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Abstract
Objectives Narrow implants are indicated in areas of limited
bone width or when grafting is nonviable. However, the re-
duction of implant diameter may compromise their perfor-
mance. This study evaluated the reliability of several narrow
implant systems under fatigue, after restored with single-unit
crowns.
Materials and methods Narrow implant systems were divided
(n = 18 each), as follows: Astra (ASC); BioHorizons (BSC);
Straumann Roxolid (SNC), Intra-Lock (IMC), and Intra-Lock
one-piece abutment (ILO). Maxillary central incisor crowns
were cemented and subjected to step-stress accelerated life
testing in water. Use level probability Weibull curves and re-
liability for a mission of 100,000 cycles at 130- and 180-N

loads (90 % two-sided confidence intervals) were calculated.
Scanning electron microscopy was used for fractography.
Results Reliability for 100,000 cycles at 130 N was ∼99 % in
group ASC, ∼99 % in BSC, ∼96 % in SNC, ∼99 % in IMC,
and ∼100% in ILO. At 180 N, reliability of ∼34% resulted for
the ASC group, ∼91 % for BSC, ∼53 % for SNC, ∼70 % for
IMC, and ∼99 % for ILO. Abutment screw fracture was the
main failure mode for all groups.
Conclusions Reliability was not different between systems
for 100,000 cycles at the 130-N load. A significant decrease
was observed at the 180-N load for ASC, SNC, and IMC,
whereas it was maintained for BSC and ILO.
Clinical relevance The investigated narrow implants present-
ed mechanical performance under fatigue that suggests their
safe use as single crowns in the anterior region.

Keywords Dental implants . Biomechanics . Reliability .

Weibull . Fatigue

Introduction

Because osseointegration immediate and long-term success
has been extensively reported, the need to expand knowledge
on implant-supported prosthodontics success concerning
mechanisms involved in the fatigue and failure process has
been strongly suggested in a recent systematic review [1].
For single implants, one of the most commonly reported me-
chanical problems is screw joint instability potentially
resulting in loosening and/or fracture of the abutment screw.
The second most common failure is loosening or fracture of
the abutment with few reports of implant fracture [2]. With
variations in implant design and diameter, complication rates
should be well understood especially in cases where a narrow
implant is under loading, given that stresses will be born and
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distributed to a significantly smaller structure compared to a
standard diameter implant (approximately 4 mm) [3].

The use of narrow implants, when correctly indicated and
placed, has gained significant attention in implant dentistry
since it may allow the restoration to be inserted in areas that
would require grafting procedures to create enough volume to
insert a standard diameter implant. That could increase not
only treatment time but also costs and treatment morbidity.
Other situations where they may also be indicated are limited
prosthetic spaces, as in the maxillary and mandibular lateral
incisors [4]. However, little is known about the mechanical
performance and expected failure mechanisms of different
implant-abutment connection designs of narrow diameter im-
plants subjected to fatigue [3, 5]. The use of narrow-neck and
reduced-diameter implants resulted in an overall increase in
stress and strain magnitudes around supporting implants in
comparison with support from two standard solid-screw im-
plants [6]. Some manufacturers attempted to decrease the po-
tential failures by increasing the implant diameter and modi-
fying the abutment connection design [4, 5, 7].

Narrow implants are either presented as one piece, where its
coronal portion is prepared to receive the crown, or as two
pieces when an abutment is selected to be torqued and to re-
ceive the prosthetic crown. Clinical pros and cons aside, the
variety of implant-abutment connection designs warrants fur-
ther investigation so potential differences between systems can
be acknowledged. In addition, two-piece implants may present
abutments and their screws fabricated as a monolithic piece,
which may improve the performance of the system given that
spaces for micromotion are eliminated, potentially resulting in
increased survival when higher loads operate under function.

Long-term randomized clinical trials are always highly de-
sired to obtain information on the longevity and complication
modes of new implant system’s design. However, due to high
cost and the time consuming nature of this kind of research,
laboratory testing involving fatigue is an important step in the
hierarchical approach for rapidly understanding material’s
overall performance before randomized trials can be performed
[8]. Fatigue testing is an important tool to understand the prob-
ability of survival and failure modes of prosthetic components
and implant [9, 10]. Fatigue testing has demonstrated to be
relevant to simulate the mechanical response of prosthesis sys-
tems under function [11, 12]. Fatigue and its related failures are
a time-dependent phenomenon with a proportional increase in
the incidence of implants and prosthetic component failures
observed as time elapses with the system under load [9, 10, 13].

