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Abstract In the present contribution we analytically calculate solutions of the transition
probability of the Fokker–Planck equation (FPE) for both the generalized Morse potential
and the Hulthén potential. The method is based on the formal analogy of the FPE with the
Schrödinger equation using techniques from supersymmetric quantum mechanics.

Keywords Schröndiger equation · Fokker–Planck equation · Generalized Morse potential ·
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1 Introduction

Stochastic differential equations are preeminently adopted to model, among others, popula-
tion dynamics, protein kinetics, turbulence and even finance [1,2]. From such equations, a
partial differential equation can be derived to inform on the probability transition function of
the stochastic process. Notwithstanding, many of the stochastic differential equations have
no analytical solutions, imposing the requirement of other methods to analyze the properties
of the stochastic phenomena. In this sense, one of the most appreciated stochastic differential
equation is the Fokker–Planck equation (FPE), used originally not only to study stochastic
phenomena, but also the Brownian motion.

There are several methods to solve the FPE, such as numerical integration methods,
simulation methods, analytic solution for some potentials [3] and the method of formally
transform a given FPE in a Schrödinger equation. Methods and techniques that describe the
relation between Fokker–Planck and Schrödinger equations are widely applicable in many
areas, including life sciences, engineering and physics. Frequently, this last method is applied
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only when confined potentials are chosen [4]. Nevertheless, in recent years this method has
been the subject of interest in many fields of physics and considerable classes of potentials
are being explored to obtain analytic solutions [5,6], in particular all the shape-invariant
potentials of supersymmetric quantum mechanics.

Concerning the solvability of the Schrödinger equation to central problems, different
methods have been used to solve this equation for many potentials. Variational methods [7,8],
Lie group theoretical approaches [9,10], Nikiforov-Uvarov method [11], Fourier analysis [12]
and semi-classical estimates [13] can be highlighted. Specially, as already cited, an alternative
method which is known as generalization of the factorization method or supersymmetry
method has been introduced to solve the Schrödinger equation [14–16]. However, this method
is still little explored concerning FPE-Schrödinger analogy formalisms. In this way, potentials
of supersymmetric quantum mechanics give exactly solvable FPEs [17] and they will be the
main subjects covered by the present report besides general solutions of the Schrödinger
equation for generalized Morse and Hulthén potentials [7,18].

One of the present work motivations is that Morse and Hulthén potentials are excellent
examples of potentials to be applied in models of tumor growth and mechanisms involving
differentiated cells [19,20], addressing effective manners to comprehend mechanisms of
tumor growth and consequently enlightening possible effective paths on cancer treatment
[21,22]. The generalized Morse potential also is used to describe diatomic molecular and
physical models for DNA [23,24]. The Hulthén potential describes atomic interactions as
well, with applications in nuclear physics, solid state physics and physical chemistry [25,26].

The present paper is organized as follows. After a brief presentation of the FPE (Sect. 2),
in Sect. 3 we introduce a brief review on supersymmetric quantum mechanics methods [16],
describing the main features of how to associate the generalized Morse and Hulthén potentials
to such approach. Following this, we derive the solving method of the FPE in Sect. 4, using
those solutions to calculate the transition probability for the potentials. In Sect. 5 we present
the results and the most relevant effects of this analysis. We address some conclusions in
Sect. 6.

2 The Fokker–Planck Equation and Its Formal Analogy with Schrödinger
Equation

The Fokker–Planck equation gives the temporal evolution of the probability distribution
P(x, t):

∂

∂t
P(x, t) = ∂

∂x

[
f (x, t)P(x, t)

]
+ �

2

∂2

∂x2 P(x, t), (1)

where � is a constant of diffusion and f (x) is the function associated to a potential V (x).
Following [5] and using the method of separation of variables, it is possible to yield the
probability distribution as a series of functions:

P(x, t) =
∞∑
l=0

alφl(x)e
−t |�l |, (2)

where φl(x) are the eigenfunctions given by φl(x) = ψl(x)ψ0(x) and �l are the eigenvalues.
In this way, solutions of the Fokker–Planck equation can be written as (see e.g. [4])

P(x, t) = ψ0(x)
∞∑
l=0

alψl(x)e
−t |�l |, (3)
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where the coefficients al are

al = ψl(0)

ψ0(0)
. (4)

The connection between FPE and Schrödinger equation is detailed discussed in [5,17], where
some solutions of the FPE are also presented. In few words, Eq. (3) permits one to rewrite
the FPE as the following Schröndiger equation:

�

2

d2

dx2 ψ(x) − Vef f (x)ψ(x) = �nψ(x), (5)

where Vef f (x) = 1
2

{
1
�
f (x)2 + ∂ f (x)

∂x

}
.

3 Solutions of Schrödinger Equation from Supersymmetric Quantum
Mechanics

The quantum mechanics formalism carried out by supersymmetry emerged during the 1970s.
Particularly, Witten [14] introduced Supersymmetry in (1 + 0) Field Theory, calling it the
Supersymmetric Quantum Mechanics. Here the time t is the coordinated and the position x
is the field itself.

One of the preeminent applications for such formalism is to obtain solutions of the
Schrödinger equation. In this way, supersymmetry is considered a generalization of the
factorization method [15], where one can find elegant solutions of the Schrödinger equation
for several types of potentials [16]. Firstly, in such approach, the original factorized radial
Hamiltonian H1 is written as

H1 = h̄2

2m

d2

dx2 + V1(x) = a+
1 a−

1 + E (1)
0 , (6)

where a± are respectively the operators of creation and annihilation (the bosonic operators),
defined by

a± = ∓ d

dx
+ W1(x), (7)

where W1(x) is called the superpotential. For simplicity, h̄ = 2m = 1 is adopted. As a result
of the factorization of the Hamiltonian in the Eq. (6), we find that the superpotential W1

satisfies the Riccati equation
W 2

1 − W ′
1 + E1

0 = V1(x), (8)

where E1
0 is the eigenvalue of the ground state and V1(x) is the potential. The eigenfunction

for the lowest state is associated to the superpotential W1 by

�1
0 (x) = Ne− ∫ x

0 W (x̄)dx̄ , (9)

where N is constant of normalization. The general solution is

Hn = a+
n a

−
n + En

0 ,

a±
n = ∓ d

dx
+ Wn(x),

�(1)
n = a+

1 a+
2 ...a+

n ψ
(n+1)
0 , E (1)

n = E (n+1)
0 . (10)

Thus, all hierarchy of Hamiltonians can be constructed, connecting the eigenvalues and
eigenfunctions of the n-members [16].
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3.1 Schrödinger Equation with the Generalized Morse Potential (GMP)

The generalized Morse potential (GMP) [18,23] is defined by

V (x) = D

[
1 − b

eax − 1

]2

, b = eaxe − 1, (11)

where 0 < x < ∞, and D, b, a > 1 are parameters related respectively to the depth, the
position of the minimum xe and the radius of the potential. The Schrödinger equation for the
GMP can be written as [5,6]

(
− d2

dx2 + v(x)

)
ψ(x) = εψ(x), v(x) = k

(
1 − b

ex − 1

)2

, (12)

where

�(x) = √
aψ(x), k ≡ 2μD

a2h̄2 , ε = 2μE

a2h̄2 . (13)

From the described method of supersymmetric quantum mechanics, the solution of Eq. (12)
is

�n(x) = Nn y
αn (1 + y)−βn

2F1(−n,−n+ 1 − 2l; 2αn + 1;−y), y = (eax − 1)−1, (14)

where

αn = 1

2

(
kb(b + 2)

n + l
− n − l

)
, βn = 1

2

(
kb(b + 2)

n + l
+ n + l

)
, (15)

l = 1

2

(
1 +

√
1 + 4kb2

)
(16)

and Nn is the normalization constant. The corresponding eigenvalues are

En = D − a2

4

(
n + l − b(b + 2)k

n + l

)2

, n = 0, 1, 2... (17)

The Morse potential can be written as [5]

V (x) = D
[
1 − e−a(x−xe)

]2
, (18)

with the same parameters of the Generalized Morse potential. Figure 1 shows the plots
comparing the potentials. The principal difference between potentials appears at x ∼ 0.

