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a b s t r a c t 

Lagrangian simulations of unsteady vortical flows are accelerated by the multi-level fast 

multipole method, FMM. The combination of the FMM algorithm with a discrete vortex 

method, DVM, is discussed for free domain and periodic problems with focus on imple- 

mentation details to reduce numerical dissipation and avoid spurious solutions in unsteady 

inviscid flows. An assessment of the FMM-DVM accuracy is presented through a compar- 

ison with the direct calculation of the Biot–Savart law for the simulation of the temporal 

evolution of an aircraft wake in the Trefftz plane. The role of several parameters such as 

time step restriction, truncation of the FMM series expansion, number of particles in the 

wake discretization and machine precision is investigated and we show how to avoid spu- 

rious instabilities. The FMM-DVM is also applied to compute the evolution of a temporal 

shear layer with periodic boundary conditions. A novel approach is proposed to achieve 

accurate solutions in the periodic FMM. This approach avoids a spurious precession of the 

periodic shear layer and solutions are shown to converge to the direct Biot–Savart calcula- 

tion using a cotangent function. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

We solve canonical flows with practical applications in physics and engineering using the discrete vortex method, DVM,

which is a Lagrangian method that avoids computational mesh generation. In this method, the Navier–Stokes equations are

solved in the vorticity form by the discretization of the vorticity field using N discrete elements, which are transported

with the local flow velocity. As shown by Chorin [1] , the convection and diffusion processes appearing in the vorticity

equation can be solved separately in the DVM and the calculation of the non-linear term is avoided through application

of the material derivative, associated to Lagrangian methods. The convection term may be solved using a potential vortex

model which does not introduce numerical diffusivity. In this context, spurious numerical instabilities may appear when the

DVM is employed for the solution of inviscid flow problems modeled by vortex sheets. In order to regularize the solution

of potential vortices, other models may be employed adding numerical diffusion to the vorticity field. Recently, the DVM

has been applied to solve two dimensional problems including airfoil leading edge separation [2,3] , unsteady motion of a

pitching airfoil [4] and cylinder wake instability [5] . A review of the method can be seen in Barba et al. [6] and Aref [7] . 
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In order to solve the velocity field using the DVM, one must compute the interactions among discrete vortex particles

which are governed by the Biot–Savart law. This leads to a computational cost proportional to O( N 

2 ) which may be reduced

by the implementation of a fast algorithm. Here, the fast multipole method, FMM, is chosen since it reduces the compu-

tational cost from O( N 

2 ) to O( N ) when N is sufficiently large and a hierarchical multi-level algorithm is used. The method

was initially proposed by Greengard and Rokhlin [8] , and later optimized by Carrier et al. [9] for the solution of potential

fields. The FMM has been applied in the literature to accelerate the solution of several problems involving potential flows

[10] , acoustic and electromagnetic scattering [10–13] and aero-acoustics [14,15] . An efficient implementation of the FMM

was proposed by Gumerov and Duraiswami for the simulation of vortical flows [16] . 

Fast algorithms have been also applied in combination with particle methods for the solution of problems with peri-

odic boundary conditions [17,18] . For instance, Yokota and Barba, and Yokota and Obi employed the periodic FMM to study

isotropic turbulence and homogeneous shear flows, respectively [19,20] . Sakajo and Okamoto [21] present an approach in

which an exponential mapping transforms the periodic DVM function into a rational function. Then, these authors employ

a fast method [22] to simulate the Kelvin–Helmholtz instability problem. Recently, Marple et al. [23] developed a fast algo-

rithm to solve multiphase flows and applied the method for the solution of Stokes flows in periodic channels of arbitrary

geometry. 

In the present work, the coupled FMM-DVM algorithm is employed to simulate the time evolution of an aircraft wake

and a periodic shear layer. The first problem represents the formation of wing tip vortices which appear in the wake of

an airplane. Aerodynamic wakes of large aircraft and their induced velocity may cause serious hazards to smaller aircraft,

affecting the take-off and landing operations in airports. A simplified but representative model of the problem is the evo-

lution of a vortex sheet in the Trefftz plane, as explained in details by Smith [24] . The second problem is relevant in the

context of several problems of engineering and physics involving ocean mixing, cloud formation, multi-phase flow, combus-

tion and jet flows (Murray et al. [25] , Smyth and Moum [26] , Herrmann [27] ). In viscous flow problems, physical dissipation

will overcome the numerical dissipation that is introduced in the computation of the convective step via time marching

scheme and vortex regularization [28] . However, in the study of hydrodynamic instabilities which may appear in inviscid

flows, numerical dissipation can be an issue and accurate solutions are required. 

This study focus on the implementation details of the FMM-DVM algorithm with the aim to reduce numerical dissipation

in unsteady inviscid flows. We evaluate the pros and cons from coupling both the FMM and DVM in order to avoid spurious

solutions. To do so, we analyze the role of temporal discretization and aspects of regularization of vortex models. We also

provide an assessment of the parameters which control the errors of the FMM, for instance, the refinement level and the

number of terms in the series expansions. Discretization effects are discussed for the solution of the Trefftz plane problem

showing that a convergence to the truly inviscid solution, without instabilities, can be achieved. Previous work has showed

the presence of spurious instabilities in the calculation of this problem for quasi-inviscid solutions (Fink and Soh [29] , Krasny

[30–32] , Abid and Verga [33] ). Lastly, a periodic problem is solved with a FMM implementation which reduces truncation

error using balanced periodic boundary conditions to avoid a spurious precession of the infinite shear layer. 

