerização a 72 °C por 17 min e um ciclo final de polimerização a 45 °C por 1 min e 72 °C por 30 min.

Tabela 1 - Lista com os primers forward e reverse utilizados na PCR de inserção dacauda de histidina.

Primer	Sequência 5'-3'	T _m (°C)
MiFRSaddHisf	GCT <u>CATCACCATCACCATCAC</u> TGAGAGCTC	68,8
(VZO2375)	TTAATTAACAATTCTTCGCCAGAGGTTTGGT	
	CAAG	
MiFRSaddHisr	CTCTCAGTGATGGTGATGGTGATGAGCACT	68
(VZO2376)	GTTTATCTTCATAGCCATACTGTTACCCTTA	
	GAAGG	

A região sublinhada indica a região codificadora das seis histidinas adicionadas na sequência codificadora de friedelina sintase. As letras f e r nos *primers* correspondem a *forward* e *reverse*, respectivamente. (REMLINGER M, 2016. Esta tabela foi elaborada pela autora, assim como todas as tabelas deste trabalho).

A reação de PCR foi submetida a digestão em uma reação contendo 1 μ L da enzima *Dpn*I (20 U/ μ L; New England Biolabs), 2,5 μ L de tampão CutSmart (New England Biolabs) e água q.s.p volume final de 25 μ L, a qual foi incubada *overnight* a 37 °C. Posteriormente, o produto reacional foi transformado em bactéria competente, de acordo com o protocolo descrito abaixo.

3.3 Transformação em Escherichia coli

Após a digestão, o produto plasmidial foi transformado em *E. coli* competente (DH5 α) pelo método de choque térmico. Assim, preparou-se uma solução de 10 mL de Transfobuffer, ou seja, 1,0 mL de KCM 10X (1 M KCl; 0,3 M CaCl₂; 0,5 M MgCl₂), 1,5 mL de polietilenoglicol 3350 (PEG) 10% e 7,5 mL de água esterilizada. Desta solução, foram utilizados 80 µL e foram adicionados 20 µL do produto plasmidial em um tubo de microcentrifuga de 1,5 mL, ao qual foram homogeneizados 100 µL da suspensão de *E. coli* competente. A mistura foi incubada por 30 min em um banho de gelo. Em seguida, o tubo foi colocado em banho-maria a 42 °C por 2 min. Logo

depois, foi adicionado 1 mL de meio Luria-Bertani (LB) ao tubo, que foi incubado por 1 h a 37 °C com agitação de 200 rpm. Ao final da incubação, a transformação foi centrifugada a velocidade máxima por 1 min, o sobrenadante foi descartado, o pellet foi ressuspendido em 200 μ L de água esterilizada e foi plaqueado em meio de cultura sólido LB contendo ampicilina (100 μ g/mL), o qual foi e incubado a 37 °C por 12-16 h.

3.4 Sequenciamento e confirmação da inserção de 6x-His

Após o crescimento das colônias, cinco foram retiradas para análise da inserção da cauda à região C-terminal da sequência de friedelina sintase. Foram feitos inóculos de cada colônia em 3 mL de meio líquido LB contendo ampicilina (100 µg/mL) e estes foram inoculados overnight a 37 °C, sob agitação constante. O DNA plasmidial foi obtido utilizando o kit Five-Minute Plasmid Miniprep (Sigma-Aldrich), homogeneizando 40 µL do reagente de lise às culturas. A mistura foi deixada em descanso por 2 min enquanto a coluna de purificação foi preparada por lavagem com 500 µL da solução de preparo da coluna. À mistura contendo o inóculo foram adicionados 400 µL da solução de ligação e inverteu-se o tubo por 15 vezes. Todo o volume foi então colocado na coluna e centrifugado por 30 s, a velocidade máxima. O líquido que passou pela coluna foi descartado e foram adicionados 700 µL de solução de lavagem, centrifugando-se por 20 s, a velocidade máxima. Novamente, descartou-se o líquido que passou pela coluna e foram adicionados,200 µL da solução de lavagem centrifugando-se a coluna por 30 s, a velocidade máxima. A coluna foi colocada em um tubo novo e foram adicionados e centrifugados 40 µL da solução de eluição. A quantificação do DNA plasmidial eluído foi realizada no espectrofotômetro Nanodrop 2000 (Thermo Scientific), observando-se a razão de qualidade entre os comprimentos de onda 260/280 entre 1,8 a 2,0.

O DNA plasmidial (400 ng) obtido das diferentes colônias foi então empregado na reação de PCR de sequenciamento utilizando o kit Big Dye[®]Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), juntamente com o *primer* VZO2374 (a 3,2 µM) 5'- GTTGGGTTTGTTATACGCCG -3' e as condições de amplificação: *hot start* de 96° C por 1 min, seguida de 25 ciclos de 96° C por 10 s, 43° C por 5 s, 60° C por 4 min e extensão final de 60° C por 5 min. Em seguida à amplificação, as amostras foram purificadas com o kit Big Dye[®]XTerminator™ Purification Kit (Applied Biosytems) seguindo o protocolo do fabricante. O sequenciamento automático foi realizado com 20 µL de cada amostra no sequenciador GeneticAnalyzer 3130 (Applied Biosystems) e a confirmação da inserção de 6xHis foi observada pela presença da sequência CATCACCATCACCATCAC após o último resíduo de friedelina sintase.

3.5 Reações de mutagênese sítio-dirigida

O plasmídeo contendo a sequência codificadora de friedelina sintase com adição de uma cauda de seis histidinas na posição C-terminal [P_{TEF1}-MiFRS-6xHis, P_{PGK1}-tHMG1], foi preparado com o kit Five-Minute Plasmid Miniprep, da mesma forma como descrito no item anterior. A PCR para troca dos resíduos de interesse foi realizada com a enzima Phusion[®] High-Fidelity DNA Polymerase, sendo conduzida, separadamente, uma reação de polimerização com o primer forward e outra com o reverse (Tabela 2), contendo os seguintes reagentes: 1,0 µL de DNA plasmidial (500 ng/µL); 5,0 µL de tampão (5X); 0,25 µL MgCl₂ (25 mM); 0,75 µL dNTPs (10 mM); 0,8 µM de primer; 0,3 µL da enzima polimerase (2 U/µL); e água q.s.p. volume final de 25 µL. A reação foi conduzida nas seguintes condições: hotstart de 98 °C por 1 min, seguido de 30 ciclos de desnaturação a 98 °C por 10 s, anelamento a temperatura com subtração de 15 °C da temperatura de anelamento de cada primer por 30 s e polimerização a 72 °C por 5 min e um ciclo final de polimerização a 72 °C por 5 min. Após a PCR, os 20 µL do produto de cada reação sintetizados separadamente foram reunidos em um mesmo microtubo, elevando a temperatura da solução a 98 °C e depois, o anelamento entre as fitas foi realizado pela redução gradativa de 1 °C/ min até 90 °C e depois, redução de 10 °C/min até 37 °C (EDELHEIT et al., 2009).

Primer	mer Sequência 5'-3'		
		(°C)	
F183Lf	CTCAACTGTCTTTGCCACCGCT <u>TTG</u> ACTTACGTCTGTAT	66	
(VZO2347)	GAGAATTTTG		
F183Lr	CAAAATTCTCATACAGACGTAAGT <u>CAA</u> AGCGGTGGCAA	66	
(VZO2348)	AGACAGTTGAG		
C369Af	CAGTAGATACATCACAATCGGT <u>GCT</u> GTTGAAAAAGCTTT	64,1	
(VZO2351)	ATGCATG		
C369Ar	CATGCATAAAGCTTTTTCAAC <u>AGC</u> ACCGATTGTGATGTA	64,1	
(VZO2352)	TCTACTG		
W417Hf	CTCTTTCGGTTCACAATTG <u>CAT</u> GATGCTACTTTTGGTTT	64	
(VZO2353)	CC		
W417Hr	GGAAACCAAAAGTAGCATC <u>ATG</u> CAATTGTGAACCGAAA	64	
(VZO2354)	GAG		
D484Ef	CGGTTGGCAATTAAGT <u>GAA</u> TGCACAGCAGAAGCCTTG	66	
(VZO2357)			
D484Er	CAAGGCTTCTGCTGTGCA <u>TTC</u> ACTTAATTGCCAACCG	66	
(VZO2358)			
W612Ff	GTTCTTGGTACGGTAACTTTGGTATCTGTTTCATATAC	59,5	
(VZO2365)			
W612Fr	GTATATGAAACAGATACCAAAGTTACCGTACCAAGAAC	59,5	
(VZO2366)			

 Tabela 2 - Lista com os primers forward e reverse para cada reação de mutação sítio-dirigida.

A região sublinhada indica as bases do respectivo resíduo de aminoácido a ser mutado. As letras f e r nos *primers* correspondem a *forward* e *reverse*, respectivamente.

O DNA plasmidial molde de cada mutação foi digerido com 1 μ L da enzima *Dpn*I (20 U/ μ L), em uma reação contendo o produto de anelamento das PCRs e 5 μ L de tampão CutSmart (New England Biolabs) e a digestão foi incubada *overnight* a 37 °C. O DNA plasmidial resultante foi transformado em *E. coli* competente, como descrito no item 3.3.

Após crescimento das colônias, cinco foram utilizadas para confirmação dos mutantes obtidos de friedelina sintase. As colônias foram incubadas em meio LB com ampicilina, o plasmídeo foi obtido por miniprep e o sequenciamento foi realizado de acordo com o procedimento descrito no item 4. Os *primers* utilizados para a reação de sequenciamento das diferentes mutações estão apresentados na Tabela 3.

Sequência 5'-3' Primer Mutações verificadas F183seq (VZO2371) CATTACCGGTCATTTGAACAG F183L 369/484seq (VZO2372) GGGACTCTTTGTATGTTGCATC C369A, W417H, D484E **534/612seq** (VZO2373) GTTGCTTGTTAGCTGCAACC W612F MiseqR (VZO2377) AATGTCCAACTACCCTTGG W417H, C369A

 Tabela 3 - Lista com os primers forward usados no sequenciamento para cada reação de mutação sítio-dirigida.

O sequenciamento automático foi realizado com 20 µL das amostras no sequenciador GeneticAnalyzer 3130 e a confirmação de cada mutação foi feita por alinhamento com a sequência selvagem de friedelina sintase utilizando a ferramenta de alinhamento global Clustal Omega.

3.6 Transformação dos mutantes em levedura

Após a confirmação das mutações, os plasmídeos foram transformados na linhagem S. cerevisiae CEN.PK113-5D (MATa MAL2-8^c SUC2 ura3-52 P_{ERG7}::P_{KEX2}) pelo método de acetato de lítio/polietilenoglicol (ITO H, et al. (1983). A transformação foi realizada a partir de um inóculo overnight da linhagem de S. cerevisiae CEN.PK113-5D em 3 mL de YPD (1% de extrato de levedura, 2% de peptona e 2% glicose). As células crescidas overnight foram recuperadas por centrifugação na velocidade máxima por 1 min, ressuspendidas em 1 mL de acetato de lítio 100 mM e incubados por 15 min a 30 °C. As células foram novamente centrifugadas por 10 s na velocidade máxima e o sobrenadante foi descartado. Ao pellet formado foram homogeneizados os seguintes reagentes: 240 µL de PEG a 50%, 36 µL de acetato de lítio 1 M, 50 µL de solução de fita simples de DNA de esperma de salmão (2,0 mg/mL), 5 µL do plasmídeo com a mutação (em torno de 2 µg) e, 20 µL de água esterilizada. As suspensões foram incubadas por 30 min, sob agitação, a 30 °C. Posteriormente, foi realizado o choque térmico por 10 min a 42 °C. Ao término da incubação, a transformação foi centrifugada, o sobrenadante removido e o pellet ressuspendido em 200 µL de água esterilizada. Este volume foi então plaqueado em meio sintético completo (0,67% de base para levedura nitrogenada sem adição de aminoácidos - YNB, e 2% de glicose) suplementado com aminoácidos, bases e ácido p-aminobenzoico, sem adição de uracila (SC-URA) e colocado em estufa de crescimento a 30 °C por 2 a 4 dias.

3.7 Expressão heteróloga dos mutantes de friedelina sintase em S. cerevisiae

Para avaliar possíveis modificações na produção de friedelina pelos mutantes formados, a expressão da sequência codificadora de friedelina sintase e dos mutantes obtidos foi realizada na linhagem de S. cerevisiae transformada com os respectivos plasmídeos. Inicialmente, foram realizados pré-inóculos, separadamente, de uma colônia de cada levedura contendo o vetor vazio como controle negativo, a sequência selvagem de MiFRS e as sequências mutadas em 5 mL de SC-URA, sob agitação constante a 30°C, overnight. Posteriormente, os inóculos foram diluídos para uma densidade óptica a 600 nm inicial de 0,05 em 50 mL de meio mínimo de Delft (0,75% de sulfato de amônio, 1,44% de fosfato monobásico de potássio, 0,05% de sulfato de magnésio heptahidratado, 2% de glicose, 0,2% de solução contendo traços de metais: 1,5% de EDTA, 0,045% sulfato de zinco heptahidratado, 0,1% de cloreto de manganês II, 0,03% de cloreto de cobalto II hexahidratado, 0,03% de sulfato de cobre II pentahidratado, 0,05% de molibdato de sódio dihidratado, 0,045% de cloreto de cálcio dihidratado, 0,03% de sulfato de ferro II heptahidratado, 0,01% de ácido bórico, 0,01 % de iodeto de potássio; e, 0,1% de solução de vitaminas: 0,005% de biotina, 0,02% de ácido paminobenzoico, 0,1% de ácido nicotínico, 0,1% de ácido pantotênico, 0,1% de piridoxina-HCI, 0,1% de tiamina-HCI e 2,5% mio-inositol) (VERDUYN et al., 1992). A incubação foi realizada a 30 °C, por 72 h, a 200 rpm. Após este período, as células foram coletadas por centrifugação a 3000 rpm por 5 min em tubos tarados de 50 mL e lavadas com 10 mL de tampão fosfato salino (PBS). As células foram congeladas em ultrafreezer a -80 °C por 24 h e depois foram submetidas a liofilização.

3.8 Extração dos produtos gerados heterologamente em S. cerevisiae

Após a liofilização, foram pesados cerca de 20 mg da massa de células secas em tubos de vidro de borosilicato (Pyrex, 16x100 mm), aos quais foram misturados 7 mL da solução clorofórmio:metanol (2:1, v/v) para extração dos triterpenos por ultrassom (Elmasonic S30H, ELMA) com duração de 30 min.

Para separação da fase orgânica contendo os triterpenos foram adicionados 1,7 mL de solução de NaCl 0,73%. A mistura foi agitada vigorosamente por 30 s e a fase apolar foi recuperada em um novo tubo de vidro após 30 min. As amostras foram então secas e armazenadas a -20°C até a análise por cromatografia.

3.9 Análise dos produtos gerados

As frações apolares extraídas das células de *S. cerevisiae* expressando heterologamente a sequência selvagem de *Mi*FRS, as sequências mutantes e o vetor vazio foram analisadas por cromatografia gasosa acoplada a espectrometria de massas (CG-EM). As amostras secas foram ressuspendidas em 200 μ L de acetonitrila. A análise cromatográfica foi realizada em um cromatógrafo a gás acoplado ao espectrômetro de massas (SHIMADZU, QP2020C W/O RP230V) com coluna HP-5 (30 m x 0,25 mm x 0,25 μ m; Agilent Technologies). Temperatura do injetor: 270° C; rampa de aquecimento de 200 a 290° C (10° C/min); temperatura do trap: 200° C por 3 min; temperatura da interface: 290 °C por 18 min; volume de injeção: 1 μ L, com modo de injeção do tipo Split: 1:10; fluxo do gás de arraste 1,0 mL/min; tempo total de análise de 30 min, relação massa/carga *m/z* de 35 a 600.

4 RESULTADOS E DISCUSSÃO

4.1 Determinação dos resíduos a serem mutados

Inicialmente, foi identificada a estrutura tridimensional a ser utilizada como molde para a modelagem molecular por homologia da friedelina sintase de *M. ilicifolia (Mi*FRS). Utilizando a ferramenta Blastp, foi feita a busca de proteínas que apresentassem identidade local com a sequência de *Mi*FRS no PDB, onde estão depositadas as estruturas tridimensionais das proteínas obtidas experimentalmente por cristalografia por raio-X, ressonância magnética nuclear e microscopia crioeletrônica.

O melhor alinhamento obtido da sequência primária de *Mi*FRS se deu com a lanosterol sintase de humano (PDB 1W6K), que apresentou 40% de identidade. A partir da estrutura da lanosterol sintase, pôde-se montar um modelo da estrutura molecular de *Mi*FRS usando o software Modeller. Este software realiza o alinhamento das estruturas secundárias da proteína molde resultante do PDB com a sequência da proteína a ser predita. O software retornou 100 modelos e estes foram avaliados conforme seu potencial DOPE.

O potencial DOPE é calculado em uma modelagem comparando a estrutura modelada com a estrutura cristalográfica em relação à posição atômica das estruturas e a energia potencial em cada átomo. Assim, entre os 100 modelos foram escolhidos três modelos, aqueles com menor valor de DOPE, ou seja, os modelos em que a proteína está na menor conformação global de energia potencial e, possivelmente, os modelos em que a proteína está com a melhor estrutura validada (SHEN; SALI, 2006).

As interações entre os aminoácidos que formam a estrutura secundária de uma proteína relacionam-se entre si formando ângulos de torção e as rotações dos ângulos permitem que os resíduos se encontrem rotacionados de forma a melhor se acomodarem espacial e energicamente. Assim, o diagrama de Ramachandran define os resíduos que se encontram nas regiões energicamente mais favoráveis e desfavoráveis e orienta a avaliação da qualidade de modelos teóricos ou experimentais de proteínas (SANTOS; ALANCASTRO, 2003).

Deste modo, no diagrama de Ramachandran gerado para cada resíduo de aminoácido da friedelina sintase predita, o modelo gerado com o mínimo de resíduos de aminoácidos fora da região favorável foi selecionado. Os resíduos de aminoácidos leucina na posição 672 (Leu672), triptofano na posição 338 (Trp338) e prolina na posição 250 (Pro250) estão na região desfavorável do diagrama de Ramachandran (figura 6 A), porém são resíduos de aminoácidos fora do sítio catalítico (figura 6 B) e, assim, não interferem no estudo.

A) Diagrama de Ramachandran do melhor modelo de friedelina sintase mostrando os resíduos de aminoácidos na região desfavorável dos ângulos diédricos (Leu672, Trp338 e Pro250) B) posição dos aminoácidos na região desfavorável, em vermelho, na estrutura predita de friedelina sintase, destacando o sítio ativo em alaranjado. (Autora)

O sítio ativo foi localizado em um cubo de aresta de 12 Å em torno do resíduo de aminoácido triptofano na posição 612, região mais central do sítio ativo e, portanto, permitiu avaliar o máximo possível de resíduos ao redor do centro ativo (Figura 7).

Figura 7 - Definição do sítio de ligação para o docking.

Definição do sítio ativo (vermelho) realizado centrando um cubo de aresta 12 Å em torno do resíduo Trp 612. (Autora)

A estrutura monomérica globular de *Mi*FRS contém 771 resíduos de aminoácidos e um desvio quadrático médio calculado (RMSD) de 0,3 Å com as coordenadas de C α alinhadas com a oxidoesqualeno ciclase 1W6K de *H.sapiens*. A topologia cilíndrica alfa de *Mi*FRS abrange 21 alfa-hélices estando de acordo com a literatura de estrutura e funções de sequências genômicas CATH 1.50.10.20.

Posteriormente, o modelo de friedelina sintase foi submetido ao programa AutoDock Vina para execução de *docking* com lanosterol e friedelina posicionados no sítio ativo.

As mutações foram então selecionadas (Tabela 4) a partir da interação/acomodação dos resíduos no sítio ativo com a molécula de friedelina, como mostra a Figura 8. Para auxiliar o estudo da especificidade da friedelina sintase, também foi realizado um alinhamento múltiplo da sequência primária de várias oxidoesqualeno ciclases depositadas no Genbank (Apêndice A) *versus* a sequência de friedelina sintase de *M. ilicifolia* (Apêndice B). Assim, a troca dos aminoácidos foi orientada tanto pela comparação com outras OSCs quanto pela similaridade entre os aminoácidos de acordo com a matriz de substituição *BLOSUM62* (*Blocks Substitution Matrix* - Anexo A), que busca regiões muito

conservadas de famílias de proteínas e exibe a frequência relativa de aminoácidos e as suas probabilidades de substituição a partir do banco de dados BLOCKS.

Resíduo	Troca	Posição	Justificativa
F	L	183	Na maior parte de outras OSCs ao invés de F é L
С	А	369	Em friedelina sintase de <i>K. daigremontiana</i> , ao
			invés de C é A
W	Н	417	Interação entre o resíduo W417 com Y736
D	Е	484	Resíduo doador de próton
W	F	612	Interação entre os resíduos F473 e W612
			(importante a ligação H ou π stacking)

Tabela 4 - Resíduos de aminoácidos do sítio ativo da friedelina sintase selecionadospara mutagênese sítio dirigida.

Figura 8 - *Docking* de friedelina no sítio ativo da enzima friedelina sintase predita evidenciando os resíduos de aminoácidos a serem mutados.

Modelo predito de friedelina sintase com os resíduos selecionados para reação de mutação sítiodirigida (amarelo), o motivo conservado DCTAE (vermelho) e friedelina (ciano). Imagens formadas com auxílio do programa PyMOL[™] Molecular Graphics System (versão 1.7.2.1). (Autora)

Desta forma, os resíduos de aminoácidos determinados pela análise *in silico* para as mutações podem ser importantes para a relação estrutura-atividade específica de *Mi*FRS por diferentes motivos, como resumido na Tabela 4.

4.2 Obtenção dos mutantes do sítio ativo de MiFRS

Todas as mutações propostas acima foram obtidas por mutagênese sítiodirigida e confirmadas por alinhamento global utilizando-se a ferramenta Clustal Omega das sequências obtidas pela reação de sequenciamento e o gene selvagem, como mostrados na figura a seguir. Os alinhamentos completos estão mostrados no Apêndice B.

Figura 9 - Alinhamento global múltiplo entre a sequência selvagem de *Mi*FRS e as sequências mutadas obtidas.