This study sought to evaluate the probability of survival
and failure modes of five narrow implant systems, each com-
prised by a different implant-abutment connection design and
restored with maxillary central incisor crowns when subjected
to step stress-accelerated life testing (SSALT) in water. The
postulated null hypothesis was that two-piece narrow implants
from several manufacturers would not present different

probability of survival when used for anterior single-unit
replacements.

Materials and methods

Experimental design

Five different narrow implant systems were selected and di-
vided (n = 18 each) as follows: Astra (ASC) OsseoSpeed TX
Small implant with 3.5 mm diameter (Astra Tech, Waltham,
MA, USA) with a standard pre-fabricated titanium
connection/TiDesign (Astra Tech, Waltham, MA, USA);
BioHorizons (BSC) narrow implant of 3.5 mm diameter
(PYR35105, Birmingham, AL, USA) with standard pre-
fabricated titanium connection/PYNEA (BioHorizons, Bir-
mingham, AL, USA); Straumann Roxolid (SNC) narrow neck
CrossFit® connection with 3.3 mm diameter (Straumann, Ba-
sel, Switzerland) using a standard pre-fabricated abutment
(NC anatomic abutment, Straumann, Basel, Switzerland);
Intra-Lock (IMC) narrow implant (3.4 mm diameter) (SQ
Connection, Intra-Lock International, Boca Raton, FL, USA)
with a standard multilobular connection; and Intra-Lock nar-
row neck implant (ILO) (3.4 mm diameter) with a one-piece
abutment and screw (One Piece Connection, Intra-Lock Inter-
national, Boca Raton, FL, USA) with a modified square con-
nection (Table 1).

Sample preparation

Each abutment was connected to the respective implant and
vertically embedded in polymethyl-methacrylate resin (Ortho-
dontic Resin, Dentsply Caulk, Philadelphia, PA, USA) leav-
ing 1 mm of the implant-abutment finishing line exposed
above the potting surface. The resin block with the embedded
implant-abutment assembly was used as a matrix for fabrica-
tion of all samples within the same group.

All groups were restored with standardized central incisor
metallic crowns obtained by milling and produced from one
single .stl file which fabricated a series of identical samples
(Co-Cr alloy, Wirobond 280; Bego, Bremen, Germany). The
abutments were tightened with a torque gauge (Tohnichi
BTG150CN-S, Tohnichi America, Northbrook IL, USA) ac-
cording to the manufacturer’s instructions, and crowns
cemented (Rely X Unicem, 3M ESPE, St. Paul, MN, USA)
on the abutments.

Mechanical testing and reliability analysis

Mechanical testing was conducted with specimens positioned
at a 30° axial inclination, as per ISO 14801:2007, to provide a
bending component during fatigue loading which was per-
formed under water at 9 Hz with a servo-all-electric system
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(TestResources 800L, Shakopee, MN, USA). Step-stress ac-
celerated life testing mild, moderate, and aggressive profiles
were used to fatigue samples [11, 14–18]. Distribution of the
18 samples of each group across the three step-stress profiles
was as follows: nine to the mild, six to the moderate, and
three to the aggressive profiles. These profiles refer to the
gradual increase in load as fatigue cycles elapse until speci-
men failure or survival. Therefore, samples assigned to the
aggressive profile run less cycles to reach the same load
levels of others ran in the mild profile [19]. The rationale
for such profile design and distribution is based on the need
to distribute failures across different step loads allowing im-
proved statistical prediction and accelerated life testing [20,
21]. The sampleswere tested until failure (fracture or bending
of the fixation screw and/or of the abutment and/or implant)
or survival after the end of step-stress profiles.