2. Numerical methodology 

2.1. Discrete vortex method 

The discrete vortex method solves the Navier-Stokes equations in the vorticity form. For an incompressible Newtonian

fluid, the 2D vorticity transport equation in non-dimensional variables is given by 

∂ω 

∂t 
+ u · ∇ ω = 

1 

Re 
∇ 

2 ω, (1)

where u = u ̂ i + v ̂ j is the velocity vector, ω = ∇ × u is the z-vorticity component and Re is the Reynolds number. Chorin

[1] proposed a numerical solution of Eq. (1) solving separately the inviscid and viscous terms in two fractional steps. The

first step considers the flow to be inviscid, i.e., Re → ∞ , leading to 

∂ω 

∂t 
+ u · ∇ω = 

D ω 

D t 
= 0 , (2)

while the second step solves the viscous effects 

∂ω 

∂t 
= 

1 

Re 
∇ 

2 ω. (3)

The calculation of the inviscid term requires the solution of the Biot–Savart law, which computes the velocity field due to

the vortex interactions. For a two-dimensional problem, the Biot–Savart law is written as 

u (x , t) = 

1 

2 π

∫ 
′ 

ω (x 

′ , t) × (x − x 

′ ) 
| x − x 

′ | 2 dS ′ . (4)

S 
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Fig. 1. Velocity profiles for different vortex models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In complex notation, the velocity induced by a potential vortex j at a point k is given by Eq. (5) for a vortex with

circulation defined by � > 0 in clockwise sense 

w k = u k − i v k = i 
� j 

2 πz k j 

, (5) 

with the complex distance given by z k j = (x k − x j ) + i (y k − y j ) . 

In the present work, we want to investigate the effects of numerical diffusivity which are present even in the inviscid

part of the DVM. This artificial diffusion is introduced either by the regularization of the potential vortex or through the

time marching scheme [28] . These are important aspects related to the combination of the DVM with the fast multipole

method. 

In order to overcome the singularity for r → 0, where r = | z k j | is the distance between points k and j , a model for the

vorticity distribution ω should be implemented. One of the most used models with non-singular velocity field is the Lamb–

Oseen vortex, which has a fixed second-order Gaussian core σ to represent the core diffusion. For a radial distance r , its

induced velocity is given by: 

w k = i 
� j 

2 πz k j 

[ 
1 − exp 

(
− r 2 

σ 2 

)] 
= i 

� j 

2 πz k j 

(1 − f (r, σ )) . (6) 

Another regularization model is the vortex blob, given by Eq. (7) . It was proposed by Krasny [30] and it is based in the

Hilbert transform with a conjugate Poisson kernel, where δ is an arbitrary parameter. This model converges to the potential

vortex when δ → 0, for the induced velocity given by 

w k = i 
�

2 πz k j 

(
1 

1 + 

δ2 

r 2 

)
= i 

� j 

2 πz k j 

f (r, δ) . (7) 

Other alternatives to smooth out the vorticity distribution are shown by Chorin [1] , who truncates the velocity profile in

regions very close to the vortex; by Holm et al. [34] who proposed a model using an Euler-alpha regularization; or the

application of a Rankine vortex, where the velocity varies linearly inside the viscous core. 

The velocity profile of a potential vortex, which is representative of a truly inviscid flow, is presented in Fig. 1 . In the

same figure, auto-similar velocity profiles are shown for the blob and Lamb-Oseen vortex models which are used to repre-

sent physical aspects in a realistic vortex core. Solutions are presented in terms of the non-dimensional core, c ∗ , which is

given by r 
σ and 

r 
δ

for the Lamb–Oseen and blob vortex models, respectively. One can observe that for δ = σ the latter is

more dissipative than the former. 

In order to understand the influence of the time marching scheme on the numerical diffusion, we simulate the dynamics

of a large Gaussian vortical structure discretized with 30 k particles. In this problem, the interaction among all vortex

particles creates a rotational motion of the entire structure as shown by Lewis [35] . The particles are randomly distributed

at x i and y i , following a Gaussian shape with standard deviation ˜ σ = 0 . 1 . Previous work involving problems with the absence

of viscosity or boundaries employ the computation of the Hamiltonian, an operator that indicates the energy conservation

in the system, as a metric to be used for time accuracy [28,30,32] . The Hamiltonian is measured as 

H = 

1 

2 π

N ∑ 

i =1 

N ∑ 

j=1 

�i � j log (| z i j | ) when i � = j. (8) 

Simulations are performed using a viscous core σ = 0.001 and total circulation � = 10 . 0 , which is equally divided among

all N particles. Following the definition of a vortical structure, the radial component of the velocity should be null. For a

dimensionless time t ∗ = 0.5, Fig. 2 shows the vorticity distribution for the first and fourth order Runge–Kutta schemes, RK1
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Fig. 2. Analysis of the time marching schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and RK4, respectively. In Fig. 2 (a) and (b), the solutions are compared to the initial shape of the large vortex and they show

that a larger time step may introduce numerical diffusion. One can also see from these figures that a low accuracy in the

time marching method tends to spread the particles. Fig. 2 (c) presents the calculation of the Hamiltonian of the system

and one can observe that the scattering of the particles introduced by the numerical diffusion of the low order scheme

reduces the kinetic energy of the entire system. Based on the present analysis, the following computations in this work are

performed using the RK4 time marching scheme with the aim of reducing the numerical dissipation in the solutions. 

2.2. Fast multipole method 

The fast multipole method is applied to accelerate the solution of N -body problems. In the FMM algorithm, a computa-

tional domain, selected as a square box in 2D or a cubical box in 3D, involves all the discrete elements. This computational

domain which is considered to be at level zero of refinement in the FMM tree ( � = 0 ) can be further divided to create smaller

boxes at higher refinement levels (1 ≤ � ≤ L ) that define far and near-field clusters of elements. The far-field interactions

are responsible for reducing the computational cost of the method towards O( N ) by the application of a divide-and-conquer

strategy. The fast method is not applicable among groups of elements close to each other and, hence, the near-field interac-

tions still require direct evaluations of the problem. Therefore, for each box, at each refinement level, the FMM requires the

calculation of two sets of lists which indicate the boxes that are in the near and far-field regions. They are called neighbor

and interaction lists, respectively. For more details on the FMM, the authors refer to Greengard and Rokhlin, [8] , Carrier et al.

[9] , Wolf [10] and Nishimura [36] . The main equations used in the FMM implementation are shown in the present section

for completeness. 

The potential φ at a distant observer z o from a source with unitary strength placed at z s is given by the Green’s function

φs (z o ) = G (z s , z o ) = log (z o − z s ) , (9)

for the observer and source position, respectively, z o = x o + i y o and z s = x s + i y s . 