3.2 Schrödinger Equation with the Hulthén Potential

The Hulthén potential has recently been studied by many authors [25,26]. The potential has
the form,

V (x) = − V1e−2ax

1 − qe−2ax , (19)

where V1, a > 0 and q are parameters. The energy eigenvalues and wave functions of the
Hulthén potential to Schrödinger equation are [7]

En = −a2
[
n + 1 − V1

4qa2(n + 1)

]2

n ≥ 0, q ≥ 1 (20)

�n(s) = Nns
√

ε(1 − qs)P(2
√

ε,1)
n (1 − 2qs), (21)

123



Analytical Solutions of the Fokker–Planck Equation... 391

x
1 2 3 4 5 6

V
(x

)

0

10

20

30

40

50

60

70

Potentials

Generalized Morse
Morse

Fig. 1 Graphics of the generalized Morse and Morse potentials to a = 1, xe = 2, 5 and D = 10

where s = e−2ax , ε = − 2mE
4a2 h̄2 , Nn is the normalization constant and Pn are Jacobi polyno-

mials.

4 Solving Fokker–Planck Equation with GMP and Hulthén as Effective
Pontentials

4.1 Fokker–Planck Equation for the Generalized Morse Potential

From the connection between the FPE and the Schrödinger equation, Eq. (5), one can observe
that the function f (x) is associated to an effective potential. For the case of GMP, the effective
potential is

1

2

{
1

�
f (x)2 + ∂ f (x)

∂x

}
= Vef f (x) = D

[
1 − b

eax − 1

]2

+ D

(
ρ2

2�D
− 1

)
, (22)

where ρ = u
2 − �D

u (2b + b2) and u = 1
2 (�a + √

(�a)2 + 8�Db2). The solution to f (x) is

f (x) = ρeax − γ

eax − 1
, (23)

with γ = − u
2 − �D

u (2b+b2). Substituting the Eq. (23) in the FPE associated with Schrödinger
equation [5] we find

�

2

d2

dx2 ψ(x) − 1

2

{
1

�
f (x)2 + ∂ f (x)

∂x

}
ψ(x) = �nψ(x). (24)

Therefore, Eq. (24) is a differential equation that can be determined by comparison with the

Schrödinger equation. We consider � → − h̄2

m and the eigenvalues can be written in terms
of the eigenvalues (17),

�n = a2�2

8

(
n + l − b(b + 2)D

a2(n + l)

)2

− 2D + ρ2

2�
. (25)
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Fig. 2 Distribution of probability P(x, t) as a function of x to generalized Morse potential with parameters
a = 1, D = 10, � = 2 and xe to times t = 0.001 and t = 0.1

Replacing the values �n in (3) we obtain the distribution of probability P(x, t). The Fig. 2
shows the distribution of probability to different values of time.

4.2 Fokker–Planck Equation for Hulthén Potential

The transformation of the Fokker–Planck equation to Schrödinger equation introduces the
following effective potential

1

2

{
1

�
f (x)2 + ∂ f (x)

∂x

}
= Vef f (x) = −V1

e−2ax

1 − qe−2ax + 1

2�

(−V1 + 2qa2�

4aq

)2

. (26)
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Fig. 3 Distribution of probability P(x, t) as a function of x to Hulthén potential with parameters a = 1,
q = 1, V1 = 3 and � = 2 to times t = 0.35 and t = 3.00
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Fig. 4 The plots show P(x, t) as a function of x to generalized Morse potential, calculated by using the
relation between Fokker–Planck and the Schrödinger equation using techniques from supersymmetry quantum
mechanics. a Shows the dependence of P(x, t) on x for fixed a = 1, D = 10, � = 2 and xe to values of
t = 0.001, t = 0.02 and t = 0.05. b Shows the dependence of P(x, t) on x for fixed a = 1, D = 10, � = 2
and xe to values of time t = 0.5, t = 2.0 and t = 5.0