Based upon the step-stress distribution of the failures, use
level probabilityWeibull curves (probability of failure versus
cycles) with use stress of 130 and 180 N at 90 % two-sided
confidence intervals were calculated and plotted (Synthesis
Alta 9, ReliaSoft, Tucson, AZ, USA) using a power law
relationship for damage accumulation. For the mission reli-
ability and β parameters calculated in the present study, the
90 % confidence interval ranges were calculated as follows:

IC ¼ E Gð Þ � Zαsqrt Var Gð Þð Þ ð1Þ
where IC is the confidence bound (CB), E(G) is the mean
estimated reliability for the mission calculated from Weibull
statistics, Zα is the Z value concerning the given IC level of
significance, and Var(G) is the value calculated by the Fisher
information matrix [20, 22].

If the use level probabilityWeibull calculated beta was <1
for any group (which indicates the failure rate over time),
then a Probability Weibull Contour plot (Weibull modulus
vs. characteristic strength) was plotted (Synthesis Weibull
++9, ReliaSoft, Tucson, AZ, USA) using final load magni-
tude to failure or survival of all groups. The Weibull modu-
lus (m) and characteristic strength Eta (η) (63.2 % of the
specimens would fail up to the calculated “η”) were identi-
fied for examining differences between groups.

Failure analysis

The failed samples were inspected in a polarized light ste-
reomicroscope (MZ-APO stereomicroscope, Carl Zeiss
MicroIang, Thornwood, NY, USA) and classified according
to the failure criteria for comparisons between groups. In
order to identify fractographic marks and characterize the
failure origin and the direction of crack propagation, the
most representative failed samples of each group were
inspected under a scanning electron microscope (SEM)
(S-3500N; Hitachi, Osaka, Japan) [16, 23].T
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Results

Mechanical testing

The mean beta and associated upper and lower bounds β
value (confidence interval range) derived from use level prob-
ability Weibull calculation (probability of failure versus num-
ber of cycles) were 2.10 (1.24–3.55) for ASC, 1.34 (0.75–
2.37) for BSC, 0.40 (0.23–0.70) for SNC, 3.19 (2.22–4.57)
for IMC, and 1.05 (0.61–1.81) for ILO (Table 2). The beta
value for SNC indicated that strength was the main factor
dictating its failure behavior, while failures for the remaining
groups were influenced by fatigue and damage accumulation.
Note that the beta value (or Weibull shape factor) describes
failure rate changes over time where beta <1, failure rate is
decreasing over time, commonly associated with “early fail-
ures” or failures that occur due to egregious flaws; beta ∼1,
failure rate that does not vary over time, associated with fail-
ures of a random nature; and beta >1, failure rate is increasing
over time, associated with failures related to damage accumu-
lation [24].

The calculated Weibull modulus (m) and characteristic
strength (η, in Newtons) are numerically presented for each
group in Table 3 and graphically in the contour plot (Fig. 1).
The characteristic strength values for SNC (220.38 N) and
ASC (237.37 N) were not significantly different from each
other, but only the distribution of values of ASC was signifi-
cantly lower compared to IMC (270 N) and BSC (286 N)
(Fig. 1). The latter two groups (IMC and BSC) were not sig-
nificantly different between each other, but both presented

characteristic strength significantly lower than the ILO
(288 N) which was significantly higher than all others. Differ-
ences between groups are depicted in the contour plot (Fig. 1)
which represents the values of the combination of both param-
eters (Weibull modulus and characteristic strength), and dif-
ferences in specimen population are detected if contour over-
lap between groups does not exist [25].

The calculated reliability with 90 % confidence intervals
for a mission of 100,000 cycles at 130 N showed that cumu-
lative damage from loads would lead to ∼93 % implant-
supported restoration survival in group ASC, ∼98 % in
BSC, ∼85 % in SNC, ∼99 % in IMC, and ∼100 % in ILO.
At 180 N and same cycle mission, the probability of survival
was <0.1 %ASC, ∼77% for BSC, ∼26% for SNC, ∼93% for
IMC and ∼100 % for ILO (Table 2). Reliability was not sig-
nificantly different between groups at 130 N. However, at a
180-N load, a significant decrease in reliability was observed
for all groups, except for ILO where an overlap was still pres-
ent between the upper and lower bounds (Table 2). When
comparing the reliability between groups at 180 N, only
IMC was not significantly different from ILO, whereas the
remaining had significantly decreased. Also, the reliability
for group BSC was not statistically different from IMC
(Table 2).