In the DVM-FMM, mathematical relations are used to cluster a set of N b sources (vortex particles) with circulation �s

inside a box b centered at z b at the finest level of refinement L . The sources are clustered in the particle-to-multipole step

(P2M), Eq. (10) , which applies a Taylor series expansion of Eq. (9) . One can truncate the series after p terms in order to

obtain the multipole expansions, given by M k (b, L ) , with k = 0 . . . p. 

M 0 (b, L ) = 

N b ∑ 

s =1 

�s and M k (b, L ) = −
N b ∑ 

s =1 

�s z 
k 

k 
. (10)

The multipole expansions represent the intensity of the cluster of sources inside box b at level of refinement L and z is the

complex distance from the source s to the box b center, z = z s − z b . 

The multipole expansions can be further grouped into larger clusters of vortex particles in the multipole-to-multipole

step (M2M). This recursive step uses children boxes b C at level � + 1 , for 0 < � < L − 1 . The new clusters are formed in the

parent boxes B at level � . The M2M step is given by 

M 0 (B, � ) = 

4 ∑ 

C=1 

M 0 (b C , � + 1) , (11)
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and, for k = 1 to p : 

M k (B, � ) = 

4 ∑ 

C=1 

{ 

k ∑ 

m =1 

[(
k − 1 

m − 1 

)
M m 

(b C , � + 1) · z k −m 

]
− M 0 (b C , � + 1) 

z k 

k 

} 

. (12) 

In the equation above, the term 

(
k −1 
m −1 

)
is the binomial coefficient and the complex distance from the center of the child box

b C to its parent box B center is given by z = z b C − z B . 

Once the multipole expansions are computed, it is possible to calculate the multipole-to-local step (M2L). This step

provides the induced velocity at the observer cluster b from all the 27 well-separated source clusters b s which are in the

interaction list of b . These operations are performed for boxes at refinement level � , as 

L 

(M2 L ) 
0 

(b, � ) = 

27 ∑ 

s =1 

[ 

M 0 (b s , � ) · log (−z) + 

p ∑ 

k =1 

(
M k (b s , � ) 

(−1) k 

z k 

)] 

(13) 

and, for m = 1 to p as 

L 

(M2 L ) 
m 

(b, � ) = 

27 ∑ 

s =1 

{ 

−M 0 (b s , � ) 

m · z m 

+ 

1 

z m 

p ∑ 

k =1 

[(
m + k − 1 

k − 1 

)
M k (b s , � ) 

(−1) k 

z k 

]} 

. (14) 

In the equations above z = z b s − z b and the term L (b, � ) is the local representation of the far-field multipole expansions at

level � computed in the center of box b . The local representations can be transfered from the centers of the parent boxes at

level � − 1 to those of their children at level � . This step is called local-to-local (L2L) and, for m = 0 to p , it is given by 

L 

(L 2 L ) 
m 

(b, � ) = 

p ∑ 

k = m 

(
k 

m 

)
· L k (B, � − 1) · (−z) k −m , (15) 

where z = z B − z b and 1 ≤ � ≤ L . 

The L2L and M2L steps are coupled in order to add the contribution of clusters at coarser levels to those at the same

level. Therefore, the local representation is first computed from the L2L operation, Eq. (15) . Then, the M2L operations, Eqs.

(13) and ( 14 ), are performed to account for the interactions of far-field clusters of sources contained in boxes at the same

level of refinement. The equation to compute the local expansion L m 

(b, � ) for box b at level � is then written as 

L m 

(b, � ) = L 

(L 2 L ) 
m 

(b, � ) + L 

(M2 L ) 
m 

(b, � ) . (16)

After all the far-field interactions are accounted for in L m 

, until the finest level L , the translation from the local repre-

sentation within box b , centered at z b , to the observer particle placed at z o , is given by the local-to-particle (L2P) operation

as 

φ(z o ) = 

∞ ∑ 

m =0 

L m 

(b, L ) · (z o − z b ) 
m . (17) 

2.3. Coupling of DVM and FMM 

The FMM can be applied to accelerate the convolution step of the DVM, which appears as the solution of the Biot–Savart

law. In the DVM, it is necessary to evaluate the velocity field generated by the far-field sources, which can be computed

from the derivative of the potential as 

w (z o ) 
(F F ) = 

∂φ( z o ) 

∂z o 
= 

∞ ∑ 

m =1 

L m 

( b, L ) · m · (z o − z b ) 
m −1 . (18)

Since for m = 0 the expression is null, it is not necessary to evaluate L 0 in the previous FMM steps. 

After computing the velocity from far-field clusters, it is necessary to evaluate the influence from vortices at adjacent

boxes that do not satisfy the separation criterion of the FMM. This calculation is performed using the Biot–Savart law for

vortices n , which can be inside the 8 neighbor boxes of b C or box b C itself, to an observer z o inside b C . As all particles are

close to each other, it is necessary to use a regularization function f ( r, σ , δ) (Lamb or blob vortex model) in order to obtain

a smooth velocity profile in the near-field given by 

w (z o ) 
(NF ) = 

9 ∑ 

j=1 

N j ∑ 

n =1 

�n 

z o − z n 
f (r, σ, δ) . (19) 

Combining both far and near-field calculations leads to the full velocity field in the original reference system as 

w (z o ) = w (z o ) 
(NF ) + w (z o ) 

(F F ) , (20) 
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Fig. 3. Efficient way for mapping the location of vortex elements in the multi-level FMM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the kernel 1 
z is solved. For a potential vortex, one should consider Eq. (5) where both the imaginary number i and

the constant 1 
2 π are present. Finally, the velocity components are given by 

[ u (x o , y o ) , v (x o , y o ) ] = 

1 

2 π
[ Im (w (z o )) , Re (w (z o )) ] . (21)

In the current FMM implementation, we apply an uniform refinement of the initial computational domain at level 0.

Another possibility would be to apply an adaptive refinement approach [9] . However, this other method would require

the creation of all the interaction lists every time that refinement is applied increasing pre-processing time. Moreover, the

adaptive method would have to deal with the fact that regions that are highly populated with vortices at one time instant

can be empty a few steps later and vice-versa. This can be seen as a challenge that appears in the simulation of dynamic

problems. 

In the uniform refinement approach, the domain is divided until the maximum level, L , during the preprocessing step.