The ansatz to f (x) is

f (x) = − ξe−2ax

1 − qe−2ax + η, (27)

with ξ = −2aq� and η = −V1+2qa2�
4aq . As we have seen in the previous section, replacing

(27) in the FPE analog of the Schrödinger equation leads to the calculation of the eigenvalues

�n = 2a2�

(
n + 1 − V1

4qa2(n + 1)

)2

+ 1

2�

(
2qa2� − V1

2aq

)2

. (28)
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Fig. 5 The plots show P(x, t) as a function of x to Hulthén potential, calculated by using the relation between
Fokker–Planck and the Schrödinger equation using techniques from supersymmetry quantum mechanics. a
Shows the dependence of P(x, t) on x for fixed a = 1, D = 10 and � = 2 to values of t = 0.35, t = 0.40
and t = 0.50. b Shows the dependence of P(x, t) on x for fixed a = 1, D = 10 and � = 2 to values of time
t = 0.65, t = 3.0 and t = 8.0

The distribution of probability P(x, t) with the Hulthén potential background is obtained
replacing (28) in (3). The main characteristics of the distribution of probability P(x, t) to
different values of time t are shown in the Fig. 3.

5 Results

Several conclusions can be drawn from the analysis of results. The Figs. 2 and 3 show the
distribution of probability P(x, t) as a function of x to generalized Morse and Hulthén poten-
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tials. The solutions were obtained replacing the values of the eigenfunctions and eigenvalues
for generalized Morse and Hulthén potential in Eq. (3). The previous comparison between
the solutions to potentials shows that although the Figs. 2 and 3 display the same behavior,
they present a discrepancy between increase of time and decrease of the probability.

The main features from the calculation of P(x, t) can be summarized as follows (see
Figs. 4 and 5): The curves presented in Fig. 4 illustrate the distribution of probability P(x, t)
as a function of x to the generalized Morse potential with parameters a = 1, D = 10
and � = 2 to different values of time. The Fig. 4a shows the distribution to short times
(t = 0.001, 0.02, 0.05) and 4b shows the distribution to large times (t = 0.5, 2.0, 5.0). It can
be observed that for small values of time the probability of finding the particle at position x
is (P(x, t) ∼ 0.98 ), Fig. 4a. The probability decreases (P(x, t) ∼ 0.92) as time increases,
Fig. 4b. For times of order t ∼ 2.0 the system can be considered stationary, given that for
such time values the curves coincide.

Results of distribution of probability to Hulthén potential are presented in Fig. 5. The
parameters used to find the numerical solutions are a = 1, D = 10 and � = 2. Figure 5a also
shows the distribution to short times (t = 0.35, 0.40, 0.50) while 5b shows the distribution
to large times (t = 0.65, 3.00, 8.00). In this case, the more time increases, the larger is
probability of finding the particle at position x . Again, the system is considered stationary at
t ∼ 2.0.

6 Conclusions

In recent years there has been a considerable increase in research activities directed toward
the development of solutions of the FPE to different potentials. The purpose of the present
contribution was to calculate solutions of the FPE for two specific effective potentials: gen-
eralized Morse and Hulthén potentials. Also, it was illustrated how to find solving shortcuts
from supersymmetric quantum mechanics and its method to yield solutions from Schröndiger
equation. Namely, solutions for the two mentioned potentials was achieved by the formal
analogy of FPE with the Schröndiger equation.

In this way, the algebraic relation between the corresponding eigenfunctions and eigenval-
ues of the Schrödinger equation and the relationship between FPE and Schrödinger equation
provides the solutions of the distribution of probability. We note, as well, that such tech-
nique is a powerful and an elegant prescription to obtain the Fokker–Planck distribution of
probability in the presence of several potentials.

Finally, the generalized Morse and Hulthén potentials are excellent examples of potentials
to be applied in models of tumor growth and mechanisms involving differentiated cells,
addressing effective manners to comprehend mechanisms of tumor growth and consequently
enlightening possible effective paths on cancer treatment.
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