Failure modes

All specimens failed after SSALT. When component failures
were evaluated together, failures comprised the combination
of abutment screw bending or fracture, and abutment fracture

Table 2 Reliability values for a mission of 100,000 cycles show
that at 130 N, systems are not different (upper and lower bounds
overlap). However, at 180 N, a significant decrease was observed in

the reliability of ASC, SNC, and IMC, whereas the reliability of
BSC and ILO was maintained. The beta values at the bottom of
the table indicate failure rate changes over time.

ASC BSC SNC IMC ILO

130 N 180 N 130 N 180 N 130 N 180 N 130 N 180 N 130 N 180 N

Reliability—100,000 cycles Upper 0.99 0.65 0.99 0.97 0.98 0.72 0.99 0.86 1.00 1.00

Mean 0.99 0.34 0.99 0.91 0.93 0.53 0.98 0.70 1.00 0.99

Lower 0.94 0.07 0.97 0.77 0.81 0.30 0.92 0.43 1.00 0.99

Beta Upper 3.55 2.37 0.70 3.12 1.81

Mean 2.10 1.34 0.40 2.10 1.05

Lower 1.24 0.75 0.23 1.41 0.61

Reliability mean values are italicized and refers to the percentage probability of survival of groups at 130 and 180 N

Table 3 Weibull modulus and characteristic strength values for groups

ASC (n = 17) BSC (n = 18) SNC (n = 18) IMC (n = 18) ILO (n = 18)

Weibull modulus (m) 11.15 9.37 12.99 7.65 17.02

Characteristic strength (N) 237.37b,c 286.54b 220.38b 270.15b 288.09a

The same superscript letters indicate statistically homogenous groups

1508 Clin Oral Invest (2016) 20:1505–1513



(Fig. 2). Failure modes are described in detail in Table 4. For
all groups, failure predominantly involved the abutment screw
fracture, and for the ILO group, the abutment fracture. Obser-
vation of the polarized light and SEM micrographs of the
fractured surface of the abutment screws allowed the identifi-
cation of fractographic markings, such as compression curl
and the identification of the fracture origin at the opposite side
along with the direction of crack propagation (Fig. 2).

Discussion

It is important to acknowledge that no consensus seems to
exist in the terminology for narrow or small diameter im-
plants, but as controversies may arise to differentiate them
from “mini dental implants” [26] used in orthodontic treat-
ment, it has been suggested that narrow implants have a di-
ameter equal to or greater than 3 mm [27]. Since narrow

Fig. 1 a Use level probability
Weibull plot shows the
probability of failure as a function
of elapsed cycles. b Contour plot
which is the summary statistics of
the failed fatigue samples and
their load at fracture during
fatigue, or characteristic strength,
combined with the information of
Weibull modulus. Non-overlap
between groups indicates that
they are significantly different

Clin Oral Invest (2016) 20:1505–1513 1509



diameter implants have been introduced in attempt to fulfill
the challenging clinical situation of thin alveolar crests or lim-
ited proximal clearance, the possibility of restoring single-unit
prosthesis, as simulated in this study, has raised concerns re-
garding its mechanical integrity under fatigue loading. As

implant diameter decreases, wall thickness at the cervical area
will also decrease which seems to be critical in implants with
internal connections, as recently shown [13]. Therefore, man-
ufacturers have given substantial attention to more complex
engineering designs that would better dissipate stresses

Fig. 2 SEM micrographs of
representative fractures during
SSALT showing (a, b) failure of
the one-piece abutment screw
system. a A lingual view, where
fracture initiated and b an occlusal
view with a compression curl
located at the top which indicates
that the bottom opposing side is
the tensile, where fracture
initiated. For the remaining
figures, which presented
abutments and screws as separate
parts (c–j), a similar failure mode
was observed among them with
failure confined to the abutment
screw and occasionally involving
the abutment (as in i, j)

1510 Clin Oral Invest (2016) 20:1505–1513



improving the overall mechanical performance of narrow im-
plant systems.

