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Accelerating Overrelaxed and Monotone Fast
Iterative Shrinkage-Thresholding Algorithms
With Line Search for Sparse Reconstructions

Marcelo V. W. Zibetti, Member, IEEE, Elias S. Helou, and Daniel. R. Pipa, Member, IEEE

Abstract— Recently, specially crafted unidimensional optimiza-
tion has been successfully used as line search to accelerate
the overrelaxed and monotone fast iterative shrinkage-threshold
algorithm (OMFISTA) for computed tomography. In this paper,
we extend the use of fast line search to the monotone fast
iterative shrinkage-threshold algorithm (MFISTA) and some
of its variants. Line search can accelerate the FISTA family
considering typical synthesis priors, such as the �1-norm of
wavelet coefficients, as well as analysis priors, such as anisotropic
total variation. This paper describes these new MFISTA and
OMFISTA with line search, and also shows through numerical
results that line search improves their performance for tomo-
graphic high-resolution image reconstruction.

Index Terms— Tomographic image reconstruction, iterative
shrinkage-thresholding, line search.

I. INTRODUCTION

SPARSE reconstructions with �1-norm penalty, as used by
Compressed Sensing (CS) [1], [2], have a wide range of

applications, such as Computed Tomography (CT) [3], [4],
Magnetic Resonance Imaging [5], and Reflection Seismol-
ogy [6]. In all these applications, the reconstruction problem
can be posed as an �1-norm regularized least squares problem
of the form:

f̂ = arg min
f
�(f), (1)

with

�(f) = 1

2
‖g − Hf‖2

2 + λ‖Lf‖1, (2)

also known as LASSO when L = I [7], but henceforth referred
to as an �2-�1 problem. In (2), f is a P × 1 vector which
represents the image to be reconstructed, the M × 1 vector g
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represents the captured data and the matrix H represents the
system model. Also, the N × P matrix L represents a trans-
formation in the prior model, normally a sparsifying operator,
such as wavelet transform or finite difference operator.

There are many ways of solving �2-�1 problems, in
this paper we are interested in methods based on the
proximal operator, such as iterative shrinkage-thresholding
algorithm (ISTA) [8] and its fast versions, the fast
ISTA (FISTA) [9] and rapidly accelerated proximal gra-
dient (RAPID) [10]. Methods such as FISTA, and its
monotone (MFISTA) variant [11], provide accurate numerical
approximations to the solution of (2), with low computational
cost per iteration and high speed of convergence.

Besides being relatively simple to implement, FISTA and
MFISTA have convergence of order 1/k2, being k the iteration
index. A recent improvement on these methods appeared
in [12], where over-relaxation and variable step size were
included in order to further improve convergence speed. The
variable step size proposed in [12] allows the inclusion of a
fast line search in the method. The line search can compute
the optimal step size, and if it can be done at very little
increase in computational cost, then it can improve the overall
convergence speed.

Fast and optimal line search methods for least squares
problems mixed with �1-norm penalty have not been well
exploited so far. Recently, [13] studied optimal unidimensional
minimization of �1-penalized denoising problems and pre-
sented a fast algorithm that can be adapted to line search in this
particular case. Also, [14] introduces a more general optimal
line search, however with a high computational cost, so using
it in all iterations is not worthwhile. In [15] it was proposed
the use of the exact and fast line search from [13] as a method
to compute the optimal step size of the OMFISTA. This new
method is named OMFISTA with line search (OMFISTA-LS),
and it is also revisited in detail in this paper. The optimization
from [13] was improved in terms of speed in [16] and utilized
as a line search to accelerate ISTA, IRLS, and NLCG with
success.

Here, we extend the ideas of line search for OMFISTA
[15] and propose its use in MFISTA. The use of line search
in OMFISTA is revisited, detailed, and the underlying the-
ory extended accordingly. Also, the line search is applied
to both the synthesis prior and the analysis prior versions
of MFISTA and OMFISTA. For the analysis prior, the fast
gradient projection (FGP) algorithm is utilized as the proximal
operator.
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The main application of these algorithms in this paper
is computed X-ray tomography, which is a non-destructive
3D imaging technique used to investigate the internal structure
of objects that are transparent to X-ray. There are several
applications demanding the identification of structural proper-
ties of bones, rocks, seeds, among others. The high-resolution
tomographic imaging beamline of the Brazilian Synchrotron
Light Source (LNLS) can capture lots of data of scanned
objects in each angle, but in order to have an acceptable
acquisition time, only few angles are captured. Under this
circumstances, fast Radon operators [17], [18], and �1-norm
regularization are required in order to, respectively, enable
reasonable computation time for each iteration and provide
accurate reconstruction with sparse angular sampling.

