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Abstract. Tensor-based representations have been widely pursued in
the last years due to the increasing number of high-dimensional datasets,
which might be better described by the multilinear algebra. In this paper,
we introduced a recent pattern recognition technique called Optimum-
Path Forest (OPF) in the context of tensor-oriented applications, as well
as we evaluated its robustness to space transformations using Multilinear
Principal Component Analysis in both face and human action recognition
tasks considering image and video datasets. We have shown OPF can
obtain more accurate recognition rates in some situations when working
on tensor-oriented feature spaces.

Keywords: Optimum-Path Forest; Tensors; Gait and Face Recognition

1 Introduction

Methodologies for data representation have been widely pursued in the last
decades, being most part of them based on Vector Space Models (VSM). Roughly
speaking, given a dataset X’ e a label set ), each sample x; € X is represented
as an n-dimensional point on that space with a label associated to it, i.e., each
sample can be modelled as a pair (x;,y;), y; € Nand ¢ = 1,2,...,|X|. Therefore,
a machine learning algorithm aims at finding a decision function f : X — ) that
leads to the best feature space partition [1].

Advances in storage technologies have fostered an increasing number of large
data repositories, composed mainly of high-resolution images and videos. Such
new environments now require more efficient and effective data representation
and classification approaches, which shall take into account the high-dimensionality
nature of the data [5]. Images acquired through cell phones, for instance, may
contain thousands of hundreds of pixels, being 2-dimensional data by nature.
As such, a specific segment of researchers have devoted a considerable effort to
study more natural data representation systems. One of the most actively data
description approaches is related to the well-known Tensor Space Model (TSM),
in which a dataset sample is represented as a tensor instead of a regular point,



being the properties of such space ruled by the multilinear algebra. Roughly
speaking, we can consider an image as a 2-order tensor (matrix), a video as
a 3-order tensor (cube), and a scalar number is considered an 1-order tensor.
Therefore, tensor-based representations can be understood as a generalization
of vector-space models.

Although one can find a number of tensor-based machine learning works out
there, they are responsible for only a few percentage of the published literature.
Vasilescu and Terzopoulos [13], for instance, used tensorial models to dimension-
ality reduction in the context of face-oriented person identification. Other works
focused on the extension of some well-known techniques in computer vision,
i.e., Principal Component Analysis and Linear Discriminant Analysis, to tensor
models [4]. In addition, Sutskever et al. [12] employed tensorial factorization to-
gether with Bayesian clustering to learn relational structures in text recognition,
and Ranzato et al. [10] used a deep learning-based approach parameterized by
tensors in the context of image processing.

Later on, Cai et al. [2] introduced the Support Tensor Machines (STMs)
for text categorization, which is a tensor-based variant of the so-called Support
Vector Machines (SVMs) classifier. The original samples were mapped as 2-
order tensors, and the problem of identifying the hyperplane with maximum
margin in the vector space was then changed to a tensor space. A tensor-oriented
neural network was also considered for text recognition by Socher et al. [11]. As
aforementioned, one can notice a lack of research regarding tensor-based machine
learning, since only a few techniques have been considered in such context.

Some years ago, Papa et al. [7, 6] introduced a new pattern recognition tech-
nique called Optimum-Path Forest, which models the problem of pattern clas-
sification as a graph partition task, in which each dataset sample is encoded
as a graph node and connected to others through an adjacency relation. The
main idea is to rule a competition process among some key samples (prototypes)
that try to conquer the remaining nodes in order to partition the graph into
optimum-path trees, each one rooted at one prototype. In this paper, we in-
troduce OPF in the context of tensor-space learning, since it has never been
evaluated in such representation model so far. We present some results in the
context of face recognition using an image-oriented dataset, as well as human
action recognition in video data. The remainder of this paper is organized as fol-
lows. Sections 2 and 3 present a theoretical background regarding OPF and the
methodology and experiments, respectively. Finally, Section 4 states conclusions
and future works.

2 Optimum-Path Forest Classification

Let D = D1UDs be alabeled dataset, such that D; and D, stands for the training
and test sets, respectively. Let S C D1 be a set of prototypes of all classes (i.e.,
key samples that best represent the classes). Let (D1, A) be a complete graph
whose nodes are the samples in D, and any pair of samples defines an arc in



A = Dy x Dy. Additionally, let 5 be a path in (D;, A) with terminus at sample
s € Dy.