Whenever a particle leaves the FMM domain or when the density of particles becomes too high, making the near-field

computations too expensive, this step is recomputed. This avoids the constant evaluation of the preprocessing, saving com-

putational effort. The creation of boxes in the uniform refinement approach is faster than that in the adaptive one, since

it does not depend on the local number of particles. It is only dependent on the number of boxes and maximum refine-

ment level. Also, both interaction and neighbor lists are independent of the domain size, spatial displacement and number

of elements, so they do not need to be computed at every time step. Hence, computational cost of pre-processing can be

reduced. 

Empty boxes can be ignored to reduce computational cost, and they are identified with the mapping of the particles, a

step that is computed at every sub-step of the time marching method. A fast way is used here to map the particles and it

is based on the genealogical tree of the FMM. Recursively comparing the x and y coordinates of any particle with respect

to the center of a box at level � − 1 , it is possible to determine the level � box which contains the particle. This procedure,

based on quadrants, repeats until the finest level is achieved, as shown in Fig. 3 . An auxiliary variable counts how many

particles are inside the boxes, leading to the list of non-empty boxes. 

The kernel of the original FMM is given by the logarithmic function (potential of a singular vortex) and/or its derivatives

(velocity field induced by a potential vortex). However, both Lamb–Oseen and blob vortex models have terms that affect

the velocity in the near-field and converge to a potential vortex solution in the far-field, which is the region of interest for

application of the FMM. In order to choose a suitable vortex model, an initial study of how far is the far-field is necessary

for both Lamb–Oseen and blob models. Auto-similar profiles of induced velocity for the two models are presented in Fig. 1 ,

showing that for r → ∞ , the solution of both models converge to the potential one. 

However, in the FMM, the regions r of interest for calculations are given by a few box lengths. The convergence of the

smoothing parameter f ( r, σ ) in Eq. (6) indicates that the exponential term from the Lamb vortex decays to zero, even for

quadruple machine precision, for a box about 9 times the size of the vortex core σ (see Fig. 4 (a)). The smoothing parameter

f ( r, δ) of the vortex blob model proposed by Krasny [30] , Eq. (7) , slowly converges (in an algebraic sense with O( 1 

c * 
2 ) )

to the potential solution as observed in Fig. 4 (b). The latter shows a slow decay which indicates a non-compact vorticity

distribution, being the opposite of the Lamb model. One can see in Fig. 4 (c) a comparison of the convergence of smoothing

parameters for both vortex models. 

With that in mind, we prefer to use the Lamb–Oseen vortex model with the FMM due to its faster exponential decay.

Here, based on the results from Fig. 4 , and as a generalization for the most restrictive computation using quadruple machine

precision, it is imposed that the size of the smallest box in the multi-level FMM, S � , is at least 9 times the size of the largest

vortex core in the domain 

S � > 9 σmax . (22)

This criterion is shown in Fig. 5 (a). For double precision, the smallest box, S � , could be 6 times the size of the Lamb–Oseen

vortex viscous core. Therefore, the choice from Eq. (22) does not compromise neither the physics nor the numerical aspects
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Fig. 4. Comparison between the Lamb–Oseen and vortex blob models. 

Fig. 5. Details on the use of the Lamb-Oseen vortex model applied to the FMM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the simulation. In other words, the refinement level is limited based on the Lamb vortex core. A similar observation

is provided by Hamilton and Majda [37] who also discuss about the importance of an exponential regularization method

for fast convergence of the vorticity field. The present restriction on the smallest box size could be eliminated by using

different fast summation methods. For example, Draghicescu and Draghicescu [22] developed a tree-code algorithm using

far-field Cartesian Taylor expansions that apply directly to the regularized model. 

For practical purposes, the direct calculations performed for particles in neighbor boxes (near-field interactions) are ac-

counted using the Lamb–Oseen vortex while, for far-field FMM interactions, the potential model is employed, Fig. 5 (b).

Hence, large errors in the induced velocity are introduced if a higher level of refinement is employed to reduce the near-

field cost. The consequences from additional refinements would then be spurious solutions. 

3. Temporal evolution of aircraft wake 

In this section, an assessment of the FMM accuracy is presented through a comparison with the direct solution of the

Biot–Savart law. Both methods are applied to compute the temporal evolution of an aircraft wake. This is a very sensitive

non-linear problem where accuracy is a critical factor, mainly towards a truly inviscid case with small regularization value of

the potential vortex, i.e., σ → 0 in the Lamb vortex model. The role of several parameters such as the number of particles in

the wake discretization, refinement level and number of truncation terms in the FMM, and machine precision is investigated.

Since the Trefftz plane is an initial value problem, the initial conditions of the wake have to be defined and, then, its

evolution is solved in time. A sketch of the problem is presented in Fig. 6 (a) and (b), where the variation of circulation

along the span of a finite wing and the tip vortices forming along its wake are shown, respectively. The initial strength of

the vortex-sheet is given by the derivative of the circulation along the wingspan, which is determined for an elliptically
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Fig. 6. Temporal evolution of an aircraft wake modeled in the Trefftz plane. 

Fig. 7. Assessment of RMS deviation for velocity and position of vortices as a function of series truncation in the FMM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

loaded wing where the circulation varies smoothly by 

d �

d x 
= − x √ 

1 − x 2 
. (23)

In this case, the span is positioned from -1 ≤ x ≤ 1, with a singularity at | x | = 1 . The wake is then partitioned into N

segments, concentrated towards the span extremities, and their circulation is given by the integral of Eq. (23) along the

length of each segment. Gaussian quadrature with 3 points is applied to integrate the circulation. Other initial conditions

can be used according to the lift distribution and one can also simulate the effects of deployed flaps and fuselage, as shown

by Krasny [32] . 

3.1. Assessment of fast multipole method parameters 

The number of terms used in the FMM series expansion directly impacts the error of the numerical scheme and, there-

fore, the overall accuracy of the combination between the FMM and DVM. The solutions obtained by the application of the

coupled method are compared to those obtained solely by the DVM, which only solves the Biot–Savart law. Fig. 7 shows

the error behavior of the FMM as a function of the number of terms retained in the expansion series. Results are pre-

sented for the root-mean-square, RMS, deviation in terms of velocity (dashed lines) and vortex position (solid lines) after

one convection step. Calculations are performed for σ = 1 × 10 −3 . 