The mathematical problem underlying tomography is to
recover a function f from its line integrals, i.e., to find f
that solves∫ ∞

−∞
f

(
t

(
cos θ
sin θ

)
+ s

(− sin θ
cos θ

))
ds = g(θ, t), (3)

where g is given. Because data is finite, we try to recover
discrete images and, therefore, given the linear nature of the
data model, we are actually led to a linear system of equations

g = Hf + e, (4)

which composes the data-discrepancy term in (2),
i.e. ‖g − Hf‖2

2, and e represents noise and model errors.
In Section II, we review the FISTA, MFISTA and OMFISTA

methods, as well as the FGP method for analysis prior, while
in Section III the fast line search for �2-�1 problems is dis-
cussed. The proposed MFISTA with line search (MFISTA-LS)
and the revisited OMFISTA-LS are detailed in section IV,
while the experimental comparison and discussion is presented
in section V.

II. FAST ITERATIVE SHRINKAGE-THRESHOLDING

ALGORITHMS

FISTA [9], as defined by its acronym, is a fast iterative
algorithm, with convergence rate of O(1/k2) [9], that utilizes
the shrinkage-thresholding operator. It was initially designed
to solve �2-�1 problems with synthesis priors [19], mainly
when L, from (2), is an invertible matrix, or when one defines
a specific dictionary in D. Then, the minimization problem
solved by FISTA can be written as:

�(u) = 1

2
‖g − Au‖2

2 + λ‖u‖1, (5)

where A = HL−1, when L is an invertible matrix, or
A = HD, with D as a dictionary [20]. The coefficient vector
u is expected to be a sparse representation of the image,
e.g., a sparse wavelet representation.

The shrinkage-thresholding operator, or soft-thresholding
operator [21], arises from the proximal operator of the
�1-norm [22], and is given by:

Sλ(yi ) =
{

0 , |yi | ≤ λ

yi − λsign(yi ) , otherwise.
(6)

When utilized to solve (5) with FISTA, it results in the

following iteration:

uk = Sλ/c

(
1

c
AT (g − Ayk)+ yk

)
, (7)

where Sλ(y) = [Sλ(y1), . . . , Sλ(yN )]T . Note that convergence
is only guaranteed [9] if c ≥ ||AT A||2. Also, the higher the c
value the lower the convergence speed of FISTA.

The point yk+1 in (7) is a special combination of the two
previous approximations:

yk+1 = uk + tk − 1

tk+1
(uk − uk−1) , (8)

where tk+1 =
(

1 +
√

1 + 4t2
k

)
/2, for t1 = 1 and u0 = y1.

FISTA is not a monotone algorithm [11]. Due to this
non-monotonicity the authors of [9] proposed the monotone
FISTA (MFISTA) [11]. Here, the step in equation (7) is
changed to:

zk = Sλ/c

(
1

c
AT (g − Ayk)+ yk

)
, (9)

and the actual approximate solution at iteration k is given
by:

uk = arg min
z

{�(z)|z ∈ {zk,uk−1}}. (10)

This means zk , from (9), is the new approximation only
if it reduces the value of � compared to previous itera-
tion uk−1. In MFISTA, the computation of yk+1 is modified
to:

yk+1 = uk + tk
tk+1

(zk − uk)+ tk − 1

tk+1
(uk − uk−1) . (11)

In [12] the over-relaxed and monotone FISTA (OMFISTA)
was proposed. This modified member of the FISTA family
allows the use of over-relaxation, with two variable steps.
The equation (9) is modified to include relaxation in
OMFISTA:

zk = Sλβk/c

(
βk

c
AT (g − Ayk)+ yk

)
, (12)

and also (10) changed to:

uk = arg min{�(z)|z ∈ {uk−1 + αk(zk − uk−1),uk−1}},(13)

where the two new step parameters βk and αk may be different
from βk = αk = 1, as in MFISTA. The computation of yk+1
is also modified from (11) to:

yk+1 = uk + tk
tk+1

(zk − uk)+ tk − α1

tk+1
(uk − uk−1)