The OPF algorithm proposed by Papa et al. [7, 6] employs the path-cost func-
tion finaz due to its theoretical properties for estimating prototypes (Section 2.1
gives further details about this procedure):

Fmaz((s)) = {3’00 ioftflegrvise,
fmam(ﬂ's : <3a t>) = maX{fmaz(ﬂ-S)a d(s,t)}, (1)

where d(s,t) stands for a distance between nodes s and ¢, such that s, ¢t € D;.
Therefore, fq.(7s) computes the maximum distance between adjacent samples
in 75, when 7y is not a trivial path. In short, the OPF algorithm tries to minimize
fmam(ﬂ't)a vVt € D;.

2.1 Training

We say that §* is an optimum set of prototypes when the OPF algorithm min-
imizes the classification errors for every s € D;. We have that S* can be found
by exploiting the theoretical relation between the minimum-spanning tree and
the optimum-path tree for fi,q.. The training essentially consists of finding S*
and an OPF classifier rooted at S*. By computing a Minimum Spanning Tree
(MST) in the complete graph (Di, A), one obtain a connected acyclic graph
whose nodes are all samples of D; and the arcs are undirected and weighted by
the distances d between adjacent samples. In the MST, every pair of samples
is connected by a single path, which is optimum according to f,q.. Hence, the
minimum-spanning tree contains one optimum-path tree for any selected root
node.

The optimum prototypes are the closest elements of the MST with different
labels in Dy (i.e., elements that fall in the frontier of the classes). By removing
the arcs between different classes, their adjacent samples become prototypes in
S*, and the OPF algorithm can define an optimum-path forest with minimum
classification errors in Dj.

2.2 Classification

For any sample t € Dy, we consider all arcs connecting ¢ with samples s € Dy, as
though ¢ were part of the training graph. Considering all possible paths from S*
to t, we find the optimum path P*(¢) from S* and label ¢ with the class A(R(¢))
of its most strongly connected prototype R(t) € S*. This path can be identified
incrementally, by evaluating the optimum cost C(t) as follows:

C(t) = min{max{C(s),d(s,t)}}, Vs € D;. (2)

Let the node s* € D; be the one that satisfies Equation 2 (i.e., the predecessor
P(t) in the optimum path P*(¢)). Given that L(s*) = A(R(t)), the classification
simply assigns L(s*) as the class of t. An error occurs when L(s*) # A(t).



3 Experimental Evaluation

In this section, we present the methodology and experiments used to validate
OPF in the context of tensor-based feature representation.

3.1 Datasets
We considered two public datasets, as follows:

— Gait-based Human ID3: this dataset comprises 1,870 sequences from 122
individuals aiming at the automatic identification of humans from gait. Since
this dataset is composed of videos, it has an interesting scenario for the
application of tensor representations; and

— AT&T Face Dataset?: formerly “ORL Dataset”, it comprises 92 x 112 images
of human faces from 40 subjects.

The “Gait-based Human ID” dataset has seven fixed scenarios, called PrbA,
PrbB, PrbC, PrbD, PrbE, PrbF and PrbG. In such case, the algorithms are
trained in a “Gallery” set, and then tested on each scenario. In addition to that,
we employed a cross-validation procedure over the entire dataset (i.e., PrbA U
PrbB U...U PrbG) for comparison results. Notice the cross-validation has been
applied to “AT&T Face dataset” as well. Figure 1 displays some examples of

dataset samples.
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Fig. 1. Some dataset samples from (a) Gait-based Human ID and (b) AT&T Face
datasets.

3.2 Experiments

In this work, we compared OPF [8] in two distinct scenarios, VSM and TSM, i.e.,
vector- and tensor-space models, respectively. Additionally, we evaluated SVM
to the same context using RBF (Radial Basis Function), Linear, Polynomial

3 http://figment.csee.usf.edu/GaitBaseline/
4 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html



(Poly) and sigmoid (Sig) kernels, as well as SVM without kernel mapping (SVM-
noKernel). In regard to SVM with kernel functions, we employed the well-known
LIBSVM [3], and with respect to SVM without kernel mapping, we employed
LIBLINEAR library [9]. Finally, we used an accuracy rate proposed by Papa et
al. [7] that considers unbalanced datasets.