Although the probability of survival for loads averaging
130 N was high and not different between systems, a slight
increase to 180 N resulted in a substantial decrease for all
groups, except for the one-piece abutment/screw system
(ILO), and for a very narrow difference in confidence interval
also for group BSC. Whereas such result may be expected for
the one-piece abutment/screw system, it showed that the pres-
ence of an implant-abutment connection and its connecting
parts may hamper the performance of most narrow implant
systems under more challenging load scenarios. Conversely,
the reliability of a system with less connecting parts may be
predominantly influenced by the implant and integrated abut-
ment/screw’s raw material (i.e., titanium grades or alloys) [28,
29]. The observed differences between the two-piece systems
were not expected from an implant diameter perspective
alone, given that all four groups were of similar dimensions.
Comparing the two-piece implant/abutment groups, only the
BSC presented statistically different from the one-piece group
at 180 N. Potential reasons for this finding could be attributed
to its ability to shield the abutment and its screw preventing
them from failing at load levels that lead the remaining groups
to failure.

A remarkable aspect observed when comparing the
groups for characteristic strength was the non-overlap be-
tween the one-piece and all other two-piece systems
meaning that the characteristic strength of the former
was higher than all others. In addition to this finding,
the one-piece system resulted in the highest Weibull mod-
ulus, which was expressed in the contour plot by its nar-
row aspect and indicates that loads required for failure
under fatigue occurred under a very defined range for this
group. Among the two-piece systems, the only group not
intersecting both IMC and BSC, due to its significantly
lower characteristic strength, was the ASC system. Con-
sidering that implant diameter was identical between BSC
and ASC and even lower for IMC, differences in design
and fit between connections have likely accounted for the
lower characteristic strength observed for the ASC group.
The characteristic strength of the IMC was not different
from groups BSC and SNC, in spite of its smaller diam-
eter. Possibly its modified connection geometric design
(IMC) which presents a four-sided internal configuration

provides improved fit, decreasing micromovement be-
tween parts [30]. This aspect is of importance as the mo-
ment of inertia in bending is proportional to the inverse of
the part diameter cube and as such even small decreases
or increases in fit will result in exponential variation in
the systems’ bending resistance. Future studies evaluating
the fit of these systems are warranted.

The lack of long-term studies reporting on prosthetic sur-
vival rates on narrow implants has recently been pointed out
[27], which indicates the need of clinical trials that supports
previous in vitro evaluation of their performance considering
that an important failure mechanism in metals is fatigue [31].
The step-stress accelerated life testing method utilized in the
present study consists in testing the samples at higher stress
levels in order to accelerate failures, although every sample is
subjected to progressively increasing loads which start at low
levels before reaching the above mentioned higher levels [21,
30, 32–35]. These failures are distributed over three different
profiles allowing statistical predictions for a given load and
cycle mission.

From a fracture evaluation standpoint, abutment screw
fracture was the main failure mode for systems other than
the monolithic abutment and screw system (ILO). In the latter
case, failure was still confined to the abutment/screw system
and never involved the implant fractures, which allows sub-
sequent restoration replacement in a clinical scenario. There-
fore, regardless of the region where the fracture took place,
repair was possible for all groups which is surprising consid-
ering that implant wall thickness is engineered to its minimum
dimensions.

Conclusion

The postulated null hypothesis which stated that narrow im-
plant systems varying the connection design within similar
diameter would not present different probability of survival
when used for anterior single-unit replacements was partially
accepted. Although the probability of survival was not signif-
icantly different between systems at a 130-N load, an increase
in load to 180 N significantly decreased the probability of
survival of all two-piece narrow systems, but the BSC and
the one-piece abutment/screw ILO.

Table 4 Failure modes after
mechanical testing (SSALT)
according

ASC (n = 17) BSC (n = 18) SNC (n = 18) IMC (n = 18) ILO (n = 18)

Implant 17 = intact 18 = intact 18 = intact 18 = intact 18 = intact

Abutment 3 = bending 5 = bending 18 = fracture 3 = bending 18 = fracture
14 = fracture 13 = fracture 15 = fracture

Screw 13 = fracture 14 = fracture 18 = fracture 16 = fracture X
4 = intact 4 = intact 2 = intact

Clin Oral Invest (2016) 20:1505–1513 1511
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