Fig. 7 (a) shows that the error is not affected by the number of vortex particles but only by the terms retained in the

FMM series expansions. Results in this figure are obtained for 
t = 10 −4 and refinement level 8. In Fig. 7 (b), one can see

results of the error analysis for FMM refinement level 2 for 25 k vortex particles. An assessment of the influence of the

time step, 
t , on the error is presented for the fourth-order Runge–Kutta time marching scheme. It is possible to see that

smaller time steps reduce errors in the FMM computation of both velocity and position. As expected, increasing the number

of terms in the FMM series also reduces the error. One can also see that, for all values of time step, the error in position

converges to the computer double precision when 35 terms are used in the series. However, the velocity does not converge

to the machine precision since several operations in the FMM suffer from truncation errors. Fig. 7 (c) presents the error

analysis for different levels of refinement of the FMM for a fixed time step of 
t = 1 × 10 −4 and 25 k particles. One can see
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Fig. 8. Analysis of the number of truncation terms in the FMM power series expansions. 

Fig. 9. Roll-up process for different viscous cores, σ . Solutions obtained with 20 0,0 0 0 vortex particles, RK4, 
t = 4 × 10 −7 and t = 3 × 10 −5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that higher levels of refinement produce larger errors when few terms are employed in the FMM series. However, double

precision convergence is achieved for 40 truncation terms for all levels of refinement. 

3.2. Vortex sheet roll-up 

In the current study of the Trefftz plane, we solve only the convective operator of the DVM. In this step, numerical

dissipation is introduced by the time marching scheme and the vortex regularization. While in viscous flow problems phys-

ical dissipation will overcome the numerical dissipation, for inviscid solutions, spurious numerical instabilities will appear.

These instabilities need to be carefully handled to avoid their presence. This study focus on the implementation details of

the FMM-DVM algorithm with the aim to reduce numerical dissipation in unsteady inviscid flows in order to avoid spurious

solutions. The first analysis on this matter refers to the FMM accuracy. Fig. 8 presents the solution of the wing tip vortex

roll-up for a different number of terms in the FMM power series expansion. Simulations are integrated for the same instant

of time, t = 0 . 04 , using 25 k particles, 
t = 10 −4 and σ = 1 × 10 −3 . The red, green and blue dots represent solutions ob-

tained using 10, 20 and 30 terms, respectively. As one can see, the solutions obtained using fewer terms present scattering

and secondary roll-up of vortex particles. However, the solution with 30 terms, which provides an error close to machine

precision according to Fig. 7 , delays the formation of instabilities. In the computations along this work, we employ 40 terms

in the FMM series to guarantee the delay in the formation of spurious roll-ups. 

Since the FMM allows computations with higher resolutions through discretizations with a larger number of vortex par-

ticles along the wake, it is possible to reduce the core σ and still maintain a continuous shear layer (the distance between

two vortices should still be lower than the viscous core). In this sense, Fig. 9 presents a study of the dynamics of the roll-up

for different viscous cores in the Lamb vortex model. Solutions are obtained by the FMM-DVM for 20 0,0 0 0 vortex particles

using the RK4 for 75 time steps with 
t = 4 × 10 −7 . 

Results shown in Fig. 9 demonstrate that smaller viscous cores lead to a faster roll-up, approximating a desired inviscid

solution. As one can see in the figure, when σ = 1 × 10 −3 , the vortex sheet does not begin the roll-up process and, for

σ = 1 × 10 −5 , the sheet shows an advanced stage of the roll-up process with a disorganized core. Furthermore, in this last
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Fig. 10. Time step influence on roll-up process for 20 0,0 0 0 vortex particles, σ = 1 × 10 −5 , RK4 and t = 3 × 10 −5 . 

Fig. 11. Influence of number of particles for σ = 1 × 10 −5 , RK4, 
t = 8 × 10 −8 and t = 3 × 10 −5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

case, it is possible to notice a spurious perturbation of the sheet. From now on, we will focus the studies in a vortex wake

which is more representative of the inviscid solution and results will be presented for σ = 1 × 10 −5 . 

As one can observe in Fig. 10 , smaller time steps lead to a better development of the roll-up in the wake tip. However,

even for 
t = 8 × 10 −8 , there is still a chaotic pattern in the core. Furthermore, since the viscous core is very small in

the current calculations, the dissipation of the Lamb vortex model is not sufficient to suppress the growth of spurious

instabilities in the wake. 

The effects of increasing the number of vortex particles are now analyzed for a small time step, 
t = 8 × 10 −8 . Fig. 11

shows that a higher resolution leads to overall better results with more layers in the roll-up region and suppression of the

spurious instability in the wake. It is clear from this figure that more particles are required to suppress the instabilities. 

Fig. 12 shows that the spurious instability in the vortex layer is purely numerical since it can be delayed by increasing

the precision in calculations. As one can see in this figure, the solution is free of instabilities when quadruple machine

precision is employed. A convergence test performed for quadruple precision indicated that p = 75 terms in the power

series of the FMM for achieving machine error. These simulations are run for 20 0,0 0 0 particles and 375 steps using the RK4

with 
t = 8 × 10 −8 . In the same figure, one can observe that quadruple precision does not improve the solution in terms of

the roll-up process. 

3.3. Computational time 

The FMM provides two main benefits when coupled to the DVM. First, it provides a considerable reduction in the com-

putational cost and, second, it allows simulations with larger numbers of particles and, therefore, higher resolution in the

discretizations of the physical problems of interest. Here, we perform comparisons to quantify the savings in computational
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Fig. 12. Influence of machine precision on suppression of spurious instabilities for 20 0,0 0 0 vortex particles, σ = 1 × 10 −5 , RK4, 
t = 8 × 10 −8 and t = 

3 × 10 −5 . 

Fig. 13. Computational time to evaluate the velocity field for Biot–Savart and FMM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cost of the coupled FMM-DVM compared to the direct solution of the Biot–Savart law, which has a cost proportional to

O( N 

2 ). Comparisons are performed for a single evaluation of the velocity field induced by interactions among all vortex par-

ticles. An assessment of the computational cost is presented for different refinement levels and number of vortex particles

in the wake discretization. All computations are performed using p = 40 terms in the FMM series expansion, which guar-

antees computer accuracy in double precision. The current algorithm is written in FORTRAN language and simulations are

performed in serial by a 2.5 GHz Intel®Xeon 

TM E5-2670v2 CPU. 

Fig. 13 (a) shows a comparison in terms of computational wall time for the direct evaluation of the Biot–Savart law and

the FMM. It is possible to see that, for the number of particles analyzed, the latter provides faster solutions than the former,

except for higher levels of refinement with a number of particles below 40 0 0. Simulations are performed using up to 5 ×
10 5 particles and, for this limit case, computational cost savings of 285 times are achieved by the fast multipole method.

Also, it is interesting to notice that, for each level of refinement of the FMM, the computational cost is constant until a

certain number of particles is reached. The fixed cost is dominant so higher plateaus are observed for finer maximum

refinement levels. After the plateau, the cost behavior is also proportional to O( N 

2 ) but higher refinement levels shift down

the curves, reducing computational costs. This leads to intersections of the curves and, after a large enough number of

elements, higher refinement levels are required to have faster simulations. This way, there is a best refinement level based

on the number of elements in the discretization. 

In order to understand the behavior of these curves, Fig. 13 (b) shows a comparison between near-field and far-field costs

of the FMM algorithm, given by solid and dashed lines, respectively. The total computational cost of the FMM is given by the

sum of these two contributions and it should be of the form O (A N 

2 + A N + A ) . The computational cost of the near-field
2 1 0 
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Fig. 14. Sketch of a periodic shear layer formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

calculations is still O( A 2 N 

2 ) since it represents the direct evaluations of the Biot-Savart law performed for vortex particles

contained inside neighbor boxes of the FMM. For higher refinement levels, the near-field interaction cost is smaller since

there are fewer direct evaluations at finer boxes, i.e. , the coefficient A 2 is reduced. This way, the cost of the direct evaluation

is reduced. On the other hand, higher levels of refinement increase the coefficients A 1 and A 0 since more FMM operations

are performed, which leads to higher far-field costs. 

The maximum refinement level is then defined by the computational cost to evaluate a single time step due to the

balancing of near and far-field operations. It is important to keep the refinement level in the range where the FMM com-

putational cost is O (A 1 N + A 0 ) . However, one must not forget the requirement of Eq. (22) to guarantee that the size of the

smallest box satisfies the Lamb–Oseen vortex criterion. Depending on the viscous core, this issue may keep the cost in the

O( A 2 N 

2 ) range. Finally, it is important to mention that adding an extra level of refinement increases the memory cost by a

factor of 4. 

4. Periodic shear layer 

The discrete vortex method can be employed to study the evolution of shear layers including the formation of the Kelvin–

Helmholtz instability. In this case, the periodic boundary condition is implemented only in one dimension according to the

physics of the problem, as shown in Fig. 14 . With the DVM, a periodic shear layer can be discretized using N vortex-particles

and its temporal evolution can be simulated depending on the imposed initial conditions. The vorticity γ of a continuous

shear layer with length λ, with a jump in velocity 
U , is given by γ = 
Uλ. Discretizing the shear layer using N vortex

elements with constant length 

λ
N leads to �k = 


Uλ
N and setting 
U = 1 and λ = 1 , the circulation of each vortex is �k = 

1 
N .

If the periodic vorticity layer is initially straight, without perturbations, by symmetry of the problem, its self-induced

velocity is null and there is no motion. However, computer truncation errors add a small random perturbation to the shear

layer and spurious waves arise. In order to create a controlled solution, we add a sinusoidal displacement y k = A sin ( 2 πx k )
along −0 . 5 < x k < 0 . 5 with amplitude A 
 1. 

4.1. Discrete vortex method for periodic problems 

The induced velocity at a point z k by a vortex-particle at z j , with �j > 0 in the counter-clockwise sense, is given by the

Biot–Savart law. If the vortex j is replicated from −∞ to ∞ , with spatial periodicity λ, it is possible to calculate the influence

of this array at z k according to 

w k = 

∞ ∑ 

n = −∞ 

i 
� j 

2 π

(
1 

z k j + nλ

)
. (24)

For λ = 1 , the summation inside parentheses has an exact solution given by the cotangent function (see Abramowitz and

Stegun [38] ) 

π cot (πz k j ) = 

1 

z k j 

+ 

∞ ∑ 

n =1 

(
1 

z k j − n 

+ 

1 

z k j + n 

)
. (25)

This solution can be desingularized using an array of Lamb–Oseen vortex particles, written as 

w k = i 
� j 

2 π

{ 

π cot (πz) −
1 ∑ 

(
1 

z + n 

)
exp 

[
− (x k j + n ) 2 + (y k j ) 

2 

σ 2 

]} 

. (26)

n = −1 k j 
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Fig. 15. Optimized scheme for far-field interactions of clusters of boxes P . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Fast multipole method for periodic problems 

Fast multipole methods can be implemented for the solution of three-dimensional problems where all directions require

periodic boundary conditions. For example, a cubical box with isotropic turbulence would require such implementation.

Here, we analyze a physical problem which has only one periodic direction and, hence, the implementation of periodic

boundary conditions in the FMM are explained in one dimension. The aim of this work is to discuss about the numerical

errors that appear due to the implementation of periodic boundary conditions and its effects on inviscid flows. In this

context, we propose a novel approach that reduces the numerical errors from the implementation of the periodic FMM, and

that can be generalized for multiple periodic dimensions if necessary. 

In a one dimensional problem, the induced velocity of an infinite array of vortex particles with spatial periodicity λ = 1

is given by Eq. (24) . From this equation, the convolution kernel is 

−2 ∑ 

n = −∞ 

(
1 

z k j + n 

)
+ 

(
1 

z k j − 1 

)
+ 

(
1 

z k j 

)
+ 

(
1 

z k j + 1 

)
+ 

∞ ∑ 

n =2 

(
1 

z k j + n 

)
, 

where each term n in the previous summation represents a periodic box, at level � = 0 , in the infinite array. 

The divide-and-conquer strategy of the FMM can be explored to reduce the interaction costs among clusters at level

0, and, to do so, an additional upward pass using the M2M computation can be employed. The basis of this optimized

scheme is that periodic boxes | n | ≥ 2 can be further grouped to create larger clusters as shown in Fig. 15 . In this figure, this

procedure is shown from periodic level i = 0 up to the illustrative maximum level I = 3 . There, the red arrows indicate the

results from M2M clustering operations, while the red dots (online version in color) are the center of the dark gray boxes

to be clustered. In the periodic FMM, the M2M step is still computed by Eq. (12) , modified to account for 2 smaller boxes

instead of the 4 boxes used in the free-domain FMM. These 2 boxes from periodic level i − 1 can be clustered at level i , for

i ≥ 1, using 

M 

(i ) 
k 

= 

k ∑ 

m =1 

[
M 

(i −1) 
m 

(
k − 1 

m − 1 

)
(z k −m 

i −1 ,b1 
+ z k −m 

i −1 ,b2 
) 

]
− M 

(i −1) 
0 

(z k 
i −1 ,b1 

+ z k 
i −1 ,b2 

) 

k 
. (27) 

In the above equation, the distances in the complex plane from the center of the two clusters at level i − 1 to the new

cluster center at level i are, respectively, z i −1 ,b1 = −2 i −2 and z i −1 ,b2 = +2 i −2 . The superscripts inside parenthesis indicate

levels of refinement in the periodic FMM, as shown in Fig. 15 , and the other superscripts are exponents. The periodic level

i = 0 coincides with the free-domain level � = 0 and so M 

(0) 
0 

is the same for both schemes. For levels i > 0, it is given by 

M 

(i −1) 
0 

= 2 

i −1 M 

(0) 
0 

. (28) 

One must note that M2M operations are performed only once for both left and right sides of the central domain since the

multipole expansions are identical for both sides. 

The next step corresponds to the computation of the M2L pass for the periodic boxes. For these calculations, from the

separation criterion [8] , it is only mandatory that the clusters are separated by at least the size of the source-boxes. In

Fig. 15 , the blue arrows represent the M2L operations from the center of the larger source-clusters indicated by blue dots

and light gray boxes. The M2L operations must be performed twice to account for both left and right sides of the central

domain. One must not forget that due to the separation criterion, the immediate neighbors | n | = 1 of the central domain

only perform M2L operations in a similar fashion to the free domain FMM, i.e. , using smaller boxes at levels � ≥ 1. This way,

their interactions are not shown in Fig. 15 . Hence, the M2L computations for the periodic boxes are performed directly to
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Fig. 16. Influence of number of domains in periodicity for a finite shear layer discretized by 5120 vortex particles, A = 0 . 01 , σ = 0 . 05 , RK4 with 
t = 0 . 01 

until t = 2 . 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the central domain for all levels i = 0 to I , for m = 1 to p , as 

L 

(M2 L ) 
m 

= 

I ∑ 

i =0 

2 ∑ 

s =1 

{ 

− M 

(i ) 
0 

m · z m 

i,s 

+ 

1 

z m 

i,s 

p ∑ 

k =1 

[
M 

(i ) 
k 

(
m + k − 1 

k − 1 

)
(−1) k 

z k 
i,s 

]} 

. (29)

In this equation, the distance from the left and right clusters with respect to the central domain are given by z i, 1 = + (1 . 5 ×
2 i + 0 . 5) and z i, 2 = − (1 . 5 × 2 i + 0 . 5) , respectively. 

4.3. Convergence of the periodic FMM 

The FMM is applied to accelerate the solution of a periodic shear layer. The method is based on a series expansion of

the cotangent function, which governs the vortex dynamics in a periodic layer, and it may be truncated in p terms. The

convergence study presented in Fig. 7 for the free-domain FMM shows that machine precision is achieved for about p = 40

terms and so, this value is used in all simulations using the FMM in this section. Also, a source of error of the periodic FMM

comes from the replication of domains and it arises from the truncation of an infinite shear layer. Each domain represents a

small shear layer that works as a boundary condition for the central domain. For a distribution of N vortex particles, there is

an asymmetric distribution of elements around an observer k . This unbalancing induces a higher vertical velocity at k , and

it is expected to be higher if k is further away from the center of the shear layer. The unbalancing moves the particles such

that the wake tips begin to roll-up. Also, the entire wake has a precession movement about its center x c = 

(x N + x 1 ) 
2 . Adding n

domains to both tips, i.e. , going from a free-domain layer to a periodic layer, the asymmetry of particles are moved further

away, which reduces the induced precession velocity, v k , evaluated by v k ∼ O 

(
2 k −N−1 

N 
1 
n 

)
with an error decay based on the

number of domains about O( 1 n ). 

The measurements in Fig. 16 are performed for 5120 vortex particles in the first time step of a undisturbed shear layer,

where it is expected from a delicate balance that the induced vertical velocity is null, as described by Lewis [35] . It confirms

that a vortex close to the center has a smaller precession velocity while one located towards the wake tip has a larger

velocity, as shown in Fig. 16 (a). In the case of an initially perturbed shear layer with sinusoidal shape, the problem is more

complex. The results for long-time integrations are shown in Fig. 16 (b), where the use of additional domains reduce both

precession and secondary roll-up. It is possible to see a convergence of the FMM scheme to the solution of the Biot–Savart

law using the cotangent function. The present numerical solution is obtained using 5120 vortex particles with viscous core

σ = 0 . 05 with the RK4 scheme and 
t = 0 . 01 until t = 2 . 0 . The initial amplitude of the sinusoidal displacement is A = 0 . 01 .

Since this spurious precession is purely due to the unbalancing from truncation of the periodic shear layer, one must

overcome its presence. To do so, N − k vortex particles with intensity � = 

1 
N are placed at the left side of a vortex k in the

n + 1 domain, i.e. , after the last domain n . Similarly, another set of k − 1 particles are placed in the n + 1 domain to the right

of the vortex k . This balancing procedure eliminates any precession in a horizontal, undisturbed shear layer since all vortex

particles have null velocity and any error is purely due to the machine precision. However, a perturbed layer no longer has

symmetry inside the central domain and it also has the u component of the velocity. This way, compared to the cotangent

solution, there is still an error for the induced velocity proportional to the number of periodic images at both sides of the
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Fig. 17. Error reduction when using a balanced shear layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

central domain. Fig. 17 (a) presents the RMS deviation calculated with 5120 vortex particles only for the first step of the

simulation. It is possible to see that the proposed balancing reduces the error and accelerates the convergence based on the

number of periodic domains. 

The use of a shear layer balancing is more than just error-reducing. In Fig. 17 (b), for only 10 replicated domains, the

result with balancing is closer to the Biot–Savart law solution using a Lamb–Oseen vortex array, Eq. (26) . The unbalanced

solution not only has precession but also secondary roll-ups, leading to a spurious solution. In this figure, the results are

obtained using the same parameters as those for Fig. 16 . 

Fig. 18 (a) presents a finite shear layer without the balancing that enforces the periodic boundary conditions. Since balanc-

ing is necessary, the FMM can be further modified to consider the additional particles and to avoid excessive computational

cost. The whole balancing procedure is explained in Fig. 18 (b–e). The main idea is to cluster, at the left, the particles indi-

cated by k + 1 to N , while at the right side, the cluster is from 1 to k − 1 (see Fig. 18 (b)). The clustering uses the existent

multipole expansions from the free-domain FMM for levels � = 1 to L − 1 . The boxes which are clustered are those in the

inner portion of the wake shown in light gray in Fig. 18 (c). If any of the white boxes appearing in this previous figure is

used, unbalancing will occur. In the procedure, two new equivalent clusters at the boundaries of the truncated domain are

created in the red dots, as presented in Fig. 18 (d). These two new clusters interact directly with the smallest boxes (dark

gray in the figure), in the central domain, at level L . These calculations use only M2L operations with no further L2L com-

putations. For a precise balancing, the particles inside both replicated finer boxes in the boundaries, at level L , interact with

the dark gray boxes directly using the Biot–Savart law. Hence, a new O( ̃  N 

2 
) cost is added where ˜ N is the number of particles

in the column of the finest level boxes ( Fig. 18 (e)). 

The convergence based on the number of domains, n , of the solution with balancing is investigated for long-time inte-

grations. The computation of the FMM periodicity uses the optimized fast summation of the far-field previously described.

The solutions maintain the correct shear layer pattern independently of the number of domains employed. The calculations

are performed with the same parameters as in Fig. 16 . 

The solution of the periodic shear layer also presents spurious instabilities similar to those from the Trefftz plane when

σ → 0. A similar procedure as that presented in the previous section can be applied to solve such issues and more details

can be found in Ricciardi [39] . 

4.4. Computational time 

The computational time of the periodic FMM is investigated using a 2.5 GHz Intel®Xeon 

TM 5-2670v2 CPU in serial calcu-

lations. In the periodic FMM, two new costs must be analyzed: that from balancing as well as that from the level 0 period-

icity from inclusion of the n image boxes. A comparison of total cost from direct evaluation using the Biot-Savart cotangent

solution with the periodic FMM is performed up to 4x10 5 vortex elements and the results are shown in Fig. 20 (a). The fixed

cost of the FMM is relevant for a small number of particles, however, the cost reduction using the periodic FMM is about

480 times that of the direct summation for the maximum number of particles investigated. 
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Fig. 18. Current implementation of the wake balance procedure using the FMM. 
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Fig. 19. Effects of the number of domains in the solution of the periodic FMM using 5120 vortex, A = 0 . 005 , σ = 0 . 02 , RK4 with 
t = 0 . 01 until t = 2 . 0 . 

Fig. 20. Computational time for a single evaluation of the periodic FMM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The balancing cost of the periodic FMM is shown in Fig. 20 (b), where the red and blue lines represent the far-field

and near-field operations of the free-domain FMM, respectively. The green lines represent the overall costs of the proposed

periodic implementation which include the steps from Fig. 18 (c–e). This new cost is compared to the near-field computations

inside the central domain. Although a new O( N 

2 ) cost is added, this operation is nearly 10% of the existing near-field cost

for large N and it does not compromise the use of wake balancing. Moreover, this cost is small since, in the present case, the

wake is concentrated in the center of the domain and only a few boxes are non-empty. In a problem with a homogeneous

distribution of particles along the entire FMM domain one may expect an increased balancing cost. 

5. Conclusions 

Lagrangian simulations of unsteady vortical flows are performed using the discrete vortex method, DVM, accelerated by

the multi-level fast multipole method, FMM. The combination of the FMM-DVM algorithms is discussed for free domain and

periodic problems with focus on implementation details to reduce numerical dissipation and to avoid spurious solutions in

unsteady inviscid flows. In the current work, we provide an assessment of the parameters which control the errors and the

numerical dissipation of the coupled DVM-FMM for the solution of the Trefftz plane problem, which models the wing tip

vortex formation in aircraft, and for a periodic shear layer. 

It is shown that the vortex regularization model and the time marching scheme introduce numerical dissipation to the

convective operator of the DVM. A higher-order time marching scheme and a small viscous core in the vortex model are

required to control the numerical dissipation. Spurious numerical instabilities may arise due to the lack of diffusion in the

convective operator of the DVM. In order to obtain accurate solutions which delay the formation of secondary roll-ups in

the FMM-DVM coupling, a large number of truncation terms in the FMM series must be employed in the calculations. As

expected, increasing the depth of the tree in the FMM is shown to reduce the overall computational cost of the method.
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However, the increase of this level is limited by the length of the vortex core in the regularization model. The FMM al-

lows simulations with higher resolution in the wake discretizations and, therefore, it improves the solutions delaying the

formation of spurious numerical instabilities. 

The evolution of a temporal shear layer is obtained by a periodic FMM implementation. We present a novel approach to

increase the accuracy of periodic flow calculations using the DVM-FMM. This approach avoids a spurious precession of the

periodic shear layer and solutions are shown to converge to the direct Biot–Savart calculation using a cotangent function.

The overall computational cost of the periodic FMM is shown to be similar to that of the free-domain FMM. The approach

can be also applied for multiple periodic directions in three-dimensional flows. 
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