Gait-based Human ID In this section, we present the results considering
the Gait-based Human ID dataset in two distinct rounds of experiments: (i) in
the first one, called “fixed data”, we used the very same aforementioned con-
figuration composed of seven fixed scenarios; and (ii) in the latter experiment,
we performed a cross-validation with random generated folds (we called here
“random data”). Table 1 presents the results considering the “fixed data” ex-
periment. The techniques labeled with “PCA” stand for vector-space models,
and the ones labeled with “MPCA” and “MPCA-LDA” denote the tensor-space
modeling. In the latter approach, a Linear Discriminant Analysis was performed
after MPCA. The most accurate techniques are highlighted in bold.

Table 1. Mean recognition rates considering the “fixed data” experiment for the Gait-
based Human ID dataset.

PrbA  |PrbB  |PrbC  |PrbD  |PrbE  |PrbF |PrbG
OPF-PCA 50.59% |49.59% |49.91% [50.59% |49.65% |50.36% |50.56%
OPF-MPCA 74.55% |73.73% |63.70% [59.50% |50.00% |54.66% |54.62%
OPF-MPCA-LDA 86.39% |50.84% |70.74% [60.66% |49.82% |57.18%]|56.67%
SVM-noKernel-PCA 50,64% 49,66% |49,86% [50,55% ]50,03% [50,38% |50,09%
SVM-Linear-PCA 51,32% |49,37% |49,93% [50,68% |49,66% |50,67% |51,26%
SVM-Poly-PCA 50,63% |49,52% |49,65% |50,16% |49,79% |50,85% |50,30%
SVM-RBF-PCA 51,32% |49,37% |49,93% [50,68% |49,66% |50,67% |51,27%
SVM-Sig-PCA 51,32% |49,37% |49,93% [50,68% |49,66% |50,67% |51,26%
SVM-noKernel- MPCA 86.22% [79.52%|70.81% [58.81% [50.27% [56.82% [54.51%
SVM-Linear-MPCA 87.20% |78.93% |70.81% [60.68% |50.10% |56.69% |55.86%
SVM-Poly-MPCA 70.28% |67.08% |59.92% [56.31% |49.61% |52.86% |52.61%
SVM-RBF-MPCA 87.06% |79.06% |70.81% [60.68% |50.10% |56.63% |55.87%
SVM-Sig- MPCA 87.20% |78.93% |70.81% [60.68% |50.10% |56.69% |55.86%
SVM-noKernel- MPCA-LDA[84.86% [51.29% [69.34% 59.63% |50.10% |56.17% |54.82%
SVM-Lincar-MPCA-LDA  |88.52% |50.92% |71.09% |61.58% |50.30% |56.64% |55.26%
SVM-Poly-MPCA-LDA  |68.78% [49.91% |55.07% |55.32% |50.16% |53.30% |52.00%
SVM-RBF-MPCA-LDA  |88.68%|51.03% |70.99% |61.73%|50.30% |56.69% |55.26%
SVM-Sig- MPCA-LDA 88.20% |50.90% |71.25%]61.51% |50.60%|56.64% |55.73%

From those results, some interesting conclusions can be drawn: (i) tensor-
space models have obtained the best results for both classifiers, i.e., OPF and
SVM, (ii) SVM obtained the best results in 5 out 7 folds, and (iii) OPF can
benefit from tensor-space models, which is the main contribution of this paper.
In addition, OPF results were very close to SVM ones, but being much faster for
training, since it is parameterless and thus not require an optimization procedure.



In the second round of experiments, we evaluated OPF for tensor-space mod-
els using randomly generated folds in two distinct configurations: the first one
employs 10% of the whole dataset for training, and the another one that uses 50%
of the samples to train the classifiers. Table 2 presents the results considering the
aforementioned configurations. Since we have considered a cross-validation pro-
cedure over 10 runnings, we performed a statistical validation through Wilcoxon
signed-rank test [14].

Table 2. Mean recognition rates considering the “random data” experiment for the
Gait-based Human ID dataset. The values in bold stand for the most accurate tech-
niques according to that test.