A) MIFRS F183L	121	CTTTGCCACCGCT <mark>TTC</mark> ACTTACGTCTGTCTATGAGAATTTTGGGTGTAGGTCCAGATGAA CTTTGCCACCGCT <mark>TTC</mark> ACTTACGTCTGTCTATGAGAATTTTGGGTGTAGGTCCAGATGAA
B) MIFRS C369A	161 236	ATGCATAAAGCTTTTTCAAC <mark>AGA</mark> ACCGATIGTGATGTATCTACTGTTTTCATCTTCGTAG ATGCATAAAGCTTTTTCAAC <mark>AGT</mark> ACCGATIGTGATGTATCTACTGTTTTCATCTTCGTAG
C) MiFRS W417H	361 108	ACAATTG <mark>HGG</mark> GATGCTACTTTTGGTTTCCAAGCTTTAGTAGCATCTAATTTGACTGAC
D) MIFRS D484E	480 359	GAT TGCACAGCAGAAGCCTTGAAATGTTGCTTGTTAGCTGCAACCATGCCAGAAGAATTA TGCACAGCAGAACCCTTGAAATGTTGCTTGTTAACTGCAACCTTGCCAGAAGAATTA
E) MIFRS W612F	121 87	GGTAAC <mark>TGG</mark> GGTATCTGTTTCATATACTCAACAATGTTCGCTTTAGGTGGTTTGGCCGCT GGTAAC <mark>TTG</mark> GTATCTGTTTCATATACTCAACAATGTTCGCTTTAGGTGGTTTGGCCGCT

O códon do resíduo de *Mi*FRS selvagem está evidenciado em cinza e a sua troca está evidenciada em cinza. A) mutação F183L, troca de nucleotídeos TTC por TTG; B) mutação C369A, troca de nucleotídeos ACA por AGC; C) mutação W417H, troca de nucleotídeos TGG por CAT; D) mutação D484E, troca de nucleotídeos GAT por GAA; E) mutação W612F, troca de nucleotídeos TGG por TTT. (Autora)

Com a confirmação das mutações dos aminoácidos selecionados, foi realizada a transformação destes em *S. cerevisiae* CEN.PK113-5D, cujo promotor constitutivo do gene *ERG7*, codificador de lanosterol sintase, foi trocado por um promotor fraco, para redução dos níveis de sua expressão e diminuição da competição da lanosterol sintase pelo substrato oxidoesqualeno (Tatiana Moreira, dados não publicados). Assim, possibilitou-se o desvio da rota de formação de ergosterol para aumento de produção de triterpenos heterólogos.

4.3 Análise dos produtos triterpênicos gerados heterologamente

Os cromatogramas gerados a partir da injeção das frações apolares extraídas das células de *S. cerevisiae* expressando heterologamente as sequências de *Mi*FRS mutantes foram analisados separadamente e foram também comparados com os cromatogramas gerados a partir da injeção das frações apolares extraídas das

células de *S. cerevisiae* expressando a sequência selvagem de *Mi*FRS e das células de controle negativo, contendo apenas com o plasmídeo vazio (figura 10).

Figura 10 - Cromatograma da fração apolar das células de *S. cerevisiae* expressando heterologamente a sequência de *Mi*FRS.

Pico 1 = esqualeno; Pico 2 = ergosterol; Pico 3 = lanosterol; Pico 4 = friedelina; * = picos resultantes de resíduos da coluna utilizada na CG-EM (oxirano e 2,2-Dimetil-3-(3,7,16,20-tetrametil-heneicosa-3,7,11,15,19-pentaenil)-oxirano) e de metabólitos gerados pelo metabolismo de ergosterol (9,19-ciclolanost-23-eno-3,25-diol) (Autora)

Foram observados metabólitos em comum decorrentes da via do ergosterol (representados pelos picos 1, 2 e 3) na amostra de *S. cerevisiae* utilizada como controle negativo e nas amostras expressando *Mi*FRS selvagem e mutantes. Assim, o objetivo deste trabalho foi analisar a formação de diferentes terpenos, observando os cromatogramas das frações apolares correspondentes às produções heterólogas dos mutantes de *Mi*FRS (Apêndice C) e os espectros de massa resultantes dos compostos diferencialmente produzidos. Os compostos derivados da expressão heteróloga de MiFRS e seus mutantes, identificados neste trabalho, estão representados e numerados na Figura 11.

Os cromatogramas gerados pelas amostras são apresentados a partir do tempo de 17 min porque esta é a região em que os compostos diferencialmente formadosestão presentes. Contudo, no Apêndice X, estão apresentados os cromatogramas completos de todas as amostras analisadas neste trabalho, bem como estão apresentados os espectros dos compostos da via de ergosterol que apareceram com maior intensidade (esqualeno, lanosterol e ergosterol) e dos compostos heterologamente produzidos (friedelina, β -amirina e α -amirina).

Figura 11 - Metabólitos gerados pela produção heteróloga do gene selvagem de MiFRS (1-4), dos mutantes (1-6) e, pela linhagem de levedura contendo apenas o vetor vazio (1-3).

Metabólitos: (1) = esqualeno; (2) = ergosterol; (3) = lanosterol; (4) = friedelina; (5) = β -amirina; (6) = α amirina; (disponível em: <u>http://webbook.nist.gov/chemistry/</u> e <u>https://pubchem.ncbi.nlm.nih.gov/</u>)

4.3.1 Mutantes com perda de função

Os cromatogramas foram analisados com intuito de verificar a presença de friedelina, ou outro composto não derivado do metabolismo primário celular, nas amostras de *S. cerevisiae* expressando heterologamente as sequências mutantes de
*Mi*FRS. Foi observada a ausência de formação de friedelina nos cromatogramas das células de *S. cerevisiae* expressando heterologamente quatro sequências de *Mi*FRS mutantes: W417H e D484E (Figura 12).

Figura 12 - Cromatogramas da fração apolar das células de S. cerevisiae expressando heterologamente a sequência selvagem de MiFRS e os mutantes que perderam a função de produção de friedelina: W417H e D484E.

Pico 2= ergosterol; Pico 3= lanosterol; Pico 4= friedelina. (Autora)

O resíduo de ácido aspártico na posição 484 faz parte do sítio catalítico Asp-Cys-Thr-Ala-Glu (DCTAE), altamente conservado entre as oxidoesqualeno ciclases. Nele, o substrato oxidoesqualeno se ancora e, a partir da doação de próton do ácido aspártico ao substrato, é iniciada a sua ciclização (Ito et al, 2013). Para a formação de friedelina, é proposto que este mesmo resíduo seja o aceptor final do próton, formando assim, o grupo cetônico (Wang et al., 2010). A troca do ácido aspártico na posição 484 pelo ácido glutâmico impediu a enzima friedelina sintase de realizar a produção da friedelina porque o ácido glutâmico possui um grupo metilênico a mais em comparação ao ácido aspártico e essa maior cadeia carbônica influencia na acomodação do oxidoesqualeno no sítio ativo da friedelina sintase, impedindo a ciclização e consequente produção da friedelina. O grupo metileno a mais no ácido glutâmico, comparando com o ácido aspártico, não permite que o substrato se ancore. Segundo Hoshino (2017), o grupo metileno interfere no acesso do grupo carboxílico ao anel epóxido do substrato e assim, deve haver uma distância fixa entre o substrato e o aminoácido de ancoramento para que ocorra o início da policiclização. A distância entre o anel epóxido do substrato e a carbonila do aminoácido ácido aspártico na posição 484 é de 2,5 Å, enquanto que a distância entre o anel epóxido do substrato com a troca do ácido aspártico pelo ácido glutâmico nessa posição é o dobro, 5 Å, como observado na figura 13 A , interferindo na formação da ligação de hidrogênio (~2,6 Å) entre o resíduo e o terpeno. Da mesma forma, foi visto que a mutação D485E em β -amirina sintase de *Euphorbia tirucalli* proporcionou a perda da atividade desta enzima devido à inclusão do grupo metilênico, em detrimento à presença do grupamento ácido do ácido glutâmico (Ito et al., 2013), por sua vez colaborando com a observação de que uma distância fixa deve existir para a doação do próton ao grupo epóxido.

A troca do triptofano na posição 417 por uma histidina impediu a enzima friedelina sintase de produzir friedelina. Ao estudar a estrutura molecular da friedelina sintase (figura 13 B), foi observado, através da nuvem de densidade eletrônica, que o triptofano na posição 417 forma uma cavidade rica em elétrons- π , interagindo também com outros resíduos aromáticos como Y366 e Y369, como já previamente observado em lanosterol sintase (Wu et al., 2006). Esta densidade eletrônica favorece os rearranjos durante a ciclização e a desprotonação final, resultando na produção da friedelina. A histidina, por ser um aminoácido com um imidazol parcialmente carregado, de menor volume que o triptofano, interfere na densidade eletrônica necessária para o rearranjo dos cátions intermediários no sítio ativo (figura 13 C), resultando na perda da capacidade de produção de friedelina

Figura 13 - Análise *in silico* por modelagem molecular de friedelina sintase e seus mutantes com perda de função: W417H e D484E.

A) mutante D484E, evidenciando os aminoácidos ácido aspártico (amarelo) e ácido glutâmico (azul), a friedelina sintase docada no sítio ativo e as distâncias das interações dos aminoácidos com a friedelina (linha pontilhada em amarelo); B) *Mi*FRS selvagem evidenciando a densidade eletrônica formada pelos resíduos W417, Y736, Y739 e W534 (amarelo) no sítio ativo, com destaque para o posicionamento dos carbocátions intermediários em C8 e C9 (lilás); C) mutante W417H (azul), evidenciando a alteração da densidade eletrônica no sítio ativo (amarelo) alterando a interação com os cátions intermediários de friedelina (ciano). (Autora)

Segundo Ito et al. (2016), ao realizar a troca de resíduos de aminoácidos envolvidos com interações cátion- π , como os resíduos Y259 e W256, por aminoácidos de volume pequeno e sem capacidade de interações através dos elétrons π , ocorre a desestabilização dos carbocátions intermediários, produzindo metabólitos intermediários e/ou não ocorrendo a produção de β -amirina. O mesmo é observado no mutante de W417 em que a troca por um aminoácido de cadeia pequena, interrompeu a interação do resíduo e o substrato, provocando a interrupção da produção da friedelina.

Assim pode-se notar que a perda do distanciamento correto para a doação/aceito de próton entre a enzima e o substrato/produto, como mostrado na mutação D484E, bem como a perda de interação dos cátions intermediários com o sítio ativo, como observado no mutante W417H, foram os principais motivos de perda de função da enzima friedelina sintase de *M. ilicifolia*.

4.3.2 Mutantes com manutenção da atividade da friedelina sintase

Algumas mutações na sequência de *Mi*FRS mantiveram a sua atividade formadora de friedelina, sem levar à produção de outros compostos. Tais mutantes foram W612F e C369A (Figura 14).

Figura 14 - Cromatogramas da fração apolar das células de S. cerevisiae expressando heterologamente a sequência selvagem de MiFRS e os mutantes W612F e C369A.

Pico 2 = ergosterol; pico 3 = lanosterol; pico 4 = friedelina. (Autora)

O resíduo W612 tem característica de realizar interações do tipo cátion– π , estabilizando os últimos carbocátions intermediários no anel A (figura 15 A). E, por isso, é um resíduo altamente conservado na produção de triterpenos pentacíclicos, como lupeol e β -amirina e tetraciclos (lanosterol e cicloartenol) (Hoshino, 2017).

Ao realizar o estudo da modelagem de friedelina sintase, notou-se que as distâncias de interações entre os elétrons π do resíduo W612 e os carbocátions no anel A (figura 15 A) são semelhantes em relação ao resíduo mutado W612F e os mesmos cátions intermediários (figura 15 B). A manutenção da formação de friedelina pelo mutante W612F demonstrou que a troca do aminoácido manteve as interações cátion- π , importantes para a estabilização dos rearranjos finais de

carbocátion na formação de friedelina. Contudo, é interessante observar que o resíduo de triptofano nesta posição é conservado entre as mais diversas OSC's, sendo que apenas a enzima β-amirina syntase multifuncional (AMY2) de *Lottus japonicus* possui uma alanina na posição correspondente (Apêndice B).

Figura 15 - Análise *in silico* por modelagem molecular de friedelina sintase e seus mutantes que favorecem a manutenção da atividade de friedelina sintase.

A) MiFRS selvagem evidenciando o resíduo W612 (amarelo) e o comprimento das interações cátionπ com os carbocátions intermediários (lilás) de friedelina (ciano); B) mutante W612F, evidenciando a manutenção de comprimentos semelhantes das interações cátion-π com os carbocátions intermediários (lilás) de friedelina; C) MiFRS selvagem evidenciando o resíduo C369A (amarelo), o e o resíduo D484 (amarelo) em que ocorre o ancoramento do substrato para formação de friedelina (ciano); D) estrutura da L-cisteína e L-alanina, evidenciando os átomos: hidrogênio (cinza), oxigênio (vermelho), enxofre (amarelo), nitrogênio (azul) е cadeia carbônica (preto) (https://pubchem.ncbi.nlm.nih.gov). (Autora)

A troca da cisteína na posição 369 por uma alanina (figura 15 E), um aminoácido menor, também não impediu a enzima de produzir friedelina, como observado no cromatograma da figura 14. A partir do alinhamento múltiplo entre as diversas oxidoesqualeno ciclases, foi observada a presença de uma alanina na posição correspondente da friedelina sintase de *K. daigremontiana*, enquanto que na

maioria das outras triterpeno sintases de pentacíclicos, a cisteína é conservada nesta posição (Apêndice B).

Neste mutante não foi observada a produção de nenhum outro triterpeno, embora tenha sido descrita a produção de β-amirina e glutinol em *Kd*FRS, indicando que outros resíduos de *Mi*FRS estão relacionados à sua especificidade.

É interessante notar, contudo, que a cadeia lateral de tamanho e volume menor do aminoácido cisteína e alanina na posição 369 é importante para a atividade de *Mi*FRS e de outras OSCs que formam o cátion damarenil, visto que nas OSCs que formam o cátion protosteril, a existência de um resíduo de prolina, um aminoácido com cadeia constrita, nesta posição leva à produção de triterpenos tetracíclicos.

Não foram encontrados relatos na literatura de estudos mutagênicos pela troca deste resíduo de cisteína em outras OSC. Vale salientar que a enzima friedelina sintase de *M. ilicifolia* compartilha 65% de identidade com a de *K. daigremontiana* e que outro trabalho do nosso grupo, publicado recentemente, elucidou a importância do resíduo L482 para a produção de friedelina, um resíduo conservado somente nestas duas enzimas e na enzima glutinol sintase, também de *K. daigremontiana*, produtora de glutinol majoritariamente e de friedelina em menor quantidade (SOUZA-MOREIRA et al., 2016). No presente trabalho de Mestrado, avaliou-se, por outro lado, um resíduo conservado entre a maioria das triterpeno pentacíclico sintases, encontrado também no sítio ativo de *Mi*FRS, porém diferente entre esta e *Kd*FRS e foi demonstrado que a presença de um resíduo de pequeno volume favorece a produção de friedelina. Outros estudos mutacionais seriam interessantes a fim de avaliar a função de outros resíduos como treonina e serina, presentes em algumas OSCs, ou mesmo como metionina, aminoácido maior que a cisteína, mas também contendo enxofre em sua cadeia lateral.

Observou-se com estas análises que a troca de alguns resíduos do sítio ativo favoreceu a manutenção do mesmo tipo de interação, sem alteração estrutural de friedelina sintase, mantendo a formação de friedelina.

4.3.3 Mutante com ganho de função

Um mutante de friedelina sintase, além de friedelina, também produziu outros triterpenos pentacíclicos, como apresentados na figura 16.

Figura 16 - Cromatograma da fração apolar das células de S. cerevisiae expressando heterologamente a sequência de MiFRS e mutante com ganho de função.

Pico 2 = ergosterol; pico 3 = lanosterol; pico 4 = friedelina; pico 5 = β-amirina; pico 6 = α-amirina. (Autora)

O resíduo de fenilalanina na posição 183 da friedelina sintase está localizado em uma região entre a entrada do sítio ativo e o sítio de ancoragem ao aspartato catalítico. A troca de fenilalanina por leucina na posição 183 não impediu a enzima friedelina sintase de produzir friedelina, porém, também possibilitou a formação de outros triterpenos pentacíclicos, como observado no cromatograma da figura 16, levando à perda de especificidade da enzima. O modelo estrutural de MiFRS mostra que a F183 localizada numa região próxima ao sítio ativo e em que o substrato entra para se ancorar (figura 17 A). Ao se realizar a troca de fenilalanina na posição 183 por uma leucina, um aminoácido menor e não aromático, nota-se que houve a produção não só de friedelina, mas também de β -amirina e α -amirina (figura 11), assim como nas outras triterpeno sintases de pentacíclicos. Observa-se que o modelo de estrutura molecular utilizado para a análise dos resíduos que possivelmente poderiam estar envolvidos por interações com o resíduo F183 na produção dos diferentes produtos triterpenicos, não foi suficiente para explicar o porquê das produções diferenciadas tanto de β -amirina quanto de α -amirina. Portanto, são necessários outros estudos mais aprofundados para entender qual o envolvimento do resíduo F183 com a produção diferenciada dos triterpenos, já que este resíduo está localizado somente próximo ao sítio ativo e não diretamente sobre o substrato ou interagindo diretamente com outros aminoácidos do sítio ativo.

A formação de β-amirina também ocorre pela ação da friedelina sintase de *K. daigremontiana* (KdFRS) (Wang et al., 2010), enzima que possui um resíduo de

leucina na posição 183. A maioria das OSCs que produzem triterpenos tetracíclicos ou pentacíclicos também possui leucina na posição correspondente, exceto as enzimas isomultiflorenol sintase (LcIMS1) de *Luffa cylindrica* e triterpeno sintase multifuncional (RsM2) de *Rhizophora stylosa* que também possuem uma fenilalanina e as enzimas arabidiol sintase (PEN1), talianol sintase (PEN4) e marneral sintase (PEN5) de *Arabidopsis thaliana*, que possuem o isômero isoleucina (Apêndice B). Assim, a produção de α -amirina e β -amirina pelo mutante F183L condiz com a função do resíduo de leucina nas outras triterpeno pentacíclico sintases, contudo, a produção concomitante e relativamente maior de friedelina, em relação aos outros triterpenos da amostra, demonstra que apenas este resíduo, não envolvido com o sítio ativo, mas direcionado à sua cavidade, não está envolvido na troca de atividade da enzima.

Figura 17- Análise *in silico* por modelagem molecular de friedelina sintase e o mutante com manutenção da atividade de friedelina sintase e o ganho de função: F183L.

A) entrada do sítio ativo (flecha em verde), aminoácido fenilalanina na posição 183 (amarelo) e a friedelina docada no sítio ativo (ciano); B) sítio ativo da friedelina sintase evidenciando o resíduo F183 (amarelo) e os resíduos participantes das interações π (amarelo), representando também a friedelina em *docking* no sítio ativo (ciano) e o resíduo D484 onde o substrato se ancora (amarelo); C) sítio ativo da friedelina sintase evidenciando o resíduo o resíduo de leucina do mutante F183L (azul) e os demais resíduos e a molécula apresentados no quadro B. (Autora)

É interessante observar que diferentes resíduos presentes no sítio ativo exercem funções importantes para a atividade e especificidade catalítica da enzima. Tais aminoácidos são geralmente altamente conservados entre as OSCs e sua troca leva à perda de formação de qualquer triterpeno, como observado nos mutantes: W417H e D484E. Foi observado que os resíduos correspondentes de posição em lanosterol sintase de *S. cerevisiae* (Y510, H234, Y707, Y710 e W390) e em β-amirina sintase de *E. tirucalli* (D484, Y259, W257, F728, W612) também estão relacionados à atividade das suas enzimas.

Outros se mostram divergentes entre os grupos de enzimas OSCs, podendo a sua troca levar à formação de diferentes triterpenos e, por isso, relacionam-se com a especificidade da friedelina sintase estudada, como o mutante F183. Resíduos de aminoácidos como a mesma característica de formação de outros triterpenos, constituintes do sítio ativo, porém com uma distância maior do substrato já foram relatados, como o resíduo C393 da enzima cucurbitadienol sintase de *Cucumis sativus* e o resíduo F728 da enzima β -amirina sintase de *Avena strigosa*.

Outros resíduos, contudo, podem ser considerados menos relacionados com a especificidade da enzima, visto que sua troca por aminoácidos com características semelhantes manteve a formação de friedelina (W612 e C369).

Desta forma, é possível determinar que os resíduos W417 e D484 são essenciais para a atividade catalítica da friedelina sintase de *M. ilicifolia*, enquanto que os resíduos W612, C369 e F183 estão relacionados à estabilização e controle dos rearranjos específicos da formação de friedelina.

5 CONCLUSÕES

A predição da enzima friedelina sintase por homologia resultou em um modelo dentros dos parâmetros aceitáveis e possibilitou a realização do estudo *in silico* dos aminoácidos constituintes do sítio ativo da enzima. Assim, a análise das possíveis interações com o sítio ativo da enzima e a comparação dos resíduos dessa enzima com outras oxidoesqualeno ciclases guiaram a seleção dos resíduos a serem mutados, sendo possível avaliar o efeito na estrutura-atividade dos mutantes por meio da análise dos compostos formados heterologamente em *S. cerevisiae*.

Desta forma, foi possível observar resíduos do sítio ativo da enzima envolvidos com a sua função catalítica e especificidade. Assim, os resíduos determinantes para a atividade catalítica da enzima são:. Já os resíduos de aminoácidos C369, W612 e F183 estão envolvidos com à estabilização e controle dos rearranjos específicos da formação de friedelina.

A friedelina sintase é uma OSC singular por levar à formação de um triterpeno cetônico, com maior número de rearranjos. A compreensão da sua atividade singular entre as OSC, de acordo com a sua estrutura, é ainda modesta e com este trabalho foram determinados resíduos essenciais para a sua função catalítica bem como resíduos envolvidos com a sua estabilidade.

Tais resíduos, contudo, não são os únicos determinantes para a sua atividade específica de formação de friedelina e futuros estudos com outros resíduos podem esclarecer melhor a relação estrutura-atividade desta enzima.

REFERÊNCIAS

ABE, I.; PRESTWICH, G. Identification of the active site of vertebrate oxidosqualene cyclase. **Lipids**, v. 30, n. 3, p. 231-234, 1995.

ANDRE, C. M.; GREENWOOD, J. M.; WALKER, E. G.; RASSAM, M.; SULLIVAN, M.; EVERS, D.; PERRY, N. B.; LAING, W. A. Anti-inflamatory procyanidins and triterpenes in 109 apple varieties. **Journal of Agricultural and Food Chemistry**, v. 60, p. 10546-10554, 2012.

BERO, J.; FREDERICH, M.; QUETIN-LECLERCQ, J. Antimalarial compounds isolated from plants used in traditional medicine. **Journal of Pharmacy and Pharmacology**, v. 61, p. 1401-1433, 2009.

CHANG, C. H.; WEN, H. Y.; SHIE, W. S.; LU, C. T.; LI, M. E.; LIU, Y. T.; LI, W. H.; WU, T. K. Protein engineering of oxidosqualene-lanosterol cyclase into triterpene monocyclase. **Organic & biomolecular chemistry**, v. 11, n. 25, p. 4214-4219, 2013.