+ tk
tk+1

(
1 − ηkαkβ

−1
k

)
(yk − zk) , (14)

where, according to [12], the following conditions need to be
satisfied for convergence:

ηk ≤ ηk−1,

βk(βk − 2)+ ηkαk ≤ 0,

0 ≤ αk ≤ 1,

βk ≥ 0 (15)
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Also t1 = α1 and:

tk+1 =
α1αk+1 +

√
α2

1α
2
k+1 + 4t2

k

2
. (16)

These new parameters make OMFISTA more complex, but
also give it flexibility and possibly better performance.
Conditions (15) are sufficient, in practice we can extrapolate
them a bit and get even more speed, as done in [15].

The most relevant point of this algorithm is that uk−1 +
αk(zk − uk−1) may be the next solution instead of zk . This
allows the user to choose a step αk different from a unitary one.
This modification opens the possibility of using line search to
choose a better αk . It is also possible to decouple the αk used
in (16) and the step used (13), which we call hereafter μk ,
being the next solution defined as uk−1 +μk(zk −uk−1). Even
though μk and αk are originally the same value, according
to the convergence analysis in [12], and our extension in the
Appendix for αk > 1, they need not be. This gives freedom
to use line search on OMFISTA without extrapolating condi-
tions (15), or up to the new limit proposed in (33) of this paper.

While line search acceleration has already been employed
for iterative shrinking-threshold algorithms (ISTA), as reported
in [23], only recently it was applied to OMFISTA1 [15] and, as
far as we know, it has not been applied to MFISTA until now.

A. FISTA for Analysis Prior and Fast Gradient Projection

While the shrinkage-thresholding operator is of fast com-
putation, it only provides the exact proximal operator for
synthesis problems. For analysis priors [19], the proximal
operator may not have a closed form solution. Due to this, the
authors of FISTA extended it in [11] for analysis priors such
as total variation, and also included positivity constraints.2

This was done through the use of the dual formulation of
the analysis prior from [24]. Furthermore, in [11] the speed
of convergence the gradient projection (GP) method was
improved including the same momentum acceleration used in
FISTA, a technique denominated there as fast GP (FGP).

The FISTA-FGP algorithm, for minimizing the problem (2)
can be written as:

fk = FGPλ/τ,L

(
1

τ
HT (g − Hyk)+ yk

)
. (17)

Here, FGPλ,L(b) is an algorithm to compute the proximal of
||Lf ||1 given by:

FGPλ,L(b) = arg min
f

1

2
||b − f ||22 + λ||Lf ||1 = proxλ||Lf||1(b).

(18)

In (17), the point yk+1 is computed as:

yk+1 = fk + tk − 1

tk+1
(fk − fk−1) . (19)

The most important difference between FISTA and
FISTA-FGP is that the soft-thresholding operator, which is the
proximal operator for �1 norm of the coefficients, i.e ||u||1,

1Example 2(1) of the paper [12].
2Paper [11] considers general convex constrains.

is replaced by the proximal operator of the analysis prior,
i.e ||Lf ||1, solved using FGP.

The main iteration of the FGP is given by:

pk = P
(

1

λs
L(b − λLT rk)+ rk

)
, (20)

where the next iteration point rk+1 is given by:

rk+1 = pk + tk − 1

tk+1
(pk − pk−1) , (21)

and the output of the algorithm f = FGPλ,L(b), after N FGP
iterations of (20) is given by:

f = b − λLT pN . (22)

In (20), tk is the same as in FISTA, but s ≥ ||LT L||2,
and P (r) is an element-wise operator:

P(ri ) = ri

max{1, |ri |} . (23)

Note that the soft-thresholding operator could be imple-
mented using FGP algorithm too, assuming L as an identity
matrix. However, the standard form in (6) is much more effi-
cient. In [11], FGP was combined with FISTA and MFISTA.
In this paper, we use FGP in OMFISTA as well, and most
important, line search can be applied to these methods to
accelerate them.