10% 50%
OPF-PCA 60.86%=+0.41 |76.92%=+0.50
OPF-MPCA 67.77%+0.47 |80.55%+0.45

OPF-MPCA-LDA

63.72%+0.47

73.15%+0.42

SVM-noKernel-PCA

55.68%=+0.21

56.07%=+0.26

SVM-Linear-PCA

57.79%+0.30

65.03%=£0.50

SVM-Poly-PCA

55.27%=£0.55

70.25%+0.44

SVM-RBF-PCA

59.06%=+0.38

73.81%+0.48

SVM-Sig-PCA

57.62%=+0.40

65.04%=+0.58

SVM-noKernel-MPCA

72.16%=+0.57

86.89%+0.42

SVM-Linear-MPCA

74.06%+0.66

91.42%+0.48

SVM-Poly-MPCA

61.07%+1.04

83.29%+0.39

SVM-RBF-MPCA

73.95%+0.61

91.41%+0.44

SVM-Sig-MPCA

74.01%=+0.69

91.38%+0.43

SVM-noKernel-MPCA-LDA

66.55%=+0.58

76.24%+0.41

SVM-Linear-MPCA-LDA

67.89%=+0.54

79.98%+0.56

SVM-Poly-MPCA-LDA

53.77%=+1.61

69.93%+0.83

SVM-RBF-MPCA-LDA

68.57%=+0.57

81.68%=+0.52

SVM-Sig-MPCA-LDA

67.95%+0.60

79.59%+0.68

Considering this experiment, we can clearly observe SVM-Linear-MPCA with
tensor-space modeling has obtained better results using 10% of the entire dataset
for training purposes. However, if we take into account 50% of the data for train-
ing, only OPF with MPCA outperformed the standard vector-space modeling
(i.e., OPF-PCA), since OPF-MPCA-LDA did not achieve better results than
OPF-PCA. This is might be due to the poor mapping performed by LDA when
considering a bigger training set. Finally, SVM also benefit from tensor-based
features, achieving better results than OPF as well.

AT&T Face Dataset In this section, we evaluated vector- and tensor-space
models considering the task of face recognition. Once again, we employed two
distinct configurations, with the first one using 10% of the dataset samples for
training, and the another one using 50% to train the classifiers. Table 3 presents



the mean recognition rates through a cross-validation procedure with 10 run-
nings. Similar techniques according to Wilcoxon statistical test are highlighted
in bold.

Table 3. Mean recognition rates considering AT&T Face Dataset.

10% 50%
OPF-PCA 83.97%+1.34(96.54%+0.74
OPF-MPCA 84.52%+0.85 {96.49%+0.94

OPF-MPCA-LDA
SVM-noKernel-PCA

61.11%+1.52 |77.54%+1.34
83.93%+0.93|96.28%+0.75

SVM-Linear-PCA

83.97%+1.34

97.90%+0.55

SVM-Poly-PCA

59.95%+2.48

88.49%+1.27

SVM-RBF-PCA

83.97%+1.34

97.46%+1.16

SVM-Sig-PCA

83.62%+1.98

97.79%+0.76

SVM-noKernel-MPCA

83.46%+1.23

96.10%=+0.86

SVM-Linear-MPCA

84.17%+0.97

97.85%+0.63

SVM-Poly-MPCA
SVM-RBF-MPCA 50.00%=£0.00
SVM-Sig-MPCA 51.14%+0.50

SVM-noKernel-MPCA-LDA|57.95%4+1.10
SVM-Linear-MPCA-LDA  |61.11%41.52
SVM-Poly-MPCA-LDA 53.02%40.44
SVM-RBF-MPCA-LDA 54.39%41.05
SVM-Sig-MPCA-LDA 51.13%40.55

65.61%+1.32 [92.51%+1.20
94.49%+2.13

52.03%+0.92

73.72%+1.26
79.00%+1.29
68.92%+1.66
77.10%+1.76
62.85%=+0.95

The results showed OPF-MPCA has obtained the best results using 10% of
the dataset for training, but with OPF-PCA e some SVM variations with similar
results. Considering 50% of the dataset, SVM achieved the best results, but it
seems the tensor-based representation did not play an important role in this
experiment, although it has achieved very good results. A possible idea to handle
such problem would be to extract features from images, and then map such
features to tensor-space models, since in this work we adopted a holistic-based
face recognition, i.e., we used the pixels’ intensities for pattern classification
purposes.

4 Conclusions

Tensor-based representations considering machine learning-oriented applications
have been pursued in the last years aiming to obtain a more realistic and nat-
ural representation of high-dimensional data. In this paper, we evaluated the
performance of OPF classifier in the context of tensor-space models. The exper-
iments involved two distinct scenarios: gait classification in video images, and
face recognition in gray-scale images. We can conclude OPF classifier can benefit
from such tensor-based feature space representations.
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