CORSINO, J.; CARVALHO, P. R. F.; KATO, M. J.; LATORRE, L. R.; OLIVEIRA, O. M. M. F.; ARAUJO, A. R.; BOLZANI, V. da S.; FRANÇA, S. C.; PEREIRA, A. M. S.; FURLAN, M. Biosynthesis of friedelane and quinonemethide triterpenoids is compartmentalized in *Maytenus aquifolium* and *Salacia campestris*. **Phytochemistry**, v. 55, n. 7, p. 741-748, 2000.

DEEB, D.; GAO, X.; LIU, Y.; PINDOLIA, K.; GAUTAM, S. C. Inhibition of hTERT/telomerase contributes to the antitumor activity of pristimerin in pancreatic ductal adenocarcinoma cells. **Oncology Reports**, v. 35, p. 518-524, 2015.

DOSHI, G. M.; NALAWADE, V. V.; MUKADAM, A. S.; CHASKAR, P. K.; ZINE, S. P.; SOMANI, R. R.; UNE, H. D. Structural elucidation of chemical constituents from *Benincasa hispida* and *Carissa congesta* roots by gas chromatography: Massspectroscopy. **Pharmacognosy research**, v. 7, n. 3, p. 283-293, 2015.

EDELHEIT, O.; HANUGOKLI, A.; HANUGOKLI, I. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. **BMC Biotechnology**, v. 9, 2009. doi:10.1186/1472-6750-9-61.

GAS-PASCUAL, E.; BERNA, A.; BACH, T. J.; SCHALLER, H. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in *Nicotiana benthamiana*. **PLoS One**, v. 10, 2014. doi: 10.1371/journel.pone.0109156.

GERMANN, M.; GALLO, C.; DONAHUE, T.; SHIRZADI, R.; STUKEY, J.; LANG, S.; RUCKENSTUHL, C.; OLIARO-BOSSO, S.; McDONOUGH, V.; TURNOWSKY, F.; BALLIANO, G.; NICKELS, J. T. Jr. Characterizing sterol defect suppressors uncovers a novel transcriptional signaling pathway regulating zymosterol biosynthesis. **The Journal of Biological Chemistry**, v. 280, p. 35904-35913, 2005. HART, E. A.; HUA, L.; DARR, L. B.; WILSON, W. K.; PANG, J.; MATSUDA, S. P. T. Directed evolution to investigate steric control of enzymatic oxidosqualene cyclization. An isoleucine-to-valine mutation in cycloartenol synthase allows lanosterol and parkeol biosynthesis. **Journal of the American Chemical Society**, v. 121, p. 9887-9888, 1999.

HE, P.; YE, F.; HUANG, S.; GUO, Y.; WANG, H.; WU, Y. Anti-inflmmatory effect of pristimerin on TNFα-induced inflammatory responses in murine macrophages. **International Journal of Clinical and Experimental Pathology**, v. 9, p. 1186-1194, 2016.

HOSHINO, T. β-amyrin biosynthesis: catalytic mechanism and substrate recognition. **Organic&Biomolecular Chemistry**, 2017. doi:10.1039/C7OB00238F.

ITO, H.; FUKUDA, Y.; MURATA, K.; KIMURA, A. Transformation of intact yeast cells treated with alkali cations. **Journal of Bacteriology**, v. 153, p. 163-168, 1983.

ITO, R.; MASUKAWA, Y.; HOSHINO, T. Purification, kinetics, inhibitors and CD for recombinant b-amyrin synthase from *Euphorbia tirucalli* L and functional analysis of the DCTA motif, which is highly conserved among oxidosqualene cyclases. **FEBS Journal**, v. 280, p. 1267-1280, 2013.

KUSHIRO, T.; SHIBUYA, M.; EBIZUKA, Y. Cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. **European Journal of Biochemistry**, v. 256, p. 238-244, 1998.

LIU, H.; NIUSMITH, J. H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. **BioMedCentral Biotechnology**, 2008. doi:10.1186/1472-6750-8-91

MATSUDA, S. P. T.; DARR, L. B.; HART, E. A.; HERRERA, J. B. R.; McCANN, K. E.; MEYER, M. M.; PANG, J.; SCHEPMANN, H. G. Steric bulk at cicloartenol synthase at position 481 influences cyclization and deprotonation. **Organic Letters**, v. 2, n. 15, p. 2261-2263, 2000.

MOORE, P. A.; RUBEN, S. M.; ROSEN, C. A. Conservation of transcriptional activation functions of the nf-kb p5o and p65 subunits in mammalian cells and *Saccharomyces cerevisiae*. **Molecular and Cellular Biology**, v. 13, n. 3, p. 1666-1674, 1993.

PARTOW, S.; SIEWERS, V.; BJORN, S.; NIELSEN, J.; MAURY, J. Characterization of different promoters for designing a new expression vector in *Saccharomyces cerevisiae*. **Yeast**, v. 27, n. 11, p. 955-964, 2010.

POMMIÉ, C.; LEVADOUX, S.; SABATIER, R.; LEFRANC, G.; LEFRANC, M. P. IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. **Journal of Molecular Recognition**, v. 7, n. 1, p. 17-32, 2004. SALMON, M.; THIMMAPPA, R. B.; MINTO, R. E.; MELTON, R. E.; HUGHES, R. K.; O'MAILLE, P. E.; HEMMINGS, A. M.; OSBOURN, A. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases. **Proceedings of the National Academy of Science of the Unted States of America**, v. 113, n. 30, p. e4407-e4414, 2016.

SALVADOR, J. A.; MOREIRA, V. M.; GONCALVES, B. M.; LEAL, A. S.; JING, Y. Ursane-type pentacyclic triterpenoids as useful platforms to discover anticancer drugs. **Natural Product Reports**, v. 29, p. 1463-1479, 2012.

SANTOS, O. A. S. F.; ALANCASTRO, R. B. Modelagem de proteínas por homologia. **Química Nova**, v. 26, n. 2, p. 253-259, 2003.

SANTOS, V. A. F. F. M.; SANTOS, D. P.; CASTRO-GAMBOA, I.; ZANONI, M. V. B.; FURLAN, M. Evaluation of antioxidant capacity and synergistic associations of quinonemethide triterpenes and phenoli substances from *maytenus ilicifolia* (Celastraceae). **Molecules**, v. 15, n. 10, p. 6956-6973, 2010.

SHEN, M. Y.; SALI, A. Statistical potential for assessment and prediction of protein structures. **Protein Science**, v. 15, p. 2507-2524, 2006.

SHIBUYA, M.; ZHANG, H.; ENDO, A.; SHISHIKURA, K.; KUSHIRO, T.; EBIZUKA, Y. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases. **European Journal of Biochemistry**, v. 266, p. 302-307, 1999.

SOUZA-MOREIRA, T. M.; ALVES, T. B.; PINHEIRO, K. A.; FELIPPE, L. G.; LIMA, G. M. A. de; WATANABE, T. F.; BARBOSA, C. C.; SANTOS, V. A. F. F. M.; LOPES, N. P.; VALENTINI, S. R.; GUIDO, R. V. C.; FURLAN, M.; ZANELLI, C. F. Friedelin synthase from *Maytenus ilicifolia*: leucine 482 plays an essential role in the production of the most rearranged pentacyclic triterpene. **Scientific Reports**, 2016. doi:10.1038/srep36858.

THIMMAPPA, R.; GEISLER, K.; LOUVEAU, T.; O'MAILLE, P.; OSBOURN, A. Triterpene biosynthesis in plants. **Annual Review of Plant Biology**, v. 65, p. 225-257, 2014.

VERDUYN, V.; POSTMA, E.; SCHEFFERS, W. A.; VAN DIJKEN, J. P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. **Yeast**, v. 8, p. 501-517, 1992.

WANG, Z.; YEATS, T.; HAN, H.; JETTER, R. Cloning and characterization of oxidosqualene cyclases from *Kalanchoe daigremontiana*. **The Journal of Biological Chemistry**, v. 285, n. 39, p. 29703-29712, 2010.

WU, T. K.; WEN, H. Y.; CHANG, C. H.; LIU, Y. T. Protein plasticity: a single amino acid substitution in the *Saccharomyces cerevisiae* oxidosqualene lanosterol cyclase generates protosta-13(17),24-dien-3β-ol, a rearrangement product. **Organic Letters**, v. 10, p. 2529-2532, 2008.

XUE, Z.; DUAN, L.; LIU, D.; GUO, J.; GE, S.; ÓMÁILLE, P.; DICKS, J.; OSBOURN, A.; QI, X. Divergent evolution of oxidosqualene cyclases in plants. **New Phytologist**, v. 193, p. 1022-1038, 2012.

APÊNDICE A - Sequências das enzimas oxidoesqualeno ciclases usadas no alinhamento múltiplo com seu número de acesso no GenBank, espécie e função.

(continua)

N° de acesso	Espécies	Função
AB257562.1	Arabidopsis thaliana	Arabidiol sintase (PEN1)
AY327541.1	Arabidopsis thaliana	Talianol sintase (PEN4)
BT020456.1	Arabidopsis thaliana	Marneral sintase (PEN5)
AB274959.1	Arabidopsis thaliana	Triterpeno sintase multifuncional
		(PEN6)
NM_179572.1	Arabidopsis thaliana	Lupeol sintase 1 (LUP1)
NM_106545.3	Arabidopsis thaliana	Lupeol sintase 2 (LUP2)
NM_126681.2	Arabidopsis thaliana	Cicloartenol sintase (CAS1)
AB263204.1	Rhizophora stylosa	Triterpeno sintase multifuncional
		(RsM2)
AB289586.1	Bruguiera gymnorhiza	Lupeol sintase (BgLUS)
AB257507.1	Kandelia candel	Triterpeno sintase multifuncional
		(KcMS)
DQ268869.1	Ricinus communis	Lupeol sintase (RcLUS)
AB058643.1	Luffa cylindrica	Isomultiflorenol sintase (LcIMS1)
AB037203.1	Glycyrrhiza glabra	β-amirina sintase (GgbAS1)
AB181244.1	Lotus japonicus	β-amirina sintase (OSC1)
AB034802.1	Pisum sativum	β-amirina sintase (PSY)
AF478453.1	Medicago truncatula	β-amirina sintase (AMY1)
AF478455.1	Lotus japonicus	β-amirina sintase multifuncional
		(AMY2)
AB034803.2	Pisum sativum	amirina sintase mista (PSM)
AB009030.1	Panax ginseng	β-amirina sintase (PNY1)
AB014057.1	Panax ginseng	β-amirina sintase (PNY2)
AB055512.1	Betula platyphylla	β-amirina sintase (BPY)
HM623868.1	Kalanchoe daigremontiana	Taraxerol sintase (KdTAS)
AB263203.1	Rhizophora stylosa	Triterpeno sintase multifuncional
		(RsM1)
AB206469.1	Medicago tirucalli	β-amirina sintase (EtAS)

(conclusão)

N° de acesso	Espécies	Função
HM623870.1	Kalanchoe daigremontiana	Friedelina sintase (KdFRS)
HM623869.1	Kalanchoe daigremontiana	Glutinol sintase (KdGLS)
HM623871.1	Kalanchoe daigremontiana	Lupeol sintase (KdLUS)
AB025343.1	Olea europaea	Lupeol sintase (OEW)
AB025345.1	Taraxacum officinale	Lupeol sintase (TRW)
AB181245.1	Lotus japonicus	Lupeol sintase (OSC3)
AB116228.1	Glycyrrhiza glabra	Lupeol sintase (GgLUS1)
AB055511.1	Betula platyphylla	Lupeol sintase (BPW)
AB181246.1	Lotus japonicus	Cicloartenol sintase (OSC5)
AB025968.1	Glycyrrhiza glabra	Cicloartenol sintase (GgCAS1)
AB009029.1	Panax ginseng	Cicloartenol sintase (PNX)
HM623872.1	Kalanchoe daigremontiana	Cicloartenol sintase (KdCAS)
AB055509.1	Betula platyphylla	Cicloartenol sintase (BPX1)
APG38073.1	Maytenus ilicifolia	Friedelina sintase (MiFRS)
AAA16975.1	Saccharomyces cerevisiae	Lanosterol sintase (ScLAS)
P48449.1	Homo sapiens	Lanosterol sintase (1W6K)
BAK52535.1	Aster tataricus	Shionona sintase (SS)

APÊNDICE B - Alinhamento entre oxidoesqualeno ciclases e friedelina sintase de *M*. *ilicifolia*, cuja identificação e número de acesso estão apresentados na tabela do apêndice A.

ScLAS	1	MTE	-FYSDT <mark>I</mark>	GLPKTDPRLWRI	LRTDEL <mark>GR</mark> ES <mark>WE</mark> YL
1W6K	1	MTEGTCL-RRRGG	GPY <mark>K</mark> TEP <mark>A</mark>	TDLGRWR	-LNCERGRQTWTYL
BPX1	1		- <mark>MWKLKI</mark> GAETARGD	GGGGGGSETWLRS	-LNNHLGRQIWEFH
KdCAS	1		-MWKLKIAD	AGGSQWLRS	-VNNHIGRQIWDFD
CAS1	1		-MWKLKIAE	GGSPWLRT	-TNN <mark>H</mark> VGRQFWEFD
PNX	1		-MWKLKIAE	GGNPWLRT	-LNDHVGRQIWEFD
PSX	1		-MWKLKVAE	GGTPWLRT	-L <mark>NN</mark> HVGRQVWEFD
GgCAS1	1		-MWKLKIAE	GGSPWLRT	-V <mark>NN</mark> HVGRQVWEFD
OSC5	1		-MWKLKIAE	GGNPWLRS	-TN <mark>SH</mark> VGRQVWEFD
BPW	1		-MWKLKIAE	GGPGLVS	-GNDFIGRQHWEFD
GgLUS1	1		-MWKLKIGE	GGAGLIS	-VNNFIGRQ <mark>H</mark> WEFD
OSC3	1		-MWKLKVAE	GGKG <mark>L</mark> VS	-VS <mark>NFIGRQ</mark> HWVFD
TRW	1		-MWKLKIAE	GGDDEWLTT-	-TNN <mark>H</mark> VGRQH <mark>WQ</mark> FD
OEW	1		-MWKLKIAD	G-TGPWLTT-	-TNN <mark>HIGRQH</mark> WEFD
PEN5	1		-MWRLRIGA	-EARQDPHLFT-	-TNNF <mark>A</mark> GRQIWEFD
PEN6	1		-MWRLKIGA	-KGGDETHLFT	-TNNY <mark>T</mark> GRQ <mark>T</mark> WEFD
PEN4	1		-MWRLRTGP	-KAGEDTHLFT-	-TNNY <mark>A</mark> GRQIWEFD
PEN1	1		-MWRLRIGA	-KAGNDTHLFT-	-TNNY <mark>VGRQI</mark> WEFD
RsM2	1	MG	GVWRLKIGE	-GANNPYLTS	-TNNFVGRQTWVFE
LcIMS1	1		-MWRLKVAD	-GGNDPYIYS	-MNNFIGRQIWEFD
MiFRS	1		-MWKIKIAD	-RGNCPYNEYLYT	-TN <mark>DFVGRQIWEFD</mark>
LUP2	1		-MWKLKIGE	-GNGEDPYLFS	-SNNFVGRQ <mark>T</mark> WEFD
LUP1	1		-MWKLKIGK	-GNGEDPHLFS	-SNNFVGRQ <mark>T</mark> W <mark>K</mark> FD
RcLUS	1		-MWRIKIAE	-GGNNPYIYS	-TNNFQGRQIWVFD
KcMS	1		-MWRLKIAE	-GGDNPYIYS	-TNNFLGRQTWEFE
BgLUS	1		-MWRLKIAE	-GGNNPYIYS	-TNNFVGRQTWEFD
SS	1		-MWRLKIAD	-GGNNPYLYS	-TNNFIGRQ <mark>T</mark> WEFD
KdFRS	1		-MWKLKIAE	-GGSDPYIYT-	-TNNFVGRQIWEFD
KdLUS	1		-MWKLKIAD	-GGSNPYIFT	-TNNFVGRQ <mark>I</mark> WEFD
KdGLS	1		-MWKLKIAD	-GGSNPYIFT	-TNNFVGRQ <mark>I</mark> WEFD
EtAS	1		-MWKLKIAE	-GGNDEYLYS	-TNNYVGRQ <mark>T</mark> WVFD
RsM1	1		-MWRLKIAE	-GGNDPYLYS	-TNNYVGRQ <mark>I</mark> WEFD
PNY1	1		-MWKLKIAE	-GNKNDPYLYS	-TNNFVGRQ <mark>T</mark> WEFD
PNY2	1		-MWRLMTAK	-GGNDPYLYS-	-TNNFIGRQ <mark>T</mark> WEFD
KdTAS	1	MSFVWVEESKECSEQRKGS	MWKLKIAQ	-GGKDPYLYS	-TNNYVGRQ <mark>T</mark> WEFD
BPY	1		-MWRLKIAD	-GGSDPYIYS	-TNNFVGRQ <mark>T</mark> WEFD
PSM	1		MWKLKIGD	-GGKDRNIFS	TNNFVGRQ <mark>T</mark> WEFD
AMY2	1		-MWKLKVAD	-GGKNPYIFS	-I <mark>NNFVGRQ</mark> TWEYD
AMY1	1		-MWKLKIGE	-GKNEPYLFS	-TNNFVGRQ <mark>T</mark> WEYD
PSY	1		-MWRLKIAE	-GGNDPYLFS	-TNNFVGRQ <mark>TWE</mark> YD
OSC1	1		MWKLKVAD	-GGKDPYIFS	-TNNFVGRQ <mark>T</mark> WEYD
GgbAS1	1		-MWRLKIAE	-GGKDPYIYS	-TNNFVGRQ <mark>T</mark> WEYD

ScLAS	35	PQQAANDPFPQPNPE	RN
1W6K	40	DER-AGREQTGLEAYADLEKA	
BPX1	41	EL <mark>G-TQEE</mark> LQQIDDARRRFWERRFERRH <mark>S</mark> SDLLMRIQFAKENPSSANIPQVKIK	DT
KdCAS	31	AL <mark>G-SPEELA</mark> QIEDARDNFARHRFDK <mark>K</mark> HSADLLMRFQLTKENPQSDLLPKVNIG	ΚI
CAS1	30	NL <mark>G-TPEDLAAVEEAR</mark> KSFSD <mark>NRFVQK</mark> HSADLLMRLQFSRENLISPVLPQVKIE	DT
PNX	30	NI <mark>G-SPEELAEVE</mark> KV <mark>RENFRNHRFEKK</mark> HSADLLMRIQEANENPGSVVLPQVKVN	DG
PSX	30	HS <mark>G-SP</mark> QDLDDIETARRNFHD <mark>NRFTHKHSD</mark> DLLMRLQFAKENPMNEVLPKVKVK	DV
GgCAS1	30	KL <mark>G-SPEDLLEIEKARQNFHDNRFTHK</mark> HSADLLMRIHEAKENPMNEVLPKVRVK	DI
OSC5	30	KL <mark>G-SP</mark> QDLAEIETARNNFHDNRFSH <mark>KHSS</mark> DLLMRIQFSKENPIGEVLPKVKVK	DV
BPW	29	D <mark>AG-TPQERAEVE</mark> KV <mark>REEFTKNRFQMKQ</mark> SADLLMRMQLRKENPCQPIPPPVKVK	ΕT
GgLUS1	29	NAG-TEQEHAEIERLRREFTK <mark>NRFSIKQ</mark> SADLLMRMQLRKENHYGTNNNIPAAVKLS	DA
OSC3	29	NAG-TPQEHEEIERMRQEFTKNRFSIKQSADLLMRMQLRKENPCGPIPPAVKLR	DV
TRW	31	D <mark>AG-TEEERAEIEKIRLNF</mark> KL <mark>NRFQFKQ</mark> SADLLMRTQLRKENPINKIPDAIKLN	ΕT
OEW	30	E <mark>AG-TP</mark> DERVEVERLREEFKKNRFRTKQSADLLMRMQLVKENQRVQIPPAIKIK	ΕT
PEN5	32	ANGG-SPEELAEVEEARLNFANNKSRFKASPDLFWRRQFLREKKFEQKIPRVRIE	DA
PEN6	32	AD <mark>AC-SPEELAEVDEARQNF</mark> SINRSRF <mark>KI</mark> SADLLWRMQFLREK <mark>KFEQ</mark> KIPRVEIG	DA
PEN4	32	MAG-SPQEIAEVEDARHK <mark>F</mark> SD <mark>N</mark> TSRF <mark>KTTADLLWRMQFLREK</mark> KFEQ <mark>KIPRVI</mark> IE	DA
PEN1	32	AN <mark>AG-SPQELAEVEEARRNF</mark> SNNRSHY <mark>KA</mark> SADLLWRMQFLREKGFEQKIPRVRVE	DA
RsM2	33	DGG-TPEERDQVEEARQNYFKNRFRVRPCSDLLWQMQFLREKNFRQKIPQVKVR	DG
LcIMS1	31	NAG-TPEERAEIERLRHHFTKNRHKGFPSADLLWRVQLLREKNFKQSIPAVKVG	DG
MiFRS	34	NSG-TPEELAEIEEARRKFTE <mark>NRYEVKP</mark> AS <mark>DLLWM</mark> MQFLRKNNFKQTIPPLRIG	ΕK
LUP2	32	KAG-TPEERAAVEDARRNYLDNRPRVKGCSDLLWRMQFLKEAKFEQVIPPVKID	DG
LUP1	32	IKAG-SPEERAAVEEARRGFLDNRFRVKGCSDLLWRMQFLREKKFEQGIPQLKAT	NI
RcLUS	31	N <mark>AG-TPEEQAEVEEAR</mark> QNFWKNRFQVKE <mark>NSDLLWQLQFLREK</mark> NFKQ <mark>KIPKVKVE</mark>	DG
KcMS	31	E <mark>AG-TPEERAQ</mark> VEEAR <mark>QNFWRDRFRIKPCSDLLWR</mark> FQFLREKKFKQIIPQGKVQ	DG
BgLUS	31	EAG-TPEERAQVEEARENFWRDRFLIKPSSDLLWRFQFLSEKKFKQRIPQVKVQ	DG
SS	31	NY <mark>G-TPEERDEVE</mark> QARLHFWNHRHEIKPSGDTLWRMQFIREKKFKQTIPQVKIE	DD
KdFRS	31	QAT-DPQQLAKVEAARLNFYNHRHKIKPSSDLLWRLQFLEEKDFRQNIAQVKVE	DG
KdLUS	31	QAT-DPQQLAKVEAARLDFYHNRYKLKENS <mark>DLLWRMQFLEEK</mark> AFTQTIPQVKVE	DG
KdGLS	31	QAT-DPQQLAKVEAARLDFYHNRYKLKPNSDLLWRMQFLEEKDFRQNIPQVKVE	DG
EtAS	31	QPP-TPQELAQVQQARLNFYNNRYHVKPSSDLLWRFQFLREKNFKQTIPQAKIN	ΕG
RsM1	31	DAG-TPEERAKAEEARQNFYKNRYQVKPSGDLLWRLQFLREKNFKQTIPQVRIE	ΕG
PNY1	32	DYVASPGELEEVEQVRRQFWDNRYQVKPSGDLLWRMQFLREKNFRQTIPQVKVG	DD
PNY2	31	DYG-TPAERAEVEEARLHFWNNRYQVKPSSDVLWRMQFLKEKNFKQIIPQVKVE	DG
KdTAS	50	EAG-TPEERAEVEAARLNFYNNRYRVKPSADLLYRMQFLKEKNFKQTIPPVKVE	DG
BPY	31	QAG-SPQERAEVEEARRNFYDNRYQVKPSGDLLWRMQFLKEKNFKQTIPPVKVE	DG
PSM	31	DAG-TSQEKAQVEAARQHFYDNRFEVKACSDLLWRFQILKEKNFKQTIESVKIK	DE
AMY2	31	DAG-TPEERAQVEEARQDFYNNRYKVKTCGDRLWRFQVMRENNFKQTIPSVKIE	DG
AMY1	31	EAG-SEEERAQVEEARKNFYDNRFKVKPCGDLLWRFQVLRENNFMQTIDGVKIE	DG
PSY	31	EAG-SEEERAQVEEARRNFYNNRFEVKPCGDLLWRFQVLRENNFKQTIGGVKIE	DE
OSC1	31	DAG-TPEERAQVEEARQDFYNNRYKVKPCGDLLWRFQVLRENNFKQTIPSVKIE	DG
GgbAS1	31	DGG-TPEERAQVDAARLHFYNNRFQVKECGDLLWRFQILRENNFKQTIASVKIG	DG

ScLAS	66	KHSPDFSAFDA	CHNGAS F I	FKL <mark>LQ</mark> EF	DSGIFP	CQYK <mark>GP</mark> M	FMTIGY	VAVNYIA	SIEIPE
1W6K	71	HTAFEG	ALN <mark>GMT</mark> E	YVGLQA-	EDGHWT	GD <mark>Y</mark> G <mark>GPL</mark>	FLLPGL	LITCHVA-	RIPLPA
BPX1	97	EE VRE E AVGMT	LRRAI <mark>N</mark> F	Y <mark>S</mark> TIQA-	DGHWP	GD <mark>Y</mark> G <mark>GP</mark> M	FLIPGL	VITLSIT	TLNAFLSK
KdCAS	87	EDITEDAVTNT	LRRAI <mark>N</mark> F	HSTTQA-	HDGHWP	GD <mark>Y</mark> G <mark>GP</mark> L	FLMPGL	VITLSIT	GALNAVLSK
CAS1	86	DDVTEEMVETT	LKRGLDF	Y <mark>S</mark> TIQA-	HDGHWP	GD <mark>Y</mark> G <mark>GP</mark> M	FLLPGL	IITLSIT	ALNTVLSE
PNX	86	EDISEDKVTVT	LKRAM <mark>S</mark> F	YS <mark>T</mark> LQA-	HDGHWP	GD <mark>Y</mark> G <mark>GP</mark> M	FLMPGL	VITLSIT	VLNVVLSK
PSX	86	EDVTEEAVATT	LRRGL <mark>N</mark> F	YSTIQS-	HDGHWP	GD <mark>Y</mark> G <mark>GP</mark> M	FLMPGL	VITLSVT	GALNAVLTD
GgCAS1	86	EDVTEETVKTT	LRRAI <mark>N</mark> F	HSTLQS-	HDGHWP	GD <mark>Y</mark> G <mark>GP</mark> M	FLMPGL	VITLSIT	GALNAVLTE
OSC5	86	EDVTEEAVVTT	LRRAI <mark>S</mark> F	H <mark>S</mark> TLQS-	HDGHWP	GD <mark>Y</mark> G <mark>GP</mark> M	FLMPDL	VITLSIT	GALNAVLTD
BPW	85	EVITEEAVITT	LRR <mark>SLS</mark> F	YSSIQA-	HDGHWP	G <mark>ES</mark> AGPL	FFLQPF	VM <mark>A</mark> LYIT(GDLNTIFSP
GgLUS1	88	ENITVEALVTT	ITRAISF	YSSIQA-	HDGHWP	AESAGPL	FFLQPL	VM <mark>A</mark> LYIT(SLDDVLGP
OSC3	85	EKVTAEALITT	IRRSITF	YSSIQA-	HDGHWP	AE <mark>S</mark> AGPL	FFVQPL	VM <mark>A</mark> LYIT(SLDDVLGP
TRW	87	EEVTNDAVTTT	LKRAI <mark>S</mark> F	YSTIQA-	HDGHWP2	AE <mark>S</mark> AGPL	FFLPPL	VI <mark>A</mark> LYVT(AMNDILTP
OEW	86	EGITEEAVITT	LRRAI <mark>S</mark> F	YSTIQA-	HDGHWP2	AE <mark>S</mark> AGPL	FFLPPL	VL <mark>A</mark> LYVT(GAINVVLSR
PEN5	88	E <mark>KITYE</mark> DAKTA	LRRGVLY	Y <mark>AA</mark> CQA-	NDGHWP	SEVSGSM	FLDAPF	VICLYITO	GHLEKIFTL
PEN6	88	E <mark>NITY</mark> KDAKTA	LRRGILY:	FKALQA-	EDGHWP	AENSGCL	FFEAPF	VICLYIT	GHLEKILTL
PEN4	88	RK <mark>IKYE</mark> DAK TA	LK <mark>R</mark> GL <mark>L</mark> Y	FTALQA-	DGHWP	AENS <mark>GP</mark> N	FYTPPF	LICLYIT	GHLEKIFTP
PEN1	88	AKIRYEDAKTA	lkrglhy:	FTALQA-	DGHWP	ADNS <mark>GP</mark> N	FFIAPL	VICLYIT	GHLEKIFTV
RsM2	89	EEINYETVTNA	IRR <mark>SA</mark> HY	l <mark>satq</mark> s-	SDGFWP	ADAS <mark>AP</mark> V	FYLAPW	VI <mark>G</mark> LYVI	GHLNTVFPA
LcIMS1	87	EEISYEMALDA	MRRGAHE	LAAIQA-	SDGHWP	SETSGPL	FYV <mark>C</mark> PL	LI <mark>C</mark> MYI <mark>M</mark>	GFMDKVFSP
MiFRS	90	EQVTYEDVTTA	LRRASSF:	FSALQA-	SDGHWP	AENAGVS	FFLPPF	IFCLYIT	GHLNSIITP
LUP2	88	EGITYKNATDA	LRRAV <mark>S</mark> F	YSALQ <mark>S</mark> -	SDGHWP	AEITGTL	FFLPPL	VFCFYIT(GHLEKIFDA
LUP1	88	EEITYETTTNA	LRRGV <mark>R</mark> Y:	FTALQA-	SDGHWP	GEITGPL	FFLPPL	IFCLYIT	GHLEEVFDA
RcLUS	87	EEITSEIAAAA	lrr <mark>svh</mark> l:	FSALQA-	SDGHWC	AENG <mark>G</mark> LL	FFLPPL	VFAVYIT(GHLNTVFSP
KcMS	87	EEITRDIATTA	LRRSVHL	LSALQA-	SDGHWC	AENS <mark>GP</mark> M	FYVPPM	VFA <mark>LYIT(</mark>	GHLTTVFSA
BgLUS	87	EEIT <mark>RE</mark> IATTA	LRR <mark>SVH</mark> L	VSALQA-	SDGHWC	AE <mark>NS</mark> GPM	FFVPPM	VFS <mark>LYIT(</mark>	GHLNAVFSA
SS	87	EEIS <mark>Y</mark> DKVTAT	MRR <mark>SVH</mark> L	le <mark>al</mark> la-	DGHWP	AENS <mark>GP</mark> S	FFI <mark>Q</mark> PL	VMCLYIT	GHLNSVFPA
KdFRS	87	EEVSYEAATAA	LKRGVHF	YSALQA-	SDGHWP	AE <mark>N</mark> AGPM	FFM <mark>S</mark> PL	VMCLYIT	GHLNTIFTE
KdLUS	87	EEVS <mark>YE</mark> AVTAA	lrrgvh <mark>l</mark>	YSALQA-	SDGHWP	AE <mark>N</mark> AGPM	FFMPPM	VMCLYITO	GHLN <mark>AIFTE</mark>
KdGLS	87	EEVSYEAVTAA	LRRGV <mark>H</mark> L	YSALQA-	SDGHWP	AE <mark>N</mark> AGPM	FFMPPM	VMCLYIT	GHLNAIFTE
EtAS	87	EDITYE <mark>KA</mark> TTA	LRRAVHF:	FSALQA-	SDGHWPZ	AE <mark>N</mark> AGPL	FFLPPL	VMCLYIT	GHLDTVFPA
RsM1	87	EEITREKATTA	LRRAV <mark>Q</mark> F:	FSALQA-	SDGHWP	AE <mark>N</mark> AGPL	FFLPPL	VMCMCIT(GHLDTVFPA
PNY1	89	EAVTYEAATT T	LRRAV <mark>H</mark> F	FSALQA-	SDGHWP	AE <mark>NS</mark> GPL	FFLPPL	VMCVYITO	GHLDTVFPA
PNY2	87	EEITYEAATT T	LRRAV <mark>H</mark> Y:	FSALQA-	DGHWP	AE <mark>N</mark> AGPL	FFLPPL	VMCLYIT	GHLNTVFPA
KdTAS	106	EEITYE <mark>TA</mark> TTA	LKRAVHF	YSALQA-	SDGHWP	AENS <mark>GPL</mark>	FFLPPL	VMCLYIT	GHLNTVFPA
BPY	87	EEITYE <mark>KST</mark> AA	LRRAVHF	YSALQA-	SDGHWP	AE <mark>N</mark> AGPL	FFLPPL	VMCMYIT	GHLNTVFPA
PSM	87	EEISE <mark>E</mark> NVAIT	lrravh <mark>h</mark> i	L <mark>S</mark> TLQS-	NDGHWP	A <mark>LN</mark> AGPL	FYFPPL	VFCMYVT(GHLDSIFPY
AMY2	87	EKVTYDKVTTT	VRRA <mark>AH</mark> HI	LA <mark>GLQ</mark> T-	SDGHWP	AQIAGPL	LFTPPL	IFCMYIT	GHLDSVFPE
AMY1	87	EEITYEKATT T	LRRGT <mark>H</mark> H	LA <mark>ALQ</mark> T-	SDGHWP	AQIAGPL	FFMPPL	VFCVYIT	GHLDSVFPR
PSY	87	EEITYE <mark>KT</mark> TT	LRRGT <mark>H</mark> HI	LAT <mark>LQ</mark> T-	SDGHWP	AQIAGPL	FFMPPL	VFCVYITO	GHLDSVFPP
OSC1	87	EEITYE <mark>KA</mark> TT	lkraahh:	LA <mark>ALQ</mark> T-	SDGHWP	AQIAGPL	FFQPPL	VFCMYIT	GHLNSVFPE
GabAS1	87	EEITYEKATTA	VRRAAHH	LSALOT-	SDGHWP	AOIAGPL	FFLPPL		HLDSVFPE

ScLAS	123	HERIELIRYI	VNTA	AHPV <mark>I</mark>	DGGWGLH	ISVDK <mark>S</mark>	TVF <mark>G</mark>	TV <mark>L</mark> N	YVII	RLLG	LPKD		HPV	CAK
1W6K	122	GYREEIVRYI	RSVÇ	D-LPI	DGGWGLH	HIEDKS	TVF <mark>G</mark>	TA <mark>L</mark> N	YVSI	RILO	VGPD		DPD	LVR
BPX1	156	<u>eh</u> qc <mark>ei</mark> cryi	YNHÇ	Q-NEI	DGGWGLH	HIEGPS	STMF G	TA <mark>L</mark> N	YITI	RLLO	E-PE	D <mark>G</mark> -	MGA	VEK
KdCAS	146	EHKKEMC <mark>RY</mark> I	YNHÇ	2-NEI	DGGWGLH	HIEGPS	STMFG ^S	SV <mark>L</mark> N	YVTI	RLLO	EDVN	<mark>G</mark> G-	DGE	IER
CAS1	145	QHKQEMRRYI	YNHÇ	Q-NEI	DGGWGLH	HIEGPS	TMF _G S	SV <mark>L</mark> N	YVTI	RLLO	EGPN	D <mark>G</mark> -	DGD	MEK
PNX	145	EHKREICRYI	YNHÇ	2–NRI	DGGWGLH	HIEGPS	TMF G	TV <mark>L</mark> N	YVTI	RLLO	EGAN	D <mark>G</mark> -	QGA	MEK
PSX	145	EHRKEMRRYI	YNHÇ	2–NKI	DGGWGLH	HIEGPS	TMFG ^S	SV <mark>L</mark> C	YVTI	RLLO	EGPN	D <mark>G</mark> -	EGD	MER
GgCAS1	145	EHRKE I CRYI	YNHÇ	2–NKI	DGGWGLH	HIEGPS	TMF _G S	SV <mark>L</mark> N	YVAI	RLLO	EGPN	DR-	QGE	MEK
OSC5	145	EHRKEMC <mark>RY</mark> I	YNHÇ	2–NKI	DGGWGLH	HIEGPS	STMFG	SV <mark>L</mark> N	YVTI	RLLO	EGPN	D <mark>G</mark> -	-QGD	MEK
BPW	144	AHQKEIIRYI	YNHÇ	2-NEI	DGGWG <mark>F</mark> H	IIEGHS	TMFG:	S <mark>AL</mark> S	YIAI	RILO	EGLE	-D <mark>G</mark> E-	DGA	MAK
GgLUS1	147	EHKKEIVRYI	YNHÇ	2-NEI	dggwg <mark>f</mark> H	HIEGHS	STMFG	SA <mark>L</mark> S	YVAI	RILO	EGP-	Q-	DKA	MAK
OSC3	144	QHKKEIIRYI	YNHÇ	2-NEI	dggwg <mark>f</mark> H	HIEGHS	STMFG	SA <mark>L</mark> S	YIAI	RVLG	QSLE	-D <mark>G</mark> E-	DMA	VAR
TRW	146	AHQLEIKRYI	I YNHÇ	2-NEI	DGGWGLH	HIEGHS	TIFGS	SVLS	YITI	RLLO	EEAD	SVAE-	DMA	LVK
OEW	145	EHQ <mark>KEI</mark> TRYI	I YNHÇ	Q-NEI	DGGWGIH	HIEGHS	STMFG	SV <mark>L</mark> S	YITI	RLLO	EGQE	-D <mark>G</mark> E-	DKA	VAR
PEN5	147	EHVKELLRYN	4ΥNTÇ	2-NEI	DGGWGL	VESHS	VMFC	TV <mark>L</mark> N	YICI	RILO	VEPD	HD <mark>G</mark> −Ç) KS A	CAR
PEN6	147	EHRKELLRY	1YNHÇ	2-NEI	DGGWGIH	IVEG <mark>Q</mark> S	AMFC	TVIN	YICI	RILO	VEAD	LDDIK	GSG	CAR
PEN4	147	EHVKELLRH	I YNMÇ	2-NEI	DGGWGLH	IVE <mark>S</mark> HS	VMFC.	TVIN	YVCI	RIVG	EVG.	HDD-Ç)RNG	CAK
PEN1	147	EHRIELIRYN	1YNHÇ	2-NEI	DGGWGLY	VESPS	IMFC	TVIN	YICI	RIVG	VEAG	HDDDÇ) GST	С <mark>т</mark> к
RsM2	148	EH <mark>Q</mark> KEILRY]	I Y C H Ç	Q-NEI	DGGWGLH	IYEDGG	TMFG	IA <mark>F</mark> N	YVC№	RILO	GEGPG	<mark>GG</mark> F	RDNA	CER
LcIMS1	146	EHKKEMMRYI	I YNHÇ	2-NEI	DGGWGLH	IV <mark>G</mark> GHS	NMFC	TT <mark>F</mark> N	YISI	RLLO	EEPD		VEA	VCK
Mifrs	149	EHRKEILRFI	I YNHÇ	2-NEI	DGGWGIH	HIEGHS	TVF <mark>A</mark>	IA <mark>f</mark> T	YVCM	RILO	VGPD		-ED <mark>A</mark>	CAR
LUP2	147	EHRKEMLR ^H I	IYC <mark>hç</mark>	2-NEI	DGGWGLH	HIEG <mark>K</mark> S	VMFC.	TV <mark>L</mark> N	YICI	RMLG	EGPN	<mark>GG</mark> F	RNNA	.CKR
LUP1	147	EHRKEMLR <mark>H</mark> I	IYCHÇ	Q-NEI	DGGWGLE	HIE <mark>sk</mark> s	VMFC:	TV <mark>L</mark> N	YICI	RMLG	ENPE		-QDA	.CKR
RcLUS	146	EHRKEILRYI	IYCHÇ	Q-NEI	DGGWGIH	HIEGHS	TMFC	TV <mark>L</mark> N	YICM	(RILO	EARD	<mark>GG</mark> I	ENA	CER
KcMS	146	EH <mark>C</mark> KEILRYI	IYCHÇ	2-NEI	DGGWGLE	HIEGHS	TMFC	TV <mark>L</mark> N	YICM	RILG	EGRD	–– <mark>GG</mark> F	(DNA	CER
BgLUS	146	EH <mark>C</mark> KEILRYI	I Y C H E	P-NEI	DGGWGLE	HIEGHS	ames	TV <mark>L</mark> N	YNWI	GKLC	eg <mark>r</mark> d	–– <mark>GG</mark> F	(DNA	CER
SS	146	EHRKEILRY	/YSHÇ	Q–NKI	DGGWGLE	IMEGHS	IMFG	IT <mark>L</mark> S	YICM	ÍRLLG	FEGPD	<mark>GG</mark> I	JNGA	CTR
KdFRS	146	EHRRETLRYI	IYY <mark>hç</mark>	2-NEI)GGWG <mark>F</mark> H	HIEG <mark>Q</mark> S	STMF G	TV <mark>L</mark> N	YICM	(RLLC	EGPE	−− <mark>GG</mark> Ç)DNA	VSR
KdLUS	146	EHR <mark>SE</mark> TLRYI	IYYHÇ	Q-NEI)GGWG <mark>F</mark> H	HIEGHS	STMF G	TV <mark>L</mark> N	YICM	1RLLG	EGPE	−− <mark>GG</mark> Ç	DN <mark>A</mark>	VSR
KdGLS	146	EHRSETLRYI	EYYHÇ	Q-NEI)GGWG <mark>F</mark> H	HIEGHS	STMF G	TV <mark>L</mark> N	YICM	ÍRLLG	FEGPE	−− <mark>GG</mark> Ç	DN <mark>A</mark>	VSR
EtAS	146	PHRLEILRYI	IYCHÇ	Q-NEI	DGGWGLH	HIEGHS	STMFC	TV <mark>L</mark> S	YICM	ÍRLLG	EGPN	−− <mark>GG</mark> Ç	DNA	CSR
RsM1	146	EHRKEILRYI	EYYHÇ	Q-NEI	DGGWGLE	HIEGHS	STMFC	IA <mark>l</mark> N	YICM	RILG	6EGPN	−− <mark>GG</mark> Ç)DDA	CTR
PNY1	148	EHRKEILRYI	I YCHÇ	Q-NEI	DGGWGLE	HIEGHS	STMFC	IT <mark>L</mark> S	YICM	RILG	EG <u>P</u> D	–– <mark>GG</mark> ∿	/NN <mark>A</mark>	CAR
PNY2	146	EHR <mark>I</mark> EILRYI	I YCHÇ	Q-NDI	DGGWGLE	HIEGHS	STMFC	TA <mark>L</mark> S	YICM	RILG	eg <mark>r</mark> d	<mark>GG</mark> E	INNA	CAR
KdTAS	165	EH <mark>Q</mark> REILRYI	EYYHÇ	Q-NEI	DGGWGLH	HIEGHS	STMFC	TA <mark>L</mark> S	YICM	RILO	EGPD	<mark>GG</mark> I	DNA	VAR
BPY	146	EH <mark>Q</mark> KEILRYI	EYYHÇ	Q-NEI	DGGWGLE	IIEGHS	TMFC	TA <mark>L</mark> S	YICM	RILG	GEGPD	−− <mark>GG</mark> Ç	DNA	CAR
PSM	146	EYRKEILRY1	ΙΥCΗÇ	Q-NEI	DGGWGLE	IVEGHS	IMFC	TV <mark>L</mark> N	YICM	RILG	6EGPN	–– <mark>GG</mark> F	KE DA	CAR
AMY2	146	VY <mark>RKEILRY</mark>	ſΥVΗÇ	Q-NEI	DGGWGLH	HIEGHS	STMFC	TV <mark>L</mark> N	YICM	(RILG	EGPD	<mark>GG</mark> Ç	DNA	CAR
AMY1	146	EHRKEILRYI	ΓΥCΗÇ	Q-NEI	DGGWGLH	HIEGHS	STMFC	TA <mark>L</mark> N	YICM	RILG	EGPD	−− <mark>GG</mark> Ç	DNA	CAR
PSY	146	EHRKEILRYI	ΙΥCΗÇ	Q-NEI	DGGWGLE	IIEGHS	STMFC	IA <mark>L</mark> N	YICM	RILO	EGPD	GGE	DNA	CVR
OSC1	146	EY <mark>RKEILRY</mark> I	I Y V HÇ	Q-NEI	DGGWGLH	IIEGHS	STMFC	IA <mark>L</mark> N	YICM	IRMLO	EGPD	−− <mark>GG</mark> Ç	DNA	CAR
GqbAS1	146	EYRKEILRYI	ΙΥΥΗ	D-NEI	DGGWGLH	IIEGHS	TMFC	TA <mark>L</mark> N	YICM	RILO	EGPD	GG	DNA	CAR

ScLAS	178	ARSTLLRLGGA	[GS <mark>P</mark> H <mark>WGK</mark>]	IWLSALNLY	KWEGV	NPAPPETW	LLPYSLPM	HPGRWWV	HTRG
1W6K	176	ARNILHKKGGAN	/AIPSWGK	FWLAVLNVY	SWEGL	NTLFPEMW	l FPDWAPA	HPSTLWC	HCRQ
BPX1	211	ARKWILDHGGAT	TAITSWGK	WLSVLGVY	EWSGN	NPLPPEVW	LCPYLLPC	HPGRMWC	HCRM
KdCAS	202	ARKWILDHGGAT	TAITSWGKN	WLSVLGVF	'EW <mark>C</mark> GN	NPLPPE <mark>M</mark> W	LF <mark>PY</mark> YLPV	HPGRMWC	HCRM
CAS1	201	GR <mark>D</mark> WIL <mark>N</mark> HGGAT	INITSWGK	<mark>wlsvlg</mark> af	EWSGN	NPLPPEIW	LLPYFLPI	HPGRMWC	HCRM
PNX	201	GRQWILDHG <mark>S</mark> AT	TAITSWGK	4WLSVLGVF	EWSGN	NPLPPETW	LLPYILPI	HPGRMWC	HRRM
PSX	201	GRDWILEHGGAT	TYITSWGK	WLSVLGVF	'EWSG <mark>N</mark>	NPMPPEIW	LLPYA <mark>LP</mark> V	HPGRMWC	HCRM
GgCAS1	201	GRDWIL <mark>G</mark> HGGAT	FITSWGK	WLSVLGVY	EWSGN	NPLPPEIW	LLPYV <mark>LP</mark> I	HPGRMWC	HCRM
OSC5	201	ARDWILGHGGAT	TYITSWGK	WLSVLGVF	EWSGN	NPLPPEIW	LLPYALPF	HPGRMWC	HCRM
BPW	201	SRKWILDHGGL	/AIPSWGK	WVTVLGLY	EWSGC	NPLPPEFW	FLPDIFPI	hpgkm <mark>l</mark> C	YCRL
GgLUS1	201	GRKWILDHGGL\	/AIPSWGK	FWVTVLG <mark>A</mark> Y	EWSGC	NPLPPELW	LLPKFAPF	hpgkm <mark>l</mark> C	YCRL
OSC3	201	GRKWILDHGGL\	/A <mark>IPSWGK</mark> I	WVTVLGVY	EWSGC	NPLPPEFW	LLPKIFPI	hpgkm <mark>l</mark> C	YCRL
TRW	204	GRKWILDHGGA	/G <mark>IPSWGK</mark> I	FWLTILGVY	EWGGC	NPMPPEFW	LMPKFFPI	hpgkm <mark>l</mark> C	YCRL
OEW	202	GRKWILDHGGA	/G <mark>IPSWGK</mark> I	FWLTVLGVY	EWDGC	NPMPPEFW	LLPNFSPI	hpgkm <mark>l</mark> C	YCRL
PEN5	205	ARKWILDHGGAT	YAPMVAKA	AWLSVLGVY	DWSGC	KPLPPEIW	MLPSF <mark>S</mark> PI	NG <mark>G</mark> TLWI	YIRD
PEN6	206	ARKWILDHGGAT	YTPLI <mark>GK</mark> A	AWLSILGVY	DWSGC	KPIPPEVWI	MLPTFSPF	NG <mark>G</mark> TLWI	YFRD
PEN4	205	A <mark>H</mark> KWIMDHGGAT	YTPLI <mark>GK</mark> A	A <mark>l</mark> lsvlgvy	DWSGC	NPIPPEFW.	LLPS <mark>SF</mark> PV	NG <mark>G</mark> TLWI	YLRD
PEN1	206	ARKWILDHGGAT	YTPLI <mark>GK</mark> A	AC <mark>LSVLGVY</mark>	DWSGC	KPMPPEFW.	FLPSSFPI	NG <mark>G</mark> TLWI	YLRD
RsM2	205	ARK <mark>GILDHGG</mark> VI	TYIPSG <mark>GK</mark> I	rwl <mark>a</mark> mlgvf	DWSGC	NPMPPEFW	MLPPFFPM	HPA <mark>Q</mark> MWC	YCRI
LcIMS1	200	ARNWIHDHDGVI	ISIL <mark>SWGK</mark>	rwlsil <mark>n</mark> vf	DWSAS	NPMPPEYW	MLPTWVPI	HPSNMMC	YTRI
MiFRS	203	ARKWILD <mark>R</mark> GGIT	YMASWGK	r <mark>wfsvlg</mark> if	DWYGC	NPMPPEFW	ILPSYLPI	HPAKMWC	YCRM
LUP2	204	AR <mark>Q</mark> WILDHGGV1	Y <mark>IP</mark> SWGK	IWLSILGIY	DWSGT	NPMPPEIW	LLPSF <mark>F</mark> PI	HLGKTLC	YTRM
LUP1	201	AR <mark>QWILD</mark> RGGVI	FIPSWGK	WLSILGVY	DWSGT	NPTPPELL	MLPSFLPI	HPGKILC	YSRM
RcLUS	203	GRKWILDHGGAT	GIS <mark>SWGK</mark>	r <mark>wlsilgvy</mark>	EWDGT	NPMPPEFW	AFPS <mark>SF</mark> PL	HPAKMFC	YCRI
KcMS	203	ARKWILDHG <mark>S</mark> AT	AIS <mark>SWGK</mark>	r <mark>wl</mark> ailgvy	EWDGC	NPMPPEFW	VFPTFFPI	hpakm <mark>l</mark> C	YCRL
BgLUS	203	ARR <mark>RILDHG</mark> SAT	AIS <mark>SWGK</mark>	r <mark>wl</mark> ailgvy	EWDGC	NPMPPEFW	AFPTFFPI	hparm <mark>l</mark> C	YCRL
SS	203	ARKWILDHGGA	IANPSWGK	/WLSILGVH	EWVGC	NPLPPEFW	LF <mark>PSFL</mark> PM	SPGKMWS	YCRL
KdFRS	203	GRKWILDHGGAT	AIPSWGK	[WLSIMGLC	DWSGC	NPMPPEFW	LLPSYLPM	HPAKMWC	YCRM
KdLUS	203	GRKWILDHGGAT	SIPSWGK	rwlsimglc	DWSGC	NPMPPEFW	LLPSYLPM	HPGKMWC	YCRM
KdGLS	203	GRKWILDHGGAT	SIPSWGK	FWLSIMGLC	DWSGC	NPMPPEFW	LLPSYLPM	HPGKMWC	YCRM
EtAS	203	ARKWIIDHG <u>GA</u> T	TYIPSWGK.	TWLSILGVY	EWSGS	NPMPPEFW	ILPTFLPM	hpakmwc	YCRM
RsM1	203	ARKWI <mark>H</mark> DHGSVI	NIPSWGK	TWLSILGVY	DWSGC	NPMPPEFW	MLPSFLPM	HPAKMWC	YCRM
PNY1	205	GRKWILDHGSVI	T <mark>a</mark> ipswgk:	TWLSILGVY	EWIGS	NPMPPEFW	ILP <u>S</u> FLPM	HPAKMWC	YCRM
PNY2	203	ARKWILDHGSV	TAIPSWGK	TWLSILGLF	DWSGS	NPMPPEFW	ILP <mark>P</mark> FLPM	<u>H</u> PAKMWC	YCRM
KdTAS	222	GRKWILDHGTV	TAMPSWGK	[WLSIMGLF	DWSGS	NPMPPEFW	LLPSFLPM	Y <mark>PAKMWC</mark>	YCRM
BPY	203	ARKWILDHGG <mark>V</mark> I	THMPSWGK	TWLS <u>I</u> LGIF	'EWI <mark>G</mark> S	NPMPPEFW	ILPSFL <u>P</u> M	hpakm <u>w</u> c	YCRM
PSM	203	ARKWI <mark>H</mark> DHG <mark>SV</mark> I	THVSSWGK	I <mark>WLSVLG</mark> IF	DWCAS	NPMPPEFW	MLPSFLLK	hpakm <mark>l</mark> C	YCRL
AMY2	203	ARKWI <mark>H</mark> DHGGAT	THIASWGK	TWLSILGIF	DWSGT	NPMPPEFW	ILPSFLPM	HPAKMWC	YCRL
AMY1	203	ARNWIRAHGGVI	TYIPSWGK	TWLSILGLF	DWLGS	NPMPPEFW	ILPSFLPM	HPAKMWC	YCRL
PSY	203	AR <mark>NWIRQ</mark> HGGVI	THIPSWGK	WLSILGV F	DWLGS	NPMPPEFW	ILPSFLPM	HPAKMWC	YCRL
OSC1	203	ARKWILDHGG <mark>V</mark> I	THIPSWGK	TWLSILGIF	DWKGS	NPMPPEFW	ILPSFLPM	HPAKMWC	YCRL
GqbAS1	203	ARKWIHDHGGV1	HIPSWGK	WLSILGVF	DWCGS	NPMPPEFW	ILPSFLPM	HPAKMWC	YCRL

ScLAS	238	VYIPVSYLSLVKFSCPMTPLLEE <mark>LR</mark> NEIYTKPFDK <mark>INF</mark> SKNRNTVCGVDLYYPHSTTLNI
1W6K	236	VYLPMSYCYAVRLSAAEDPLVQS <mark>LRQELY</mark> VEDFAS <mark>IDW</mark> LAQ <mark>R</mark> NNV <mark>A</mark> PDE LY TPHSWLLRV
BPX1	271	VYLPMSYLYGKRFVGPIT <mark>STIQS</mark> LR <mark>KELYTV</mark> PY <mark>HE</mark> I <mark>DWNK</mark> ARNDCAKEDLYYPHPLVQDI
KdCAS	262	VYLPMSYLYGKRFVGPITP <mark>T</mark> VL <mark>S</mark> LR <mark>K</mark> ELFTVPY <mark>HEIDWNEA</mark> RSLCAKEDLYYPHPVVQDI
CAS1	261	VYLPMSYLYGKRFVGPIT <mark>STVL</mark> SLR <mark>K</mark> ELFTVPYHEVNW <mark>NEA</mark> RNLCAKEDLYYPHPLVQDI
PNX	261	VYLPMSYLYGKRFVGPITP <mark>TVL</mark> SLR <mark>K</mark> EVFSVPY <mark>HEID</mark> WNQARNLCAKEDLYYPHPLIQDI
PSX	261	VYLPMSYLYGKRFVGPITP <mark>T</mark> VL <mark>S</mark> LR <mark>K</mark> ELFTVPY <mark>HD</mark> IDWNQARNLCAKEDLYYPHPLVQDI
GgCAS1	261	VYLPMSYLYGKRFVGPITP <mark>TIL</mark> SLR <mark>K</mark> ELYTIPYHD <mark>IDWNQA</mark> RNLCAKEDLYYPHPLVQDI
OSC5	261	VYLPMSYLYGKRFVGPITP <mark>TILS</mark> LR <mark>K</mark> ELFTIPYHD <mark>IDW</mark> NQARNLCAKEDLYYPHPLVQDI
BPW	261	VYMPMSYLYGKRFVGPIT <mark>G</mark> LIQS <mark>LRQ</mark> ELY <mark>NE</mark> PYHQINW <mark>NK</mark> ARSTVAKEDLYYPHPLIQDL
GgLUS1	261	VYMPMSYLYGKKFVGPIT <mark>ALI</mark> RS <mark>LREELY</mark> NEPY <mark>NQINW</mark> NTARNTVAKEDLYYPHPLIQDM
OSC3	261	VYMPMSYLYGKKFVGPIT <mark>ALVRS</mark> LR <mark>KELYNE</mark> PYD <mark>RVDWNKARNTV</mark> AKEDLYYPHPLIQDM
TRW	264	VYMPMSYLYGKRFVG <mark>KITE</mark> LV <mark>RDLRQ</mark> ELYTDPYDEINW <mark>NKAR</mark> NTCAKEDLYYPHPFVQDM
OEW	262	VYMPMSYLYGKRFVGPIT <mark>G</mark> LVL <mark>S</mark> LR <mark>Q</mark> EIYTEPYHGINW <mark>NRARNT</mark> CAKEDLYYPHPL <mark>A</mark> QDM
PEN5	265	ILMGMSYLYGKKFVATPTALILQLREELYPQPYSKIIWSKARNRCAKEDLLYPKSFGQDL
PEN6	266	IFM <mark>GVSYLYGKKFVATPTPLILQLREELY</mark> PQ <mark>PYDKILW</mark> SQARNQ <mark>CAKEDLYYP</mark> QSFLQEM
PEN4	265	TFMGLSYLYGKKFVAPPTPLILQLREELYPEPYAKINWTQTRNRCGKEDLYYPRSFLQDL
PEN1	266	IFMGLSYLYGKKFVATPTPLILQLQEELYPEPYTKINWRLTRNRCAKEDLCYPSSFLQDL
RsM2	265	VYMPMSYLYGRRFVGPITPLVQQLREEL <mark>H</mark> TQPFHE <mark>IEW</mark> SK <mark>ARHLCAKEDLFHRRP</mark> WIQEL
LcIMS1	260	TYMPMSYLYGKRFQAPLTPLVLQLRDELHTQPYDQINWRKVRHMCATEDLYFPHPFVQDL
MiFRS	263	VYMPMSYLYGKRFVAPITPLIL <u>Q</u> LREEL <mark>HT</mark> QPY <mark>HEIEWRKMRH</mark> RCAEEDLYFPH <mark>S</mark> LIQ <mark>NF</mark>
LUP2	264	VYMPMSYLYGKRFVGPLTPLIML <mark>LR</mark> KEL <mark>HLQ</mark> PYEEINW <mark>NK</mark> ARRLCAKEDMIYPHPLVQDL
LUP1	261	V <mark>SIPMSYLYGKRFVGPITPLILLLREELYLE</mark> PYE <mark>EINWKKSRRLY</mark> AKEDMYY <mark>A</mark> HPLVQDL
RcLUS	263	TYMPMSYLYGKRFVGPITPLILQIREEIYNEPYNKIKWNSVRHLCAKEDNYFPHPTIQKL
KcMS	263	TYIAMSYLYGKKFVGPITPLILQLREEIYNEPYDEINWSRMRHLCAKEDNHYPHTLTQII
BgLUS	263	TYMAMSYLYGKKFVGPITPLILQLREEIYNEPYDQINWSRMRHLCAKEDNYYAHTLTQII
SS	263	VFMPMSYLYGRRFVGPITPLVLQLR <mark>K</mark> ELY <mark>AQ</mark> PY <mark>NDIKWKSSRHVCAKEDIYYPHPLLQDL</mark>
KdFRS	263	VYMPMSYLYGKRF <mark>TTH</mark> ITPLILQLREELH <mark>TQ</mark> PYD <mark>QINW</mark> KKVRHVCCKEDTYYPHPILQDL
KdLUS	263	VYMPMSYLYGKRF <mark>TAR</mark> ITPLILQLREEI <mark>HIQ</mark> PYD <mark>QIDWKKV</mark> RHVCCKEDMYYPHPLLQDL
KdGLS	263	VYMPMSYLYGKRF <mark>T</mark> A <mark>R</mark> ITPLILQLREEI <mark>HIQ</mark> PYD <mark>QIDWKKV</mark> RHVC <mark>C</mark> KEDMYYPHPLLQDL
EtAS	263	VYMPMSYLYGKRFVGPITPLILQLR <mark>Q</mark> EL <mark>HTQ</mark> PY <mark>HHINWTKTRHL</mark> CA <mark>HEDVYYPHPL</mark> IQDL
RsM1	263	VYMPMSYLYGKRFVG <mark>LITPLIQ</mark> QLREELFT <mark>Q</mark> PYDQINW <mark>KKNCHQ</mark> CAPEDLYYPHPFIQDL
PNY1	265	VYMPMSYLYGKRFVGPITPLILQLREELY <mark>GQ</mark> PY <mark>NE</mark> INW <mark>RKTRRV</mark> CAKEDIYYPHPLIQDL
PNY2	263	VYMPMSYLYGKRFVGPITPLILQLREELY <mark>AQA</mark> YD <mark>EINW<mark>RW</mark>VRHNCAKEDLYYPHPL</mark> IQDL
KdTAS	282	VYMPMSYLYGKRFVGPITPLILQLREELY <mark>DQ</mark> PYE <mark>Q</mark> VNW <mark>KQV</mark> RH <mark>E</mark> CAKEDIYYPHP <mark>K</mark> IQDL
BPY	263	VYMPMSYLYGKRFVGPITPLIL <u>Q</u> LREELYT <mark>Q</mark> PY <mark>HQVNW<mark>KKV</mark>RHLCAKEDIYYPHPLIQDL</mark>
PSM	263	VYMPMSYLYGKRFVGPITPLII <mark>M</mark> LREEL <mark>LTQ</mark> PYE <mark>KVNW<mark>KK</mark>TRHLCAKEDLYYPHPLIQDL</mark>
AMY2	263	VYMPMSYLYGKRFVGPITPLILQLREELFT <mark>Q</mark> PYE <mark>KVNW</mark> KK <mark>ARHQ</mark> CAKEDLYYPHPLIQDL
AMY1	263	VYMPMSYLYGKRFVGPITPLILQLREEL <mark>HT</mark> QPYEKINW <mark>TKSRHLCAKEDI</mark> YYPHPLIQDL
PSY	263	VYMPMSYLYGKRFVGPITPLILQLREEL <mark>HTE</mark> PYEKINW <mark>TK</mark> TRHLCAKEDIYYPHPLIQDL
OSC1	263	VYMPMSYLYGKRFVGPITPLILQLREELFT <mark>Q</mark> PYEKVNW <mark>KK</mark> ARHQCAKEDIYYPHPLIQDL
GgbAS1	263	VYMPMSYLYGKRFVGPITPLILQLREELFT <mark>E</mark> PYEKVNW <mark>KK</mark> ARHQCAKEDLYYPHPLLQDL

ScLAS	298	ANSL	V <mark>VFYEKY</mark>	LR	<mark>N</mark> RFI	YSLSK	KKVY	DLIKT	ELQNTI	DSLC	I A <mark>P</mark> V	NQAF	CAL	VTLI
<mark>1W6K</mark>	296	VY <mark>al</mark>	<mark>I</mark> NLYEHH		-HSAHI	RQRAV	QKLY	EHIVA	d <mark>drf</mark> ti	K <mark>s</mark> is	IG <mark>P</mark> I	IS <mark>K</mark> TI	NML	VRWY
BPX1	331	LWAS	LYYAYEP	I FMY <mark>W</mark>	AKRL-	REKAI	DTVM	QHIHY	EDENT	RYIC	IG <mark>P</mark> V	/NKVL	NML	C <mark>CW</mark> A
KdCAS	322	LWAT	LHKVVEP	V L LNW	GK <mark>KL</mark> -	REKAI	CSAI	EHIHY	EDENTI	RYI <mark>C</mark> I	IG <mark>P</mark> V	/NKVL	NML	CCWV
CAS1	321	LWAS	LHKIVEP	VLMRWI	GAN L -	REKAI	RTAI	EHIHY	EDENT	RYIC	IG <mark>P</mark> V	N <mark>KVL</mark>	NML	CCWV
PNX	321	LWAS	I DKVW e p	IFMHW	AK <mark>K</mark> L-	REKSI	rtvM	EHIHY	EDENT	RYI <mark>C</mark>	IG <mark>P</mark> V	N <mark>KVL</mark>	NML	CCWV
PSX	321	LWAT.	LHKFVEP	VFMNW	GK <mark>KL</mark> -	REKAI	KTAI	EHIHY	EDENT	RYIC	IG <mark>P</mark> V	N <mark>KVL</mark>	NML	CCWV
GgCAS1	321	LWAS	LHKFLEP	I LMHWH	GK <mark>KL</mark> -	RE <mark>M</mark> A I	KTAI	EHIHY	EDDNTI	RYLC	IG <mark>P</mark> V	/NKVL	NML	CCWV
OSC5	321	LWAS	LHKVV <mark>E</mark> P	VL <mark>MQ</mark> WI	GK <mark>KL</mark> -	REKAI	NSVM	E <mark>HIHY</mark>	EDENTI	RYIC:	IG <mark>P</mark> V	/NKVL	NML	CCWV
BPW	321	LWGF	LHHVAEP	VLTRWI	PFSML-	REKAI	KAAI	G <mark>hvhy</mark>	EDENS	KYLC	IGSV	/EKVL	CLI	ACWA
GgLUS1	321	LWGF	LYHVGER	FLNCW	PFSML-	RRKAI	EIAI	NHVHY	EDENS	RYLC	IGS	VEKVL	CLI	ARWV
OSC3	321	LWGF	LHHVGER	VLNTWI	PFSML-	RQKA I	EVAI	NHVRY.	EDETT	RYLC	IGSV	/EKVL	ΥLΙ	ARWV
TRW	324	VWGV	LHNVVE P	VLTSRI	ISTL-	REKAI	KVAM	DHVHY	edks <mark>s</mark> i	RYLC	IG <mark>C</mark> V	VEKVL	CLI	ATWV
OEW	322	LWGF	LHHFAEP	VLTRWI	PFSKL-	REKAI	KVAM	EHVHY	edm <mark>nsi</mark>	RYLC:	IG <mark>C</mark> V	/EKVL	CLI	ACWV
PEN5	325	FWEG	VHMLSEN	II <mark>N</mark> RWI	PL <mark>NK</mark> FV	R <mark>Q</mark> RAI	RTTM	ELVHY	H <mark>DE</mark> TTI	HYIT	GA <mark>C</mark> I	/A <mark>K</mark> PF	'H <mark>ML</mark>	ACWV
PEN6	326	F <mark>W</mark> KC	VHILSEN	I <mark>L</mark> NRWI	PC <mark>NKL</mark> I	RQKAI	RTTM	ELLHY	Q DE A SI	RYFT(G <mark>GC</mark> V	/P <mark>K</mark> PF	'H <mark>ML</mark>	ACWV
PEN4	325	F <mark>W</mark> KS	VHMFSES	ILDRWI	PLNKLI	R <mark>Q</mark> RAI	QSTM	AL <mark>IHY</mark>	HDEST	RYIT	G <mark>G</mark> [P <mark>K</mark> AF	'HML	ACWI
PEN1	326	F <mark>W</mark> KG	VHIFSES	I <mark>L</mark> NRWI	?FNKLI	RQAAI	RTTM	KLLHY	Q DE AN	RYIT	GGS	/P <mark>K</mark> AF	'H <mark>ML</mark>	ACWV
RsM2	325	FWDC	LHTFA <mark>E</mark> P	LLTRWI	l <mark>n</mark> nfi	REKAI	KITM	E <mark>HVHY</mark>	DDKASI	HYINI	PGS	/EKVI	CMV	ACWV
LcIMS1	320	LWDT	LYLLSEP	LMTRWI	?FNKLI	RQKAI	NETM	RHIHY	EDENSI	RYIT	IG <mark>C</mark> V	/EKPL	CML	ACWV
Mifrs	323	LWDS	lyv <mark>a</mark> sep	LLTRWI	PFSKI-	RERAI	EKAM	EHIHY	EDENS	RYIT	IG <mark>C</mark> V	/EK <mark>A</mark> L	CML	CCWV
LUP2	324	LWDT	L'HNFV EP	ILT <mark>N</mark> WI	PLK <mark>KL</mark> V	REKAI	RVAM	E <mark>HIHY</mark>	EDENS	HYIT:	IG <mark>C</mark> V	/EKVL	CML	ACWI
LUP1	321	LSDT	LQNFVEP	LLTRWI	P <mark>lnkl</mark> v	REKAI	QLTM	K <mark>HIHY</mark>	EDENS	HYIT:	IG <mark>C</mark> V	/EKVL	CML.	ACWV
RcLUS	323	LWDA	LYTFSEP	lf <mark>srwi</mark>	PFNKL-	REKAI	KITM	DHIHY	ed <mark>h</mark> nsi	RYIT:	IG <mark>C</mark> V	/EKPL	CML.	ACWI
KcMS	323	lWDA	IYLLSEP	LL <mark>k</mark> rwi	PW <mark>S</mark> KL-	R <mark>K</mark> KAI	KITI	DHIHY	EDENS	RYIT:	IG <mark>C</mark> V	/EKPL	NML.	ACWH
BgLUS	323	LWDA	I YMLGEP	LL <mark>k</mark> rwi	PFNKL-	REKAI	KITM	DHIHY	EDENS	QYIT:	IGSV	/EKPL	LML.	ACWH
SS	323	MWDS	LYILTEP	LLTRWI	PFNKL-	RK <mark>KAI</mark>	ATTM	RHIHY	EDENSI	RYIT:	IGSV	/EKIL	CML.	ACWD
KdFRS	323	IWDT	LYLTTEP	LLTRWI	PLNKLI	RERAI	KKTM	K <mark>HIHY</mark>	EDENSI	RYI <mark>V</mark>	I G <mark>A</mark> V	/EKVL	CML.	ACWV
KdLUS	323	LWDT	LYLTTEP	LLTRWI	PLNKLI	RKRAI	QT TM	K <mark>HIHY</mark>	EDENSI	RYIT:	IG <mark>C</mark> V	/EKVL	CML	ACWV
KdGLS	323	LWDT	LYLTTEP	LLTRWI	PLNKLI	R <mark>Q</mark> RAI	QKTM	K <mark>HIHY</mark>	EDENSI	RYIT	IGTV	/EKVL	CML	ACWV
EtAS	323	MWDS	LYIFTEP	LLTRWI	PENKII	RKKAI	EVTM	K <mark>HIHY</mark>	EDENSI	RYIT	IG <mark>C</mark> V	/EKVL	CML	ACWA
RsM1	323	IWDC	LYISMEP	LLTRWI	PL <mark>N</mark> MII	RK <mark>KAI</mark>	ELTM	K <mark>HIHY</mark>	EDGSS	RYIT	IG <mark>C</mark> V	/EKVL	CML	ACWV
PNY1	325	LWDS	LYVLTEP	LLTRWI	PFNKL-	REKAI	QTTM	K <mark>HIHY</mark>	EDENSI	RYIT	IG <mark>C</mark> V	/EKVL	CML	VCWV
PNY2	323	MWDS	LYIFTEP	FLTRWI	?FNKL-	REKAI	QTTM	K <mark>HIHY</mark>	EDENSI	RYIT	IG <mark>C</mark> V	/EKVL	CML	ACWV
KdTAS	342	LWDT	LYIAIEP	LLTRWI	?FNKLV	RERAI	QRTM	KHIHY!	EDENSI	RYIT:	IG <mark>C</mark> V	/EKVL	CML.	ACWV
BPY	323	LWDS	LYIFTEP	LLTRWI	?FNKLV	REKAI	QVTM	K <mark>HIHY</mark>	EDENSI	RYIT	IG <mark>C</mark> V	/EKVL	CML	ACWV
PSM	323	IWDS	LYIFVEP	LLTHWI	?FNKLL	REKAI	QTV <mark>M</mark>	K <mark>HIHY</mark>	EDENSI	RYIT	IG <mark>C</mark> V	/EKVL	CIL	ACWV
AMY2	323	MWDS	LYLFTEP	FLTRWI	?FNKLI	RERAI	QVTM	K <mark>HIHY</mark>	edh <mark>nsi</mark>	RYIT	IG <mark>C</mark> V	/EKVL	CML	ACWV
AMY1	323	IWDS	LYIFTEP	LLTRWI	PFNKLV	RKRAI	EVTM	KHIHY	EDENSI	RYLT:	IG <mark>C</mark> V	/EKVL	CML.	ACWV
PSY	323	IWDS	LYIFTEP	LLTRWI	PFNKLV	RKRAI	EVTM	KHIHY	EDENSI	RYLT:	IG <mark>C</mark> V	/EKVL	CML	ACWV
OSC1	323	MWDS	LYLFTEP	LLTRWI	PFNKLV	REKAI	EVTM	KHIHY	EDENSI	RYIT:	IG <mark>C</mark> V	/EKVL	CML	ACWV
GapAS1	323	IWDS	LYLETEP	LLTRWI	PFNKLV	REKAI	OVTM	KHIHY	EDETS	RYIT	IGCN	VEKVL	CML	ACWV

ScLAS	353	Ε	GVDSEAFQRLQY <mark>R</mark> FK <mark>D</mark> ALFHGPQ <mark>GM</mark>	TIMGTN <mark>G</mark> VQI	WDCAFA	QYFFVAGL	AERPEF
1W6K	350	V	O <mark>GPASTAFQEHVSRIPDY</mark> LWMG <mark>LDGM</mark>	IKMQGTN <mark>GSQ</mark> I	WDTAFA	QALLEAGG	HHRP <mark>E</mark> F
BPX1	390	_	DPN <mark>SEAFK</mark> LHLPRILDYLWIAEDGM	IKMQ <mark>G</mark> Y <mark>N</mark> GSQI	WDTTFA	/QAIIST	NIAEEY
KdCAS	381	_	DPN <mark>SEAFK</mark> LHIP <mark>RLY</mark> DYLWIAEDGM	IKMQ <mark>G</mark> Y <mark>N</mark> GSQI	WDTAF <mark>S</mark> V	/QAIVAT	KLVEEF
CAS1	380	-	EDPN <mark>SEAFK</mark> LHLPRIHDFLWLAEDGM	IKMQ <mark>G</mark> Y <mark>N</mark> GSQI	WDTGFA	IQAILAT	NLVEEY
PNX	380	-	EDPN <mark>SEAFK</mark> LHLPRLH <mark>DFLWLAEDGM</mark>	IKMQ <mark>G</mark> Y <mark>N</mark> GSQI	WDTAFA	/QAIIST	NLAEEY
PSX	380	-	EDPN <mark>SEAFK</mark> LHLPRIYDYLWVAEDGM	IKMQ <mark>G</mark> Y <mark>N</mark> GSQI	WDTAFA	AQAIIST	NLIDEF
GgCAS1	380	_	DPN <mark>SEAFK</mark> LHLPRIYDYLWIAEDGM	IKMQ <mark>G</mark> Y <mark>N</mark> GSQI	WDTAFT <i>i</i>	A <mark>qa</mark> iiss	NLIEEY
OSC5	380	-	EDPN <mark>SEAFK</mark> LHLPRIYDYLWIAEDGM	IKMQ <mark>G</mark> Y <mark>N</mark> GSQI	WDTAFA	AQAIIST	NLIEEY
BPW	380	_	EDPNGEAYK <mark>L</mark> HLGRIPD <mark>NY</mark> WVAEDGL	KIQSF-G <mark>C</mark> QM	(WD <mark>A</mark> GFA]	[QAILSC	NLNEEY
GgLUS1	380	_	EDPN <mark>SEAYK</mark> LHLARIPDY <mark>F</mark> WLAEDGL	KIQSF <mark>-</mark> GCQM	(WD <mark>A</mark> AFA]	[QAILAC	NVSEEY
OSC3	380	-	EDPN <mark>S</mark> EAYK <mark>L</mark> HLARIPDY <mark>F</mark> WLAEDGL	KIQSF <mark>-</mark> GCQM	(WD <mark>A</mark> AFA]	[QAILSG	NVSEEY
TRW	383	-	EDPNGDAYKRHLARIPDY <mark>F</mark> WVAEDGM	IKMQSF <mark>-</mark> GCQM	(WD <mark>A</mark> AFA]	[QAIFSS	NLTEEY
OEW	381	-	DPN <mark>S</mark> EAYKRHIARIPDY <mark>F</mark> WVAEDGL	KMQSF <mark>-</mark> GCQM	(WD <mark>A</mark> AFA]	[QAI <mark>L</mark> SS	NLAEEY
PEN5	385	-	EDP <mark>D</mark> GD <mark>Y</mark> FKKHLARVPDFIWIAEDGL	KFQLM-GMQS	WNAALSI	LQVMLAA	NMDDEI
PEN6	386	_	EDP <mark>D</mark> GD <mark>Y</mark> FKKHLARVPDYIWIGEDGL	KIQSF-GSQI	WDTAFSI	L <mark>Q</mark> VMLA <mark>YQDVE</mark>	DDDDDEI
PEN4	385	_	EDP <mark>KS</mark> DYFKKHLARV <mark>R</mark> EYIWIGEDGL	KIQSF <mark>-</mark> GSQI	WDTA <mark>LS</mark> I	H <mark>ALL</mark> DGIDDH	IDVDDEI
PEN1	386	-	EDP <mark>E</mark> GE <mark>YFKKHLAR</mark> VS <mark>D</mark> FIWIGEDGL	KIQSF <mark>-</mark> GSQI	WDT <mark>VMS</mark> I	_HF <mark>LL</mark> DGVED-	DVDDEI
RsM2	385	-	DPSGEPFQRHLARISDYVWIAEDGM	RITGI <mark>-</mark> GSQI	WDAALSI	[QALIAC	NLIEEM
LcIMS1	380	_	EDPN <mark>SEYV</mark> KKHLARIPDYLWMAEDGM	IKMQSF <mark>-</mark> GSQS	WDAAL <mark>A</mark> N	/QALLSC	NITREI
Mifrs	382	-	EDPNGE <mark>Y</mark> FKKHLARIPDYLWVAEDGM	IKV <mark>V</mark> SF <mark>-</mark> GSQI	J <mark>W</mark> DATEGI	QALVAS	NLTDEV
LUP2	384	-	E <mark>N</mark> PNGD <mark>H</mark> FKKHLARIPDFMWVAEDGL	KMQSF <mark>-</mark> GSQI	WDT <mark>VFA</mark>	[QALLA <mark>C</mark>	DLSDET
LUP1	381	-	E <mark>N</mark> PNGD <mark>Y</mark> FKKHLARIPDYMWVAEDGM	IKMQSF <mark>-</mark> GCQI	WDTGFAI	[QALLAS <mark></mark>	NLPDET
RcLUS	382	-	EDP <mark>H</mark> GEAFKKHLARI <mark>A</mark> DYIWVGEDGI	KMQSF-GSQ1	WDTSL <mark>A</mark> I	QALIAS	DLSHEI
KcMS	382	-	EDPNGDAFKKHLARI <mark>S</mark> DYVWLAEDGM	IKIQSF <mark>-</mark> GSQA	WDTSFVI	QALIAS	NLLSET
BgLUS	382	-	EDPNGDAFKKHLARIPDY <mark>V</mark> WLG <mark>EDG</mark> I	KIQSF <mark>−</mark> GSQV	/WDTSFVI	QALIAS	NLPSET
SS	382	-	EDPNG <mark>VC</mark> FKKHLARIPDYIW <mark>VAEDG</mark> M	IKMQTF <mark>−</mark> GSQV	WD <mark>ASI</mark> GI	[QALLAT	ELTHDI
KdFRS	383	-	EDPNGD <mark>Y</mark> FKKHLARVPDY <mark>F</mark> WVAEDGM	IKIQSF <mark>-</mark> GSQH	WDTAFF	/QALLAS <mark></mark>	DMTDEI
KdLUS	383	-	EDPNGD <mark>Y</mark> FKKHLARIPDYLWIAEDGM	IKMQSF <mark>-</mark> GSQH	WDTAFS [QALLAS	NMAEEI
KdGLS	383	-	EDPNGD <mark>Y</mark> FKKHLARVPDY <mark>F</mark> WVAEDGM	IKIQSF <mark>-</mark> GSQH	HWDTVFS <i>F</i>	AQALLAS	DMADEI
EtAS	383	-	EDPNG <mark>V</mark> PFKKHLARIPDY <mark>MW</mark> VAEDGM	IKMQSF <mark>−</mark> GSQÇ	WDTGFAI	[QALLAS	NLTEEI
RsM1	383	-	EDPNGD <mark>Y</mark> FKKHLARIPDYIWVAEDGM	IKMQSF <mark>-</mark> GSQ	WDTGFA	[QALLAT	NLTDEI
PNY1	384	-	EDPNGD <mark>YFR</mark> KHLARIPDYIWVAEDGM	IKMQSF <mark>-</mark> GSQE	WDTGF <mark>S</mark> I	[<mark>QALLD</mark> S	DLTH <mark>E</mark> I
PNY2	382	-	EDPNGD <mark>Y</mark> FK <mark>Q</mark> HLARIPDYIWVAEDGM	IKMQSF <mark>-</mark> GSQE	WDTGFAI	[QALLAS <mark></mark>	DLIDEI
KdTAS	402	-	EDPNGD <mark>Y</mark> FKKHLARVPDYIWVAEDGM	IKMQSF <mark>-</mark> GSQ	WDTGFAI	[QALLAS <mark></mark>	NMSDEI
BPY	383	-	EDPNGD <mark>Y</mark> FKKHIARIPDYIWV <u>A</u> EDGI	KMQSF-GSQE	WDTGFAI	[QALLAS <mark></mark>	NLTDEI
PSM	383	-	EDPNGDAFKKHLARLPDYLWV <mark>S</mark> EDGM	TLH <mark>SF-</mark> GSQ1	WDASLI	[QALLAT	NL <mark>I</mark> EDV
AMY2	383	-	EDPNG <mark>I</mark> AFKRHLARVPDYLWLAEDGM	CMQSF-GSQE	WDAGFA	/QALL <mark>S</mark> T	NLIDEL
AMY1	383	-	EDPNGDAYKKHLARV <mark>Q</mark> DYLW <mark>M</mark> SEDGM	TMQSF-GSQE	WDAGFA	/QALLA <mark>A</mark>	NLNDEI
PSY	383	-	EDPNGDAFKKHIARVPDYLWISEDGM	TMQSF-GSQE	WDAGFA	/QALLAT	NLIEEI
OSC1	383	-	EDPNGDAFKKHLARIPDYLWVSEDGM	CMQSF-GSQE	WDAGFA	/QALLAT	NLVDEL
GgbAS1	383	-	EDPNGDAFKKHLARVPDYLWVSEDGM	TMQSF-GSQE	WDAGFA	/QALLAT	NLVEEI

ScLAS	411	YNTIVSAY	KFLCHA	FDTECV	PGSYRI	okr <mark>kg</mark> aw	G <mark>FS</mark> TKTQ	GYTVADO	CTAEAIF	AIIM
1W6K	408	SSC <mark>LQ</mark> KAHI	EFLRLS	QVPDNPP-I) Y Q K Y Y R	2MRKGGF	SFSTLDC	GWIVSDO	TAEAL	AVLL
BPX1	445	GQTLRKAHI	EYIKDS	QVLEDCPGI	LNFWYRI	HISKGAW	FSTADH	GWPISDO	TAEGLK	AVIL
KdCAS	436	SSTISKAH	EFMK <mark>N</mark> S	QVLEDYPGI	LSYW <mark>yr</mark> i	HISKGAWI	PFSTADH	GWPISDO	TAEGLK	VVLK
CAS1	435	GP <mark>VLE</mark> KAH	SEVKNS	QVLEDCPGI	LNYW <mark>YR</mark> I	HISKGAWI	PFSTADH	GWPISDO	CTAEGLK	AALL
PNX	435	GPTLRKAH	r fmkns	QVLDDCPGI	LDAWYRI	IVSKGAWI	PFSTADH	GWPISDO	CTAEGF	AVLQ
PSX	435	GPTL <mark>K</mark> KAH	AFIKNS	QVS <mark>E</mark> DCP <mark>G</mark> I	LSKW <mark>yr</mark> i	HISKGAWI	PFSTADH	GWPISDO	CTAEGLK	AVLL
GgCAS1	435	GPTL <mark>R</mark> KAH	TYIK <mark>N</mark> S	QVL <mark>E</mark> DCP <mark>G</mark> I	LSKW <mark>YR</mark> I	HISKGAWI	PFSTADH	GWPISDO	TAEGLK	AVLL
OSC5	435	GPTL <mark>R</mark> KAH	r <mark>fik</mark> ns(QVL <mark>E</mark> DCP <mark>G</mark> I	LNKW <mark>YR</mark> I	HISKGAWI	PFSTADH	GWPISDO	TAEGLK	AILS
BPW	434	WPTLRKAH	EFVKAS	QV <mark>P</mark> ENPSGI	ofk <mark>a</mark> myri	HI <mark>N</mark> KGAW	rfs <mark>m</mark> qdh	GWQ <mark>V</mark> SD0	TAEGLK	VAIL
GgLUS1	434	GPTLRKAH	HFVK <mark>a</mark> S	QVRENPSGI	of <mark>na</mark> myri	HISKGAW	rfs <mark>mh</mark> dh	GWQ <mark>V</mark> SDO	TAEGLK	AALL
OSC3	434	GPTL <mark>K</mark> KAHI	HFVK <mark>a</mark> S	QVRENPSGI	ofk <mark>a</mark> myri	HISKGAW	rfs <mark>mh</mark> dh	GWQ <mark>V</mark> SDO	TAEGLK	VALL
TRW	437	GPTL <mark>K</mark> KAHI	EFVK <mark>A</mark> S	QVRDNP <mark>P</mark> GI	DF <mark>SK</mark> MYRI	TSKGAW	rfsi <mark>q</mark> dh	GWQ <mark>V</mark> SDC	TAEGLK	VSLL
OEW	435	GPTL <mark>M</mark> KAHI	NFVKAS	QV <mark>Q</mark> ENPSGI	OF <mark>NE</mark> MYRI	H <mark>T</mark> SKGAW	rfs <mark>m</mark> qdh	GWQ <mark>V</mark> SDC	TAEGLK	AALL
PEN5	439	RS TLIKG Y	DFLKQS	QIS <mark>ENP</mark> QGI	DHLKMFRI	DITKGGW:	FFQDREQ	GLPISD	GTAESIE	BCCIH
PEN6	444	RS <mark>TLIKG</mark> Y:	SFLNKS	QLT <mark>Q</mark> NP <mark>P</mark> GI	HRK <mark>M</mark> LKI	DIAKGGW:	ſFSDQDQ	GWPVSDO	CTAESLE	CCLV
PEN4	443	KT <mark>TL</mark> VKGY	DYL <mark>K</mark> KS(QIT <mark>ENP</mark> RGI) HFK <mark>MFR</mark> I	I <mark>K</mark> TKGGW	[FSDQD <mark>Q</mark>	GWPVSDC	CTAE S L E	CCLF
PEN1	443	RS <mark>TL</mark> VKGY	DYL <mark>K</mark> KS(QVT <mark>ENP</mark> PSI	DHIK <mark>MFR</mark>	HISKGGW	rfsdkdq	GWPVSDC	TAEGLK	KCCLL
RsM2	439	GPTL <mark>KKG</mark> YI)FLK <mark>N</mark> S(2 <mark>akdnp</mark> pgi)FK <mark>R</mark> MYRI	IFG <mark>KG</mark> AW	AFSSQDY	GVIALDO	CTAESL	4CCLH
LcIMS1	434	GSVLNSGH)FIK <mark>N</mark> S(QVR <mark>NNP</mark> PGI	DYK <mark>S</mark> MFR	YMSKGSW	rfsd <mark>c</mark> dh	GWQVSDO	TAENL ^K	KCCLL
MiFRS	436	aptl <mark>vk</mark> ayi)FIKKC	QVRDNPSG <mark>N</mark>	JFEK <mark>MFR</mark> I	HISKG <mark>S</mark> W1	FSDQDH	GWQ <mark>lS</mark> D(TAEAL	KCCLL
LUP2	438	DDV <mark>L</mark> RKGH	SFIKKS	QVRENPSGI	DFK <mark>S</mark> MYRI	HISKG <mark>A</mark> W	[LSDRDH	GWQ <mark>V</mark> SDC	CTAEALF	KCCML
LUP1	435	DDA <mark>L</mark> KRGHI	NYIK <mark>A</mark> S(QVRENPSGI	DFR <mark>S</mark> MYRI	HISKG <mark>A</mark> W	[FSD <mark>R</mark> DH	GWQ <mark>V</mark> SDC	CTAEALF	KCCLL
RcLUS	436	GPTLKQGH	VFTKNS(Q <mark>at</mark> enpsgi)FR <mark>K</mark> MFRI	HISKGAW	rfsdkdq	GWQ <mark>V</mark> SDC	CTAESLE	KCCLL
KcMS	436	APTL <mark>E</mark> KGHI	NFIKDS	QV <mark>T</mark> ENPSGI	DFR <mark>R</mark> MFRI	HISKG <mark>S</mark> W:	rfsd <mark>k</mark> dh	GWQ <mark>V</mark> SDC	CTAESLK	KCCLL
BgLUS	436	GPTL <mark>E</mark> KGHI	NFIKNS	QV <mark>TQ</mark> NPSGI	DFR <mark>R</mark> MFRI	HISKG <mark>S</mark> W:	rfsd <mark>k</mark> dh	GWQ <mark>V</mark> SDC	CTAESLK	KCCLL
SS	436	AP <mark>IL</mark> KKGHI	EFIKAS	QVRDNPSGI	DFK <mark>S</mark> MYRI	HISKG <mark>S</mark> W1	FFSDQDH	GWQ <mark>l</mark> SD(TTIGL ^I	CCLL
KdFRS	437	RTTLAKAHI	CIKKS	QVKDNPSGI	ofr <mark>s</mark> myri	HISKGAW	FFSDQDH	GWQ <mark>l</mark> SD(TAEGLK	KCCLL
KdLUS	437	GITLAKGHI)FIK <mark>K</mark> S(QVKDNPSGI	ofk <mark>g</mark> myri	HISKGAW	FFSDQDH	GWQ <mark>V</mark> SDC	TAEGLK	KCCLL
KdGLS	437	GTTLAKAH	YCIKES(QVKDNPSGI	DFR <mark>S</mark> MYRI	HISKG <mark>S</mark> WI	FFSDQDH	GWQ <mark>l</mark> SD(TAEGLK	KCCLL
EtAS	437	GQVLKKGH)FIK <mark>K</mark> S(QVKENPSGI	DFK <mark>SM</mark> HRI	HISKG <mark>S</mark> W	FFSDQDH	GWQ <mark>V</mark> SDC	TAEGLF	KCCLL
RsM1	437	GGVLRRGHI)FIK <mark>K</mark> S(QV <mark>Q</mark> DNPSGI	DFK <mark>S</mark> MYRI	HISKG <mark>S</mark> W	FFSDQDH	GWQ <mark>V</mark> SD(TAEGLK	KCCLL
PNY1	438	GPTL <mark>M</mark> KGH)FIK <mark>K</mark> S(QVKDNPSGI	DFK <mark>S</mark> MYRI	HISKG <mark>S</mark> WI	FFSDQDH	GWQ <mark>V</mark> SD(TAEGLK	KCCLI
PNY2	436	RPTLMKGH)FIK <mark>K</mark> S(QVKENPSGI	DFK <mark>SM</mark> HRI	HISKG <mark>S</mark> W	FFSDQDH	GWQ <mark>V</mark> SDC	TAEALF	KCCLL
KdTAS	456	GETLAKGHI)FVK <mark>K</mark> S(QVKDNPSGI	DFK <mark>SM</mark> HRI	HISKG <mark>S</mark> W	FFSDQDH	GWQ <mark>V</mark> SDC	TAEGLF	KCCLL
BPY	437	GPTL <mark>ARG</mark> HI)FIK <mark>K</mark> S(QVKDNPSGI	DFES <mark>M</mark> HRI	HISKG <mark>S</mark> WI	rfsd <u>q</u> dh	GWQ <mark>V</mark> SD(TAEGLK	KCCLL
PSM	437	GPILTKAHI	EFIK <mark>K</mark> S	QVRDNPSGI	DFK <mark>S</mark> MYRI	HISKG <mark>S</mark> W1	rfsd <mark>k</mark> dh	GWQ <mark>V</mark> SDC	TAE <mark>S</mark> LF	KCCLL
AMY2	437	GPALAKGH	DFIKNS	QVKDNPSGI	DFKSMHRI	HISKGAW	FFSDQDH	GWQ <mark>V</mark> SD0	CTAEG <mark>F</mark> F	KCCLL
AMY1	437	EPALAKGH	DFIKKS	QVT <mark>ENPSGI</mark>	DFKSMHRI	HISKG <mark>S</mark> W	FFSDQDH	GWQ <mark>V</mark> SD0	TAEGLK	CCLL
PSY	437	KPALAKGHI)FIK <mark>K</mark> S(QV <mark>T</mark> ENPSGI	DFKS <mark>M</mark> HRI	HISKG <mark>S</mark> W	FFSDQDH	GWQ <mark>V</mark> SDC	TAEGLK	KCCLL
OSC1	437	GPTL <mark>A</mark> KGHI	OFIKKS	QVRDNPSGI	DFKN <mark>M</mark> HRI	HISKG <mark>S</mark> W:	FFSDQDH	GWQ <mark>V</mark> SD(TAEGLK	KCCLL
GabAS1	437	APTLAKGH	DFIKKS	OVRDNPSGI	DFKSMYRI	HISKGSW	FSDODH	GWOVSDO	TAEGLK	CCLL

ScLAS	468	VKNSPVF	'SE <mark>V</mark> HHMI	SSERLF	'EGI <mark>D</mark> VL	LNLQN	IGSFEY	GSFAT	(EKIKA	PLAM	ETLNP	APV
1W6K	467	LQEKCPH	VTEHI	PRERLC	DAV <mark>A</mark> VL	LNMRN ·	PD	GGFAT	ETKR	GHLI	ELLNP	SEV
BPX1	505	LSQFPSE	-TVGKS	DVKRLY	(DAVHVI	LSLQN·	TD	GGFAT	ELTRS	YHWI	ELINP	ABT
KdCAS	496	LSQFPAE	-L <mark>VG</mark> API	SAKLVY	NAVNVI	LSLQ <mark>N</mark> ·	ID	GGFAT	(<mark>e</mark> ltrs	YSWM	ELLNP	AET
CAS1	495	LSKVPKA	-IVGEPI	d <mark>ak</mark> rly	EAVNVI	ISLQN	AD	GGLAT	(<mark>E</mark> LTRS	YPWI	ELINP	ABT
PNX	495	LSKLPSE	-LVGEPI	JD <mark>AK</mark> RLY	DAVNVI	LSLQN·	SD	GG YAT	ELTRS	YSWI	ELVNP	ABT
PSX	495	LSKIAPE	-IVGEPI	JD <mark>SK</mark> RLY	DAVNVI	LSLQN·	EN	GGLAT	ELTRS	YTWI	EIINP	ABT
GgCAS1	495	LSKIAPE	-IVGEPI	JD <mark>AK</mark> RLY	DAVNVI	LSLQN.	ED	GG FAT	(<mark>E</mark> LTRS	YTWI	ELINP	ABT
OSC5	495	LSKIAPC	-IVGEPI	JD <mark>AK</mark> RLY	DAVNVI	LSLQ <mark>N</mark> ·	ED	GGLAT	(<mark>E</mark> LTRS	YSWI	ELINP	ABT
BPW	494	FSQMPPD	-LVGEKI	E <mark>K</mark> ERLY	DAVNVI	LSLQS	SNO	GGFPAV	VEPQRA	YGWI	EKFNP	TEF
GgLUS1	494	LSEMPSE	-LVG <mark>G</mark> KM	1ET <mark>ER</mark> FY	DAVNVI	LSLQS	S <mark>N</mark>	GGFPAV	VEPQK	YRWI	EKFNP	TEF
OSC3	494	LSEMSDD	-lvg <mark>a</mark> km	1E TEQFY	DAVNVI	LSLQS	S <mark>N</mark>	GGFPAV	VEPQRA	YQWI	EKFNP	TEF
TRW	497	YSQMNPK	-LVGEK	/ETEHLY	DAVNVI	LSLQS	E <mark>N</mark>	GGFPAV	VEPQRA	YAWI	EKFNP	TEF
OEW	495	FSQMPIF	-LVGAEI	ETGHLY	DAVNVI	LTLQS	AS	GGFPAV	VEPQK	YRWI	EK <mark>LNP</mark>	TEF
PEN5	499	FHRMPSE	-FIGEKM	1D <mark>v</mark> ekly	DAVNFL	IYLQS	DNO	GGMPV	VEPAP	KKWI	EWLSP	VBH
PEN6	504	FGSMPSE	-LIGEKM	1DVERLY	DAVNLL	LYFQS	K <mark>N</mark>	GGITV	VEAAR	RTWI	EWLSP	VEF
PEN4	503	FESMPSE	-LIG <mark>K</mark> KM	1D <mark>V</mark> EKLY	DAV <mark>DY</mark> L	LYLQS	DNO	GGIAAV	IQP VE	KAWI	ELLNI	
PEN1	503	FERMPSE	-FVGQKM	1D <mark>vekl</mark> f	DAVDFL	LYLQS	DNO	GGITAV	VEPAD	KTWI	EWFSP	VEF
RsM2	499	FSMMPPE	-IVGEKI	.EPEKLY	[LAVDFI	LSLQS	K <mark>N</mark>	GGLTC	VEPAR	GKWI	EVLNP	LEF
LcIMS1	494	LSLLPPD	-IVGEK	1E PER <mark>F</mark> Y	DAVNVI	L <mark>N</mark> MQS [.]	K <mark>N</mark>	GGLPAV	VEPASS	YYWM	E <mark>W</mark> LNP	VEF
MiFRS	496	AATMPEE	-LVGEKI	JD <mark>P</mark> QWIF	'E <mark>SVN</mark> II	LSLQEI	РКТ	GGLAGV	VEPVRA	GQ₩M	IEMLNP	MEF
LUP2	498	LSMMPAE	-VVG <mark>Q</mark> KI	DPEQLY	DSVNLL	LSLQG	EK	GGLT <mark>A</mark> V	VEPVRA	QEWI	ELLNP	TDF
LUP1	495	LSMMSAD	-IVGQKI	D <mark>deq</mark> ly	DSVNLL	LSLQS	G <mark>N</mark> O	ggv <mark>n</mark> av	VEPSRA	YKWI	ELLNP	TEF
RcLUS	496	FSMMPPE	-IVGEKM	1EPEKVY	DSVNVI	LSLQS	Q <mark>N</mark> (GGFTAV	VEPARA	GS₩M	E <mark>W</mark> LNP	VEF
KcMS	496	FSMMPPE	-LVG <mark>R</mark> KM	1E P <mark>Q</mark> RVY	DAVNVI	ISLQS	K <mark>N</mark>	GGCSAV	VEQAGA	GS₩M	IEWLNP	VEF
BgLUS	496	FSMMPPE	-LVGEKM	1 <mark>GPQ</mark> RMY	DAVNVI	ISLQS	K <mark>N</mark>	GGCSAV	VEPAGA	GS₩M	IEWLNP	VEF
SS	496	LSTMPPE	-TVGEKM	1DPEQLK	DAVNVI	LSLQS	E <mark>N</mark> O	GGLAAV	VEPAGS	SNWI	EMLNP	IBB
KdFRS	497	FSLMQPE	-VVGEAM	PPERLY	DSVNVL	LYLQS	K <mark>N</mark>	GGMPGV	VEPAGE	SEWI	ELLNP	TEF
KdLUS	497	FSMMQPE	-VVGESM	1APESLY	NSVNVL	LSLQS	Q <mark>N</mark>	GGLPAV	VEPAGA	PEWI	ELLNP	TEF
KdGLS	497	FSLMQPE	-VVGE <mark>A</mark> M	1PPERLF	DSVNIL	LYLQS	K <mark>N</mark> O	GGMPGV	VEPAGA	SEWI	ELLNP	TEF
EtAS	497	FSMMPPE	-IVGEKM	id <mark>aqh</mark> ly	N <mark>AVNIL</mark>	ISLQS	K <mark>N</mark> O	GGLAAV	VEPAGA	QQWI	EMLNP	TEF
RsM1	497	FSMMPPE	-IVGE <mark>H</mark> M	1EPERLY	D <mark>SVNVL</mark>	LSLQS	K <mark>N</mark> O	GGLSAV	VEPAGA	QDWI	ELLNP	TEF
PNY1	498	FSTMPEE	-IVG <mark>K</mark> KI	KPERLY	DS <mark>VNVL</mark>	LSLQR	K <mark>N</mark> O	GGLSAV	VEPAGA	QEWI	ELLNP	TEF
PNY2	496	FSRMPTE	-IVGDKM	IE DNQL F	DAVNML	LSLQS	K <mark>N</mark> O	GGLAAV	VEPAGS	SEWI	ELLNP	TEF
KdTAS	516	FSLMPPE	-lvgekm	1EPERLY	D <mark>S</mark> VNIL	LSLQS	K <mark>N</mark> O	GGLAAV	VEPAGA	PEWI	ELLNP	TEF
BPY	497	FSIMPPE	-IVGEKM	1E PE <mark>Q</mark> LY	DSVNVL	LSLQS	K <mark>N</mark>	GGLAAV	VEPAGA	QEWI	ELLNS	TEF
PSM	497	LSMLPPE	-IVGEKM	1E PEMLY	DSVNIL	LSLQ <mark>G</mark>	KK	GGLPAV	VEPSEA	VEWI	ELFNP	IBB
AMY2	497	LSMLPPE	-IVGEKI	EPERLE	DTVNLL	LSLQS	KK	GGFAV	VEPAGA	QEWI	ELLNP	IBB
AMY1	497	LSMLPPE	-IVGEKM	1EPERLY	DSVNVL	LSLQS	KK	GGLAAV	VEPAGA	QEWI	ELLNP	TEF
PSY	497	LSLLPPE	-IVGEKM	1EPERLF	DSVNLL	LSLQS	- -KK	GGLAAV	VEPAGA	QEWI	ELLNP	TEF
OSC1	497	LSMLPPD	-IVGEKM	1E PECLE	DSVNLL	LSLQS	- - -KK	GGLAAV	VEPAGA	QEWI	ELLNP	TEF
GabAS1	497	T.SMT.PPF	-TVGEKM	IEPERLY		LSLOS	кк	GGLSAV	VEPAGA	OEWI	FILNP	твғ

ScLAS	528	FGNIMVEYPYVECTDSSVLGLTYEHKYF-DYRKEEIRTRIRIAIEFIKKSQLPDGSWYGS
1W6K	521	FGDIMIDYT <mark>YVECTS</mark> AVMQALKY <mark>F</mark> H <mark>K</mark> RFPE <mark>HR</mark> AA <mark>EI</mark> RETLTQGLEFCRRQQRADGSWEGS
BPX1	560	FGDIVIDYPYVECTSAAIQALTLFKKLHPGHRREEIENCIAKAAEFIENIQASDGSWYGS
KdCAS	551	FGDIVIDYPYVECTSAALQSLVLFKKLHPEHRKEEVELCIKKAAAFIEKIQESDGSWYGS
CAS1	550	FGDIVIDYPYVECTSAAIQALISFRKLYPGHRKKEVDECIEKAVKFIESIQAADGSWYGS
PNX	550	FGDIVIDYPYVECTSAAIQALTAFKKLFPGHRREEIQHSIEKAALFIEKIQSSDGSWYGS
PSX	550	FGDIVIDCPYVECTSAAIQALATFGKLYPGHRREEIQCCIEKAVAFIEKIQASDGSWYGS
GgCAS1	550	FG <mark>DIVIDYPYVECTS</mark> AAIQALTS <mark>FKKLYPGHRREEI</mark> QCC <mark>IEKA</mark> AS <mark>FIE</mark> KTQASDGSWYGS
OSC5	550	FGDIVIDYPYVECTSAAIQALTSFRKLYPGHRREEIQHSIEKAAAFIEKIQSSDGSWYGS
BPW	549	FEDTLIEREYVECTSPAVHGLALFRKFYPRHRGTEIDSSIYRGIQYIEDVQEPDGSWYGH
GgLUS1	549	FEDTMIEREYVECTGSAMQGLALFRKQFPQHRSKEIDRCIAKAIRYIENMQNPDGSWYGC
OSC3	549	FEETLIE <mark>REYVECTGSAMQALALFRKLYPK</mark> HRRKEIDRCISKAIRYIENTONPDGSWYGC
TRW	552	FEDVLIEREYVECTSSAIQGLTLFKKLHPGHRTKEIEHCISRAVKYVEDTQESDGSWYGC
OEW	550	FEDVLIERDYVECTSSAVQALKLFKQLHPGHRRKEIASCISKAIQYIEATQNPDGSWDGS
PEN5	554	VENTVVEQEYLECTGSVIAGLVCFKKEFPDHRPKEIEKLIKKGLKYIEDLOMPDGSWYGN
PEN6	559	MEDTIVEHEYVECTGSAIVALARFIKEFPEHRREEVEKFIKNAVKYIESFOMPDGSWYGN
PEN4	555	MIFRYVECTGSAIAALTQFNKQFPGYKNVEVKRFITKAAKYIEDMQTVDGSWYGN
PEN1	558	VQDTVIEHEYVECTGSAIVALTQFSKQFPEFRKKEVERFITNGVKYIEDLQMKDGSWCGN
RsM2	554	FENIVVEHEYVEVTASAINALVMFKKRYPGYREKEIEHFISKAVHYLIQTQFPNGPWYGV
LcIMS1	549	LEDLIIEHQHVECTSSALQAILLFRKQYPGHRRKEINNFINKAVQFLQDIQLPDGSWYGN
MiFRS	552	LENIVIEHTYIECTGSSIIAFITLKKLFPGHRTKDIDNFIVNAIRYLEDEOYPDGSWYGN
LUP2	553	FTCVMAEREYVECTSAVIQALVLFKQLYPDHRTKEIIKSIEKGVQFIESKQTPDGSWHGN
LUP1	550	MANTMVEREFVECTSSVIQALDLFRKLYPDHRKKEINRSIEKAVQFIQDNQTPDGSWYGN
RcLUS	551	MEDLVVEHEYVECTSSAIQALVLFKKLYPRHRNKEIENCIINAAQFIENIQEPDGSWYGN
KcMS	551	LEDLVIEHEYIECTSS <mark>SVQALVLFKKLYPE</mark> HRRKEIE <mark>NFIVN</mark> AVRFIEEIQ <mark>K</mark> PDGSWYGN
BgLUS	551	LADLVIEHEYVECTSSSIQALVLFKKLYPEHRRKEIEIFILNAVRFTEEIQQPDGSWYGN
SS	551	IEDIVIEHEYVECTGTGMEALVLFKKLYPKHRTKEVESFLTNAARYLDNTOMPDGSWYGE
KdFRS	552	FENIVIEHEYVECTSSAVQALVLFKKLYPLHRRKEVE <mark>R</mark> FITNGAKYLEDIQMPDGSWYGN
KdLUS	552	FENIVIEHEYVECTSSAVQALVLFKKLYPLHRRKEVE <mark>R</mark> FITNGAKYLEDIQMPDGSWYGN
KdGLS	552	FENIVIEHEYVECTSSAVQALVLFKKLHPGHRRKEVE <mark>R</mark> FITNG <mark>A</mark> KYIEDIQMPDGAWYGN
EtAS	552	FADIVIEHEYVECTASAIHALIMFKKLYPGHRKKEIENFITNAVKYLEDVQTADGGWYGN
RsM1	552	FADIVIEHEYVERTSSAIHALVLFKKLYPGHRKKEIEDFIAKSVRFLESIQTSDGTWYGN
PNY1	553	FADIVIEHEYVECTSSAIQALVLFKKLYPGHRKKEID <mark>NEITNAVRYLEDTO</mark> MPDGSWYGN
PNY2	551	FEDIVIEHEYVECTSSAIQAMVMFKKLYPGHRKKEIEVSITNAVQYLEDIQMPDGSWYGN
KdTAS	571	FADIVIEHEYVECTASAIQALVLFKKLYPGHRKKDIETFIKGAAQYIEDROMPDGSWYGS
BPY	552	FADIVIEHEYIECTASAMQTLVLFKKLYPGHRKKEIENFIKNAAQFLQVIQMPDGSWYGN
PSM	552	LEEIVVE <mark>R</mark> EYVECTSSAIQALVLFKKLYPEHRKKEVENFIANAVRFLEYK <mark>O</mark> TSDGSWYGN
AMY2	552	FEDIVIEHELVECTGSAIGALVLFKNHYPEHRKKEIEDCIANAVRYFEDIQTADGSWYGN
AMY1	552	FADIVVEHEYVECT <mark>G</mark> SAIQALVLFKKLYPGHRKKEIE <mark>NFISEAVRFIEDIQ</mark> TADGSWYGN
PSY	552	FADIVVEHEYVECTGSAIQALVLFKKLYPGHRKKEIENFIFNAVRFLEDTQTEDGSWYGN
OSC1	552	FADIVVEHEYVECTGSAIGALVLFKKLYPGHRKKEIENFISEAVRFLEDTOTADGSWYGN
GgbAS1	552	FADIVVEHEYVECTG <mark>SAIQALVLFKKLYPGHRKKEIE</mark> NFIANAVRFLEDTQTADGSWYGN

ScLAS	587	WGICFTYAGMFAL	EALHTVGETY	(E <mark>N</mark> SST	VRKGCDFLVSK	QMK <mark>DGGWGES</mark> MK <mark>S</mark> SELHS
1W6K	581	WGVCFTYGTWFGL	EA <mark>FA</mark> CM <mark>G</mark> QTY	rdgta <mark>c</mark> ae	VSRACDFLLSR	QMADGGWGEDFE <mark>SC</mark> EERR
BPX1	620	WGVCFTYA <mark>G</mark> WFGI	K <mark>GL</mark> VAAGRTY	KNCSS	IHKACDYLLSK	ELAS <mark>GGWGESYLSC</mark> QD <mark>K</mark> V
KdCAS	611	WAVCFTYGTWFGV.	L <mark>GL</mark> VAAGR <mark>N</mark> Y	K <mark>N</mark> SPS	IRKACDFLLSK	QLAS <mark>GGWGESYLSC</mark> QN <mark>K</mark> V
CAS1	610	WAVCFTYGTWFGV	KGLVAVGKTI	_KNSPH	V <mark>AKAC</mark> EFLLSK	QQPS <mark>GGWGESYLSC</mark> QD <mark>K</mark> V
PNX	610	WGVCFTYGTWFGI	KGLVTAGRT F	SS <mark>C</mark> AS	IRKACDFLLSK	Q <mark>VAS</mark> GGWGESYLSC <mark>QN</mark> KV
PSX	610	WGVCFTYGTWFGI	KGLIAAGK <mark>N</mark> I	SNCLS	IRKACEFLLSK	QLPS <mark>GGWAESYLSC</mark> QN <mark>K</mark> V
GgCAS1	610	WGVCFTYGTWFGV	K <mark>GLIAAGK</mark> SI	NNCSS	IRKACEFLLSK	QLPSGGWGESYLSCQNKV
OSC5	610	WGVCFTYGTWFGV	K <mark>gliaagk</mark> se	S <mark>NC</mark> SS	IRKACEFLLSK	Q <mark>LPS</mark> GGWGESYLSC <mark>QN</mark> KV
BPW	609	WGICYTYGTWFAV	GALAA <mark>C</mark> GRNY	KNCPA	l <mark>rk</mark> scefllsk	Q <mark>LPN</mark> GGWGESYLS <mark>SQN</mark> KV
GgLUS1	609	WGICYTYGTWFAV	E <mark>GLTACGK</mark> NO	CH <mark>N</mark> SLS	l <mark>rka</mark> cQfllsk	Q <mark>lpn</mark> agwgesyls <mark>sqn</mark> kv
OSC3	609	WGICYTYGTWFAV	E <mark>GLTAC</mark> GKNI	Q <mark>N</mark> SVT	lrrackfilsk	Q <mark>lpn</mark> ggwgesyls <mark>sqd</mark> kv
TRW	612	WGICYTYGTWFAV	dalvac <mark>gk</mark> ny	(HNCPA	l <mark>qka</mark> ckfllsk	Q <mark>LP</mark> DGGWGESYLS <mark>SSN</mark> KV
OEW	610	WGICFTYGTWFAV	e <mark>glva</mark> cgkny	(HNSPT	lrracefilsk	QLPDGGW <mark>S</mark> ESYLS <mark>SSN</mark> KV
PEN5	614	WGVCFTYGT <mark>L</mark> FAV	r <mark>glaaagkt</mark> i	G <mark>N</mark> SEA	IRRAV <mark>Q</mark> FILNT	QNAE <mark>GGWGES</mark> ALSCPNKK
PEN6	619	WGVCF <mark>M</mark> YGTFFAV	R <mark>GL</mark> VAAGKTY	(QNCEP	IRKAVQFILET	Q <mark>NVE</mark> GGWGESYLSCP <mark>N</mark> KK
PEN4	610	WGVCFIYGTFFAV	R <mark>GL</mark> VAAGKTY	(SNCEA	I <mark>RKAV</mark> RFLLDT	QNPEGGWGESFLSCPSKK
PEN1	618	WGVCFIYGTLFAV	r <mark>gl</mark> vaagkt i	HNCEP	IRRAVRFLLDT	QNQEGGWGESYLSCLRKK
RsM2	614	WGICF <mark>M</mark> YGTYFAL	K <mark>GLAAAG</mark> NTY	(ANCPA	I PKAVDFLLKT	QCQ <mark>DGGWGESYLS</mark> GTTKV
LcIMS1	609	WGICYTYGTWFAL	KAL <mark>SM</mark> AGKTY	/ENCEA	V <mark>RK</mark> GANFLRKI	QNPEGGFGESYLSCPYKR
Mifrs	612	WGICFIYSTMFAL	G <mark>GLAAAG</mark> RTY	(KNCQA	VRRGVDFLLIN	QSDDGGWGESYISCPRKK
LUP2	613	WGICFIYATWFAL	S <mark>GLAAAGKT</mark> Y	(KS <mark>C</mark> LA	VRKGVDFLLAI	Q <mark>EE</mark> DGGWGES <mark>H</mark> LSCPEQR
LUP1	610	WGVCFIYATWFAL	G <mark>GLAAAG</mark> ETY	(ND <mark>C</mark> LA	MRNGVH <mark>FLL</mark> TT	QRD <mark>DGGWGESYLSC</mark> SEQR
RcLUS	611	WGICFSYGTWFAL	K <mark>GLAAAG</mark> RTY	(ENCSA	IRKGVDFLLKS	Q <mark>RD</mark> DGGWAESYLSCP <mark>K</mark> KV
KcMS	611	WGICF <mark>LF</mark> GTWFGL	K <mark>GLA</mark> TAGKTY	(YNCTA	VRKGVEFLL <mark>RT</mark>	Q <mark>RE</mark> DSGWGESYLSCPKKV
BgLUS	611	WGICF <mark>LS</mark> GTWFGL	K <mark>GLAAAGKT</mark> Y	(YNCTA	VRKGVEFLLQT	Q <mark>RD</mark> DGGWGESYLSCP <mark>K</mark> KI
SS	611	WGICFTYG <u>T</u> YYAL	G <mark>glaa</mark> iekty	(E <mark>NC</mark> QS	IRKAVRFLLKT	QGE <mark>DGGWGESY</mark> RSC <mark>AE</mark> KI
KdFRS	612	WGVCFTYG <mark>A</mark> WFAL	E <mark>GL</mark> SAAGKTY	(nncaa	VRKGVDFLLNI	QLE <mark>DGGWGESY</mark> QSCP <mark>DK</mark> K
KdLUS	612	WGVCFTYG <mark>A</mark> WFAL	E <mark>GL</mark> SAAGKTY	(nncaa	VRKGVDFLLNI	QLE <mark>DGGWGESY</mark> QSCP <mark>DK</mark> K
KdGLS	612	WGVCFTYG <mark>A</mark> WFAL	G <mark>GLAAAGKT</mark> Y	/NNCAA	VRKGVDFLLRI	QLE <mark>DGGWGESYQ</mark> SCP <mark>DK</mark> K
EtAS	612	WGVCFTYGTWFAV	G <mark>GLAAAGK</mark> NY	/N <mark>NC</mark> AA	MRKAVDFLLRT	Q <mark>KQ</mark> DGGWGESYLSCP <mark>H</mark> KK
RsM1	612	WGVCFTYGTWFAL	G <mark>GLAAAGKT</mark> Y	(NS <mark>C</mark> LA	MRKAVDFLLRI	Q <mark>KD</mark> DGGWGESYLSCP <mark>E</mark> K <mark>K</mark>
PNY1	613	WGVCFTYGSWFAL	G <mark>GLA</mark> AAGKTY	(YNC <mark>A</mark> A	V <mark>RKAVE</mark> FLL <mark>KS</mark>	Q <mark>MD</mark> DGGWGESYLSCP <mark>K</mark> KV
PNY2	611	WGVCFTYGTWFAM	G <mark>GLT</mark> AAGKTY	NNCQT	l <mark>hkav</mark> dfliks	Q <mark>RS</mark> DGGWGESYLSCPNKE
KdTAS	631	WGVCFTYGTWFAL	G <mark>GLAAAGK</mark> NY	(dNCAA	IRKGTEFLLNT	QCEN <mark>GGWGESYR</mark> SCP <mark>EK</mark> R
BPY	612	WGVCFTYGTWFAL	G <mark>GLAA</mark> VGKTY	(NNCLA	VRRAVDFLLRA	Q <mark>RDN</mark> GGWGESYLSCP <mark>K</mark> KE
PSM	612	WGICFTYGSWFAL	N <mark>GL</mark> VAAGKTY	(dNCAA	IRKGVEFLLTT	QRE <mark>DGGWGES</mark> HLS <mark>SSK</mark> KI
AMY2	612	AGICFIYGTWFAL	GGL <mark>E</mark> AAGKTY	(ANC <mark>A</mark> A	IRKGV <mark>K</mark> FLLTT	Q <mark>SK</mark> DGGWGESYLSCPKKI
AMY1	612	WGVCFTYGSW <mark>V</mark> AL	GLAAAGKTY	(TNCAA	IRKAV <mark>K</mark> FLLTT	QRE <mark>DGGWGESYLS</mark> SPKKI
PSY	612	WGVCFTYGSWFAL	GLAAAGKTY	(TNCAA	IRKGVKFLLTT	QREDGGWGESYLSSPKKI
OSC1	612	WGVCFTYGSWFAL	GGLAAAGKTY	(ANCAA	IRKAV <mark>K</mark> FLLT	QRG <mark>DGGWGESYLS</mark> SPKKI
GqbAS1	612	WGVCFTYGSWFAL	GGLAAAGKTI	ANCAA	IRKAVKFLLTT	OREDGGWGESYLS <mark>S</mark> PKKI

ScLAS	644	YVDSEKSLVVQ	TAWALIAL	lf <mark>a</mark> eypnk	EVID <mark>R</mark> G	ID <mark>LL</mark> K <mark>N</mark> R	QEESGE	WKFES	V <mark>E</mark> GVF
1W6K	641	YLQSAQSQIHN	ICWAMMGL	MAVRHPDI	EAQE <mark>R</mark> G	VRCLLEK	QLPNGD	WPQEN	I <mark>A</mark> GVF
BPX1	677	YTNLKDNRPHIVN	IGWAMLAL	IDAGQAER	DPTPLHRA	ARILINS	QMENGD	FPQEE.	I <mark>M</mark> GVF
KdCAS	668	YTNIP <mark>G</mark> GRSHVVN	IG <mark>WA</mark> MLAL	I <mark>G</mark> AGQAER	DP <mark>V</mark> PLHRA	AKFLIES	QLE <mark>N</mark> GD	FPQQE.	I <mark>M</mark> GVF
CAS1	667	YSNLDGNRSHVVN	TAWAMLAL	I <mark>G</mark> AGQAEV	D <mark>RK</mark> PLHRA	ary <mark>lin</mark> a	QME <mark>N</mark> GD	FPQQE.	I <mark>M</mark> GVF
PNX	667	YTNLEGNRS <mark>H</mark> VVN	IGWAMLAL	IDAGQAER	D <mark>AT</mark> PLHRA	AKLLINS	QME <mark>N</mark> GD	FPQ <mark>E</mark> E.	I <mark>M</mark> GVF
PSX	667	YSNLEGNRS <mark>H</mark> VVN	IGWAMLAL	IE <mark>AEQA</mark> KR	DPTPLHRA	AVC <mark>LINS</mark>	QLE <mark>N</mark> GD	FPQEE.	I <mark>M</mark> GVF
GgCAS1	667	YSNVESNRSHVVN	IGWAMLAL	IDAEQAKR	DPTPLHRA	AVY <mark>LINS</mark>	QME <mark>N</mark> GD	FPQQE:	I <mark>M</mark> GVF
OSC5	667	YSN <mark>LEGNR</mark> PHAVN	IG <mark>WA</mark> MLAL	IE <mark>AEQA</mark> KR	DPTPLHRA	ALY <mark>LINS</mark>	QME <mark>N</mark> GD	FPQQE.	I <mark>M</mark> GVF
BPW	666	WTNIEGNR <mark>A</mark> NLVQ?	FAWALL <mark>S</mark> L	IDARQAEI	DPTPIHRG	V <mark>RVLINS</mark>	QME <mark>D</mark> GD	FPQQE:	ITGVF
GgLUS1	666	Y <mark>TNLEGNR</mark> ANLVQS	SSWALLSL	TH <mark>AGQAE</mark> I	DPTPIHRG	MKLLINS	QME <mark>D</mark> GD	FPQQE:	ITGVF
OSC3	666	YTNIEGKRANLVQS	S <mark>SWALLS</mark> L	M <mark>RAGQAE</mark> I	DPTPIHRG	IRLLINS	QMD <mark>D</mark> GD	FPQQE:	ITGVF
TRW	669	Y <mark>TN</mark> LEGNRSNLV <mark>H</mark>	ISWALISL	IKAGQAEI	DPTPI <mark>SN</mark> G	VRLLINS	QME <mark>E</mark> GD	FPQQE.	ITGVF
OEW	667	Y <mark>TN</mark> LEGNRSNLVQ	ISWALLSL	IKAGQVEI	DP <mark>G</mark> PIHRG	IKLLVNS	QME <mark>D</mark> GD	FPQ <mark>e</mark> e:	ITG <mark>A</mark> F
PEN5	671	YIPSK <mark>GN</mark> VTNVVN	IG <mark>QAMM</mark> VL	LIG <mark>GQ</mark> MER	DPSPVHRA	AKVLINS	QLDIGD	FPQQE	RR <mark>G</mark> IY
PEN6	676	YTLLEGNRTNVVN	IG <mark>QALM</mark> VL	I <mark>MGGQ</mark> MER	DPLPVHRA	AKVLINS	QLD <mark>N</mark> GD	FPQ <mark>e</mark> e:	I <mark>M</mark> GVF
PEN4	667	YTPLKGNSTNVVQ	TA <mark>QALM</mark> VL	IMGD <mark>Q</mark> MER	DPLPVHRA	A <mark>Q</mark> VLINS	QLD <mark>N</mark> GD	FPQQE.	IMGTF
PEN1	675	YTPL <mark>AGNKTNIVS</mark>	IG <mark>QALM</mark> VL	I <mark>MGGQ</mark> MER	DPLPVHRA	AKVVIN <mark>l</mark>	QLD <mark>N</mark> GD	FPQQE	/ <mark>M</mark> GVF
RsM2	671	Y <mark>T</mark> PLEGNRSNLVQ	TAWALMGL	I <mark>HS</mark> GQAER	DPTPLHR <mark>S</mark>	AKLLINS	QTSDGD	FPQQD	STGLL
LcIMS1	666	YIPLDG <mark>K</mark> RSNLVQ2	TAWGMMGL	ICAGQADV	DPTPIHRA.	AKLLINS	QTEDGD	FPQ <mark>e</mark> e:	I TG <mark>E</mark> F
MiFRS	669	YTPLEG <mark>R</mark> RSNVVQ	TAWAMLGL	l <mark>y</mark> agqaer	DPTPLHRG	AKLLIN <mark>Y</mark>	QMEEGG	YPQQE	I <u>T</u> GVF
LUP2	670	YIPLEGNRSNLVQ	TAWAMMGL	I <mark>H</mark> AGQAER	DPTPLHRA	AKLIITS	QLE <mark>N</mark> GD	FPQQE.	ILGVF
LUP1	667	YIP <mark>SEG</mark> ERSNLVQ2	I <mark>S</mark> WAMMAL	I <mark>HT</mark> GQAER	D <mark>LI</mark> PLHRA	AKLIINS	QLE <mark>N</mark> GD	FPQQE.	IVGAF
RcLUS	668	YVP <mark>F</mark> EGNRSNLVQ	TAWAMMGL	IYGGQAKR	DP <mark>M</mark> PLHRA	AKLLINS	QTDLGD	FPQQEI	LTG <mark>A</mark> F
KcMS	668	YVPLEGN <mark>Q</mark> SNLIH	TA <mark>LAM</mark> MGL	ILS <mark>GQAE</mark> R	DPTPLHRA	LKLLINS	QTELGD	FPQQE	ISGCF
BgLUS	668	YVPLEGNRSNLVQ	TA <mark>LAM</mark> MGL	ILGGQGER	DPTPLHRA	AKLLINS	QTELGD	FPQQEI	ls <mark>gc</mark> f
SS	668	YIPLDGNRSTVVH	TAWAMLGL	MHSK <mark>Q</mark> EER	DP <mark>IPLHRA</mark>	AKLLINS	QME <mark>N</mark> GD	FPQQD	f <mark>tga</mark> f
KdFRS	669	YVPLE <mark>D</mark> NRSNLVQ	I <mark>S</mark> WALMGL	IY <mark>AGQAD</mark> R	DPTPLHRA	AKLLINS	QLE <mark>D</mark> GD	FPQQE.	I <mark>A</mark> GVF
KdLUS	669	YVPLE <mark>D</mark> NRSNLVQ	I <mark>S</mark> WALMGL	I <mark>Y</mark> AGQADR	DPTPLHRA	A <mark>Q</mark> LLINS	QLE <mark>D</mark> GD	FPQQE	ITGVF
KdGLS	669	YVPLE <mark>D</mark> NRSNLVH	I <mark>S</mark> WALMGL	L <mark>CS</mark> GQADR	DP <mark>N</mark> PLHRA	AKLLINS	QLE <mark>D</mark> GD	FPQQE	ITGVF
EtAS	669	YVPLEDNRSNLVH	I <mark>SWALMG</mark> L	I <mark>S</mark> AGQMDR	DPTPLHRA	AKLLINS	QLE <mark>D</mark> GD	FPQQE	ITGVF
RsM1	669	YVPLEAN <mark>H</mark> SNLVH	TAWAMMAL	V <mark>H</mark> AGQ <mark>M</mark> DR	DPTPLHRA	AKLMINS	QLEDGD	FPQQE	I <u>T</u> GVF
PNY1	670	YVPLEGNRSNLVH	IGWALMGL	IHSE <mark>QAER</mark>	DPTPLHRA	AKLLINS	QME <mark>D</mark> GD	FPQQE	ISGVF
PNY2	668	YTPLEGNRSNLVH	I <mark>S</mark> WAMMGL	IHSR <mark>QAE</mark> R	DPTPLHRA	AKLLINS	QME <mark>S</mark> GD	FPQQE	ITGVF
KdTAS	688	YVPLEENKSNLVH	TAWALMGL	IHSRQAER	D <mark>ITPLHRA</mark>	AKLLINS	QLE <mark>N</mark> GD	FPQQE	ITGVF
BPY	669	YVPLEGNKSNLVH	TAWAMMGL	I <mark>H</mark> AGQAER	DPTPLHRA	AKLIINS	QLEDGD	FPQQE	ITGVF
PSM	669	YVPLE <mark>RSQ</mark> SNIVQ	I <mark>S</mark> WAIMGL	I H <mark>AGQM</mark> ER	DPTPLHRA	V <mark>KLIIN</mark> F	QQEEGD	WPQQEI	LTGVF
AMY2	669	YVPLEGNRSNVVQ	TAWALMGL	I H <mark>AGQAER</mark>	DPTPLHRA	AKLLINS	QLE <mark>D</mark> GD	WPQQD	ITGVY
AMY1	669	YVPLEG <mark>S</mark> RSNVVH	TAWALMGL	IHAGQAER	DPTPLHRA	AKLLINS	QLEEGD	WPQQE.	ITGVF
PSY	669	YVPLEGNRSNVVH	TAWALMGL	I <mark>H</mark> AGQ <mark>S</mark> ER	DPTPLHRA	AKLLINS	QLEQGD	WPQQE.	ITGVF
OSC1	669	YVP <mark>F</mark> EGNRSNVVH	TAWALMGL	I <mark>HS</mark> GQAER	DPTPLHRA	AKLLINS	QLE <mark>E</mark> GD	WPQQE	ITGVF
GqbAS1	669	YVPLEGSRSNVVH	TAWALMGL	IHAGQAER	DPAPLHRA	AKLIINS	QLEEGD	WPQQE.	ITGVF

ScLAS	700	NHSCAIEYPSYRFLFPIKALCMYSRAYETHTL
1W6K	697	NKSCAISYTSYRNIFPIWALGRFSQLYPERALAGHP
BPX1	737	NKNCMISYSAYRNIFPIWALGEYRCRVLKAL
KdCAS	728	NKNCMISYAAYRNIFPIWALGEYRCKVLNASRGQMKT
CAS1	727	NRNCMITYAAYRNIFPIWALGEYRCQVLLQQGE
PNX	727	DKNCMITYAAYRNIFPIWALGEYRCRVLQGPS
PSX	727	NKNCMITYAAYRCIFPIWALGEYRRVLQAC
GgCAS1	727	NKNCMITYAAYRNVFPIWALGEYRHRVLQSQ
OSC5	727	N <mark>KNCMITYA</mark> AYRS <mark>IFPIWALGEYR</mark> CRVLQAR
BPW	726	MRNCTLNYSSYRNIFPIWALGEYRRRVLFA
GgLUS1	726	MRNCTLNYSSYRNIFPIWAMGEYRRQVLCAHSY
OSC3	726	MRNCTLNYSSYRNIFPIWALGEYRRRVLCA
TRW	729	MKNCNLNYSSFRNIFPIWALGEYRRIVQNI
OEW	727	MKNCTLNYSSYRNIFPIWALGEYRRRILHAQT
PEN5	731	-MNMLLHYPTYRNMFSLWALALYTNALRLLVS
PEN6	736	KMNVMVHYATYRNIFTLWALTYYTKALRVPLC
PEN4	727	MRTVMLHFPTYRNTFSIWALTHYTHALRRLLP
PEN1	735	NMNVLLHYPTYRNIYSIWALTLYTQALRRLQP
RsM2	731	KGSCAMHYAAYRNIFPLWALAAYRTHVLGLTSKAHSSAVME
LcIMS1	726	F <mark>KNCTLHFA</mark> AF <mark>RE</mark> VFPV <mark>MALGEY</mark> CNKVPLPSKKK
MiFRS	729	KMNCMLHYPIYRNAFPIWALGEYRKRVPLPSKGNSMAMKINSA
LUP2	730	MNT <mark>CMLHYA</mark> TYRNIFPLWALAEYRKAAFATHQDL
LUP1	727	MNTCMLHYATYRNTFPLWALAEYRKVVFIVN
RcLUS	728	MRNCMLHYALFRNTFPIWALAEYRRHVLFPSAGFGFGFTNNL
KcMS	728	MRNCMLHYSAYRDIFPMWALAEYCKLFPLPSKND
BgLUS	728	MRNCMLHYSEYRDIFPTWALAEYCKLFPLPSKND
SS	728	KKNCLLHYPMYRNIYTLWALAQYRKKVLRQPTGI
KdFRS	729	KMNCTLHFAAYRNIFPIWALAVYRRFCNPNSEAISKPSK
KdLUS	729	QRNCMLHYAAYRNIFPLWALAEYRRQIQLHSEATKMV
KdGLS	729	KMNCMLHFAAYRSIFPVWALAEYKRFCNLSSEAISKPSK
EtAS	729	MKNCMLHYAAYRNIYPLWALAEYR <mark>NRV</mark> PLPSTTL
RsM1	729	NRNCMLHYAAYRNIYPLWALAEYCRRVPLPS
PNY1	730	MKNCMLHYAAYRNIYPLWALAEYRRRVPLPSLGT
PNY2	728	MKNCMLHYAASRNIYPLWALAEYRKNVRLPSKSV
KdTAS	748	MKNCMQHYAAYRNIYPLWGIAEYRKQIPLPLR
BPY	729	MKNCMLHYA <mark>AYKNIYPLWALAEYR</mark> KHV <mark>PLPLGKNLNQVVNCIGQSLYKKYK</mark>
PSM	729	MKNCMLQYAMYRDIFPTWALAEYRRRILLASPAVAI
AMY2	729	VKNCTLHYPMYRNNFTTMALAEYRRRVPLPSIAV
AMY1	729	MKNCMLHYPMYRDIYPLWALAEYRRRVPLPSTAV
PSY	729	MKNCMLHYPMYRDIYPLWALAEYRRRVPLP
OSC1	729	MKNCMLHYPMYRDIYPMWALAEYRRRVPLPSTAV
GgbAS1	729	MKNCMLHYPMYRDIYPMWALAEYRRRVPIPSTPVCLT

APÊNDICE C - Cromatogramas das frações apolares extraídas de *S. cerevisiae* e espectro de massas dos picos identificados no cromatograma e em sequência de cada pico sua identificação segundo a biblioteca NIST11.

Entry:191107 Library:NIST11.lib SI:80 Formula:C30H500 CAS:79-63-0 MolWeight:426 RetIndex:2882 CompName:Lanosterol \$\$ Lanosta-8,24-dien-3-ol, (3.beta.)- \$\$ Lanosta-8,24-dien-3.beta.-ol \$\$ Botalan base 138 \$\$ Cholesta-8,24-dien-3-ol, 4,4,14-trimeth

Hit#:1 Entry:186078 Library:NIST11.lib

Hit#:1 Entry:191113 Library:NIST11.lib

Hit#:1 Entry:180874 Library:NIST11.lib SI:89 Formula:C28H440 CAS:57-87-4 MolWeight:396 RetIndex:2650 CompName:Ergosterol \$\$ Ergosta-5,7,22-trien-3-ol, (3.beta.,22E)- \$\$ Ergosterin \$\$ Provitamin D \$\$ Provitamin D2 \$\$ (3.beta.)-Ergosta-5,7,22- trien-3-ol \$

Hit#:1 Entry:191107 Library:NIST11.lib SI:80 Formula:C30H500 CAS:79-63-0 MolWeight:426 RetIndex:2882

Hit#:1 Entry:191113 Library:NIST11.lib SI:90 Formula:C30H500 CAS:559-74-0 MolWeight:426 RetIndex:2858

Hit#:1 Entry:186078 Library:NIST11.lib

SI:94 Formula:C30H50 CAS:111-02-4 MolWeight:410 RetIndex:2914

CompName:Squalene \$\$ 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-, (all-E)- \$\$ all-trans-Squalene \$\$ trans-Squalene \$\$ Spinacen \$\$ 5

Hit#:1 Entry:191128 Library:NIST11.lib SI:85 Formula:C30H500 CAS:638-95-9 MolWeight:426 RetIndex:2873 CompName:.alpha.-Amyrin \$\$ Urs-12-en-3-ol, (3.beta.)- \$\$ Urs-12-en-3.beta.-ol \$\$.alpha.-Amyrenol \$\$.alpha.-Amyrine \$\$ Viminalol \$\$ Urs-12-en-3-ol #

ANEXO A - Matriz BLOSUM62 de substituição de aminoácidos

```
A 4
R -1
    5
N -2 0 6
D -2 -2
       1
          6
С
  0 -3 -3 -3
            9
Q -1
    1
       0 0 -3
               5
E -1
       0 2 -4
               2
    0
                 5
 0 -2 0 -1 -3 -2 -2 6
G
H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -3
                         4
                        2 4
L -1 -2 -3 -4 -1 -2 -3 -4 -3
K =1 2 0 =1 =3
              1 1 -2 -1 -3 -2
                              5
M -1 -1 -2 -3 -1 0 -2 -3 -2
                         1
                           2 -1
                                5
F -2 -3 -3 -3 -2 -3 -3 -3 -1
                        0 0 -3
                                0 6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4
                                     7
  1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1
                                        4
s
  0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
т
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2
                                               7
v
  0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2
                                          0 -3 -1 4
A R N D C Q E G H I L K M F P S T W Y V
```