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Condition-based monitoring system for
rolling element bearing using a generic
multi-layer perceptron
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Abstract

Rolling element bearings are critical mechanical components in rotating machinery and fault detection in the early stages

of damage is important to prevent their malfunctioning and failure. Vibration monitoring is the most widely used and

cost-effective monitoring technique to detect, locate and distinguish faults in rolling element bearings. This paper pur-

poses single hidden layer architecture for fault diagnosis of rolling element bearings. The particular of this proposed

architecture is its ability to generalize for solving both basic classification and fault identification. The network uses the

features of time-domain vibration signals with normal and defective bearings. The Multi Layer Perceptron (MLP) was

trained and tested with a set of experimental data obtained from previous experiments developed by FEG, CWRU and

RANDALL laboratories. The results show the effectiveness of the MLP to diagnose the machine condition for the various

data used.
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1. Introduction

One real problem for the companies that apply indus-
trial machinery is related to stopping the production
line because of machine failures or scheduled preventive
maintenance. Rolling element bearings are main com-
ponents of most rotating machinery and the majority of
problems in these machines are caused by faulty bear-
ings (Niu et al., 2005, Farshidianfar et al., 2008,
Hameed et al., 2009, Randal, 2011, Dong and Chen,
2011). The most common faults in a rolling bearing are:
inner race, outer race, cage and rolling-element bearing.
Figure 1 illustrate these components.

The bearing defects like spall, pitting, and others,
generate impact vibrations over the structure. When a
single point defect starts, the strike of the running ball
over this fault generates periodic pulses that excite
ressonances of the structure. The characteristic of
such pulses are related with the geometry of the bear-
ing, the kind of fault, the rotaion of the shaft and the
type of bearing load. The measurements of these signals
on the bearing support house is the key point to evalu-
ate the condition of the bearing. The detection of such

signals can be performed using analysis techniques
from time domain, frequency domain and time-fre-
quency domain.

An appropriate maintenance policy is a key factor to
improve the productivity rate. Usually, the use of mech-
anisms for detecting or preventing failures in complex
machines provides benefits in terms of economy and
security (Tavner and Penman, 1987). Condition-Based
Maintenance (CBM) techniques have been used as an
effective policy for monitoring machines. Vibration
monitoring is one of the most important tool applied
to CBM (Mobley, 2008, Scheffer and Girdhar, 2004,
Kobbacy and Murthy, 2008).
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Information Technology (IT) has become a funda-
mental tool for the maintenance. Higgins and Mobley
(2002) pointed out four types of benefits for using IT:
cost-cutting, easier access to information, better plan-
ning and increased control of maintenance operations.

One important IT resource is the software, which
allow us to construct useful tools, when associated to
advanced techniques, such as Artificial Intelligence
(AI). These techniques have shown superior perform-
ance compared to conventional approaches (Jardine
et al., 2006).

Among AI techniques, Artificial Neural Networks
(ANN) stand out as the most widely used, particularly
in vibration monitoring. The proposals have fallen into
two approaches: detection of presence or absence of
failure (Samanta and Al-Balushi, 2003, Samanta,
2004, Rafieea et al., 2007) and identification of the
fault type (Jack and Nandi, 2000, Li et al., 2000, Al-
Raheem and Abdul-Karem, 2010).

However, each ANN implemented in these works
was strictly applied to solve a specific approach.
Thus, this paper presents a generic Multi Layer
Perceptron (MLP) which, if it is properly parameter-
ized, can help to solve problems for both fault detection
and identification of failure.

2. Theoretical foundations

2.1. Artificial Neural Networks (AAN)

An ANN consists in a large number of simple process-
ing elements called neurons, units, nodes or cells, each
one connected to other neuron by means of directed
communication links (Fausett, 1993). There are various
architectures of ANN, and MLP stands out as one of
the most widely used.

An ANN has the advantages of adaptive learning,
nonlinear generalization, fault tolerance, resistance to
noisy data, and parallel computation abilities (Haykin,
1999).

Its generic architecture (Figure 2) is a directed graph
where the neurons are represented by nodes and the
weights by edges.

The main component of an ANN is the artificial
neuron illustrated in Figure 3. We can identify three
basic elements:

1. A set of synapses or weights wi that determine the
effect of one neuronal signal on another.

2. An activation function f that determines the level of
neuron activation. The most common activation
functions are threshold and sigmoid.

3. An adder � for summing the input signals, weighted
by respective synapses of the neuron.

Figure 2. Generic ANN architecture.

Figure 3. Artificial neuron.Figure 1. Main element of a rolling bearing.
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2.2. Time-domain analysis

Analysis techniques applied for processing the vibra-
tion signals for condition monitoring can be classified
as time-domain, frequency domain and time-frequency
domain.

The most commonly used technique in the frequency
domain analysis is the spectrum analysis using Fast
Fourier Transform (FFT) (Mcfadden and Smith,
1984, Mechefske and Mathew, 1992, Chen et al.,
2005). Other techniques, such as envelope analysis, is
also being widely used (Yu et al., 2007, Guo et al., 2009,
Ming et al., 2011). Short-time Fourier transform
(STFT) and Wigner–Ville distribution are the most
popular time–frequency distributions applied to CBM
(Jardine et al., 2006, Li et al., 2006, Li and Mechefske,
2006, Lei et al., 2011).

Time-domain analysis is directly based on the time
waveform itself and traditional time-domain analysis
calculates characteristics called time-domain features.
Some authors (Scheffer and Girdhar, 2004) emphasize
that a good time-domain analysis depends on the set-
ting of the following parameters: unit of measurement
(displacement, velocity or acceleration), time period
sample, resolution, averaging and windows.

The most straightforward technique for time domain
analysis is the visual inspection of segments of the
waveform. Nevertheless, Mcfadden (1990) highlights
its limitation in identifying certain defects in bearings.
Some researches have pointed out the statistical fea-
tures as important parameters for prognostics and diag-
nostics of failures (Mendel, 1991, Nandi, 1999, Zhang
et al., 2005).

Considering a set of samples X of length N, the ana-
lyst can calculate the following statistical features: mean,
variance, kurtosis, skewness, high order moments, rms,
peak value, peak-to-peak value, crest factor, impulse
factor, shape factor, clearance factor. In equations (1)
to (12) the expression of each feature is shown
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where xi is the sampled signal, � is the signal average,
�2 is the variance and N is the number of data points.

3. Procedure for development

3.1. Experimental data

The vibration data used in this paper have been taken
from three sources: DATA-FEG, DATA-RANDALL
and DATA-CWRU.

DATA-FEG. These data were obtained from experi-
ments at Mechanical Engineering Departament labora-
tory of the Sao Paulo State University (UNESP),
Campus from Guaratinguetá. The experimental test
rig (Figure 4) consists of a three-phase induction
motor (WEG 1/2 HP) driving a shaft rotor assembly
with a rolling bearing mounted in one end. To collect
the data two accelerometers (B&K4371) were attached
on the horizontal and vertical positions of the bearing
support house, a charge amplifier (ENDEVCO 133)
was used for signal conditioning.

The ball bearing tested was the NSK6205, whose
specifications are shown in Table 1. The signals were
sampled at 12,000 samples/s lasting 10 seconds, and rec-
orded using a digital data recorder system
(AQDADOS).

The database was divided in three different datasets,
according to motor speed: 1200, 2100 and 3000 rpm
(Table 2). Each dataset contains signals which are
related to five conditions: normal (NO), inner race
with slight and severe defects (IRSL and IRSE), and
outer race with slight and severe defects (ORSL and
ORSE).

DATA-CWRU. These data are based on the experi-
ments developed by Dr Loparo’s laboratory at Case
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Western Reserve University. The test setup (Figure 5)
includes a three-phase induction motor (Reliance
Electric 2HP IQPreAlert), a torque transducer/encoder
and a dynamometer. SKF and NTN equivalent bear-
ings were used for the experiments. The bearing speci-
fications are depicted in Tables 1 and 3.

Vibration data was collected using accelerometers
placed at the 12 o’clock position at both the drive end
and fan end of the motor housing. These data were
sampled at 12,000 and 48,000 samples/s with the shaft

operating at different speeds (1797, 1772, 1750 and
1730 rpm).

Single point faults were introduced to the test bear-
ings using electro-discharge machining with fault diam-
eters of 0.007 inches, 0.014 inches, 0.021 inches, 0.028
inches and 0.040 inches.

Table 4 presents the datasets generated from
CWRU’s experiments according to shaft rotational
speed. Each dataset was generated taking into account
seven different conditions: normal, inner race with
slight and severe faults, outer race with slight and
severe faults, and rolling element with slight and
severe faults.

DATA-RANDALL. This database is proposed by
Randall (2011) and contains signals taken from four
bearing conditions: normal, inner race fault, outer
race fault and rolling element fault. The sampling fre-
quency is 48,000 samples/s and the shaft speed in the
test rig was 360 rpm. The bearing parameters are
depicted in Table 5 and this database is formed by
only one dataset named DR1.

Figure 4. DATA-FEG test rig.

Figure 5. DATA-CWRU test stand (Case Western Reserve

University, 2011).

Table 2. DATA-FEG datasets.

Dataset

identification

Motor

rotation (rpm)

DF1 1200

DF2 2100

DF3 3000

Table 4. DATA-CWRU datasets.

Dataset identification Motor velocity (rpm)

DC1 1797

DC2 1772

DC3 1750

DC4 1730

Table 1. NSK6205 and 6205 SKF specification.

Inside diam. Outside diam. Thickness Ball diam. Pitch diam.

0.9843 2.0472 0.5906 0.3126 1.537

Table 3. 6203 SKF specification.

Inside diam. Outside diam. Thickness Ball diam. Pitch diam.

0.6693 1.5748 0.4724 0.2656 1.122
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From this database was generated only one dataset
containing information about four conditions: normal,
inner race fault, outer race fault and rolling element fault.

3.2. MLP implemented

In this paper, we propose a generic ANN architecture
able to diagnose the presence or not of a failure, if so,
identify the type of fault.

This architecture is based on a MLP, as illustrated in
Figure 6, with one hidden layer. It is characterized by
the following aspects:

1. The number of N neurons in input layer is specified
by amount of time domain features used for
classification.

2. The number of P neurons in output layer is specified
by amount of faults in dataset.

3. After preliminary investigation the hidden layer was
set to a number of 5 neurons since increasing this
value did not afford improved results.

4. We use the backpropagation algorithm for training
the network.

5. It is used bipolar sigmoid activation function (equa-
tion 13) to calculate the output neurons

f xð Þ ¼
2

1þ e�xð Þ
� 1 ð13Þ

6. Initial weights wij and vij are created through the
optimization process proposed by Nguyen and
Widrow (1990).

7. The input data are normalized according to equation
14. The mini and maxi variables represent the range of
‘‘i’’ normalized features, while dmin and dmax are the
lower and upper values for that feature, respectively

ndi, j ¼
mini þ maxi �minið Þ � di, j � dmin

� �
dmax � dminð Þ

ð14Þ

Therefore, the configurable elements are directly
dependent of two points: the problem, detection or
identification of the fault, and the solution mode, num-
ber of features. The former defines the output layer size
while the latter defines the input layer size.

To detect the fault presence, the output layer is set to
a single binary neuron with value equals to 1 for fault
and 0 for no fault. On the other hand, the number of
output neurons is set to amount of different faults that
you want to identify.

The input layer configuration is straightforward, i.e.,
the number of neurons is the same as the amount of the
time domain features used for classification.

In order to provide faster learning we use a weight
initialization, developed by Nguyen and Widrow
(1990). The procedure is divided in the following steps:

1. For the weights wij between input layer and hidden
layer:
a) Initialize your values between �0.5 e 0.5.
b) Calculate

wj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1j þ w2

2j þ � � � þ w2
Nj

q
ð15Þ

� ¼ 0:7�M1=N ð16Þ

c) Recalculate weights values

wij ¼ ��
wij

wj
ð17Þ

d) Set the bias weights values between � and ��.
2) For the weights between hidden layer and output

layer:
a) Set your values between �0.5 and 0.5.

3.3. NeuralNet-CBM architecture

The MLP is implemented in a software named
NeuralNet-CBM (Figure 7). Its purpose is to make
available a tool that enables the data analysis from dif-
ferent systems of data acquisition. It is divided in two
modules: vibration and particles. The first is discussed
in this paper.

Figure 6. Architecture MLP.

Table 5. Bearing specification of the Randall test.

Ball diam. Pitch circle diam. Rolling elements Contact angle

7.12 38.5 12 0
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The CBM process in the vibration module consists in
two steps: basic classifier and fault classifier. Its func-
tionality (Figure 8) is in the following way:

1. The time domain routine is responsible for calculat-
ing the time domain features.

2. From features the neural classifiers are generated.
3. Having the features, you run the basic classifier for

diagnosis of the fault presence. If this happens, you
run the fault classifier for fault identification.

The ANN training was performed as follow:

1. Initialize the weights using Nguyen and Widrow
(1990) method.

2. While stop condition is false, do steps (3) to (7).
3. Select a pair of training {X, class}.
4. Calculate the input and output of each hidden layer

node

zinj ¼ v0j þ
XN
i¼1

xi � vij ð18Þ

zj ¼ f zinj
� �

ð19Þ

5. Calculate the input and output of each output layer
node

yink ¼ w0k þ
XM
j¼1

zj � wjk ð20Þ

yj ¼ f yinj

� �
ð21Þ

6. Calculate the output of the ANN.
7. Backpropagation of error:

a) Calculate error of the output layer node

�yk¼ dk�ykð Þ�f
0
yinkð Þ

ð22Þ

b) Calculate error of the hidden layer node

�z
inj¼
PP
k¼1

wjk��yk

ð23Þ

�zj ¼ �z
inj�f

0
zinj

� � ð24Þ

Figure 7. NeuralNet-CBM architecture.

Figure 8. Vibration module.
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c) Set the learning rate

� ¼
0:4

1þ iteration
number of epochs

� � ð25Þ

d) Update the weights

wtþ1
jk ¼ wt

jk þ ��ykzj þ � wt
jk � wt�1

jk

� �
ð26Þ

vtþ1ij ¼ vtij þ ��zjxi þ � vtij � vt�1ij

� �
ð27Þ

4. Tests and results

A key aspect about ANN is the performance, i.e., com-
puting time and diagnostic reliability. The first depends
on ANN architecture, that is, number of neurons in
each layer and training time. On the other hand, the
second is related to the ability of ANN in making the
classification with the lowest rate possible error. This
depends on many factors, such as, number of neurons
in input and hidden layers, proper configuration to be
used, training time.

The number of the output layer neurons is linked to
the faults. Thereby, the basic classifier has one neuron
and the fault classifier has four, six and three neurons
for DATA-FEG1, DATA-CWRU and DATA-
RANDALL, respectively. The number of the hidden
layer neurons was set up to five for both the basic
and fault classifiers.

For each configuration is performed 200 runs and
calculated the average which indicates the classification
success rate. The ANN was trained by 3000 and 1000
epochs for the basic and fault classifier, respectively.
The following sections present the results for each
data set. Table 6 shows a summary of the data used
in the ANN.

4.1. DATA-FEG results

For each condition, their samples were divided into 50
segments (S1,. . .S50), each with 2048 points. These seg-
ments were grouped into two sets, training and test,
resulting in 125 segments each. The next step was cal-
culating the time domain features (fi) for each set.
Figure 9 shows the process of creating files of training
and testing. This process is similar for all databases.

The ANN’s output for the basic classifier is �1 (no
fault) or þ1 (fault) and this is the same for all data-
bases. For the fault classifier is either 0001 or 0010 or
0100 or 1000. The binary value 0 or 1 is associated with
activation or not of a particular output neuron, each
representing one of four failures.

For each dataset in Table 2, the number of features
was set at one and then increased until to reach a sta-
bility. This procedure was adopted for three databases.
Table 7 presents the final results of all tests for DATA-
FEG database.

4.2. DATA-CWRU results

The samples of each condition were divided into 200
segments (S1,. . .S200), each with 2048 points. These seg-
ments were grouped into two sets, training and test,
resulting in 700 segments each. The next step was to
calculate the time domain features (fi) for each set.

The ANN’s output for the fault classifier is either
000001 or 000010 or 000100 or 001000 or 010000 or
100000. Table 8 presents the final results of all tests.

Figure 9. The process of creating files for training and test from DATA-FEG1.

Table 6. Summary of the data size.

Dataset Training data Test data

DATA-FEG 125 125

DATA-CWRU 700 700

DATA-RANDALL 180 180

3462 Journal of Vibration and Control 21(16)



4.3. DATA-RANDALL results

As in previous tests, the ANN output for the basic clas-
sifier is �1 and 1. The fault classifier output is 001, 010,
100, depending on the detected failure.

The samples of each rolling bearing state were
divided in 90 segments, S1 . . . S90, each with 1024
points. These segments were grouped into two sets:
training and test, resulting in 180 segments in each
set. Table 9 presents the final results of all tests.

All results presented in Tables 7–9 show a good per-
formance (greater than 95%) of the ANN using a small
amount of features in input layer.

5. Conclusion

This paper proposed a generic MLP for solving prob-
lems for both fault detection and identification of fail-
ure. The results demonstrate its effectiveness for the
following aspects: ability to handle signals from differ-
ent sources; right classification above 95% even using a
few nodes (features) in the input layer; and possiblity to
solve problems for both fault detection and identifica-
tion of failure.

It is difficult to highlight a single statistical param-
eter as a determining feature for efficient classification
of all databases analyzed. However, the analyis have
shown the features with the largest presence in the clas-
sifiers generated by the ANN are peak-to-peak value,
rms, mean, and kurtosis.

The method proposed has a great potential to be
applied in the industrial environment in a way to help
maintenace team.

The next challenge in our research would be con-
sidering other faults, like cage failure and combined
faults into a single sample and also to evaluate de
weight of each statistical feature into the analysis.

The result of this approach is deterministic, i.e.,
given an input signal it indicates the bearing state
and, if applicable, the defect. Instead the results indi-
cate the type of defect, it would present values of
expected probability for each fault, and the highest
value would indicate the most likely fault. In this case
the appropriate approach could be the Bayesian
networks.
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