III. LINE SEARCH FOR �1-NORM REGULARIZED

LEAST SQUARES PROBLEMS

The line search for the problem (2) can be written as:

μ∗ = arg min
μ
�(μ), (24)

with

�(μ) = 1

2
‖g − H(f + μd)‖2

2 + λ‖L(f + μd)‖1, (25)

where d is the search direction and μ the step. The k index
was omitted for visual convenience. Equation (25) can be
written as:

�(μ) =
M∑

j=1

q j

2
|μ− x j |2 +

N∑
i=1

ωi |μ− μi |, (26)

with:

x j = g j − hT
j f

hT
j d

, q j = |hT
j d|2 = (hT

j d)2,

μi = − lT
i f

lT
i d
, ωi = λ|lT

i d| = λ

√
(lT

i d)2, (27)

where hT
j is the j -th row of H, and lT

i is the i -th row of L,

and g j is the j -th element of the vector g. Equation (26) is
valid to represent (25) or (5), where f , H and L in (27) have
to be replaced by u, A and I respectively.

Arranging the line search problem as (26) allows us to
visualize it as a simpler one-dimensional optimization prob-
lem [16]. In this case, standard iterative one-dimensional
optimization methods such as the method of false posi-
tion (MFP) [25] and specific fast methods such as [13] and [16]
can be used to solve (26).
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The MFP [25] is an iterative line search that starts with two
extreme points μa and μb, such that � ′(μa) ≤ 0 ≤ � ′(μb).
The next point is given by:

μnew = μa − � ′(μa)

[
μb − μa

� ′(μb)−� ′(μa)

]
. (28)

Here, � ′(μ) is defined as one element of the subdifferential
∂�(μ) [16]. Then μnew replaces μb if � ′(μnew) > 0, or it
replaces μa if � ′(μnew) < 0.

While this line search provides a good approximate solu-
tion at low cost usually with few iterations, it may take
much longer to find an exact minimum solution, specially
if μ∗ is one of the μi points. Also, care should be taken
with a possible singularity. Therefore, if there exists a
method that finds the exact minimum within a relatively
short time, then, finding this exact minimum could be
worthwhile.

In [13], a method to find the minimum of a general-
ized version of (26) was developed for denoising prob-
lems. According to [13], the exact minimum of (26)
is given by:

μ∗ = median(μ1, . . . , μN , p0, . . . , pN ) (29)

where pi is computed as:

pi = xq − �i

Q
, (30)

with xq = 1
Q

∑M
j=1 q j x j and Q = ∑M

j=1 q j . Considering an
increasing ordering of μi , μ1 ≤ μ2 ≤ . . . ≤ μN and using the
same indexes, the �i ’s are defined as:

�i =
i∑

k=1

ωk −
N∑

k=i+1

ωk . (31)

Starting with the lowest level �0 = − ∑N
i=1 ωi , the

�i ’s values form an increasing sequence. Note the pi ’s are
decreasingly ordered, pN ≤ . . . ≤ p1 ≤ p0. Li and Osher [13]
proved that the minimum of (26) is the median of a set
composed by the N values of {μi } and the N + 1 values
of {pi}.

This method is relatively fast, the most computationally
expensive parts are (a) sorting {μi }, requiring on average3

O(N log N) operations, (b) computing the �i values, as
�i = �i−1 + 2ωi , using O(N) operations, and (c) com-
puting the median in (29), using on average O(2N log 2N)
operations.

In [16], an alternative implementation, with lower compu-
tational cost than [13] for problem (24) was proposed. The
algorithm in [16] basically computes sequentially the extreme
values4 of ∂�(μi ), looking for the root of ∂�(μ), which may
be an μi or a pi . On average, the method presented in [16]
is 1.5 times faster than the line search technique proposed
in [13].

3The quicksort algorithm requires at most O(N2) operations, but on average
it uses only O(N log N) operations.

4Since ∂�(μi ) is a set, extreme values of the set, i.e the maximum value,
is computed.

Fig. 1. Evolution of the algorithms according to the iterations. FISTA-LS
can have bigger steps than ISTA or FISTA, getting close to the minimum
faster.

IV. ACCELERATING MFISTA AND OMFISTA
WITH LINE SEARCH

While fast and exact line search, such as those
from [13] and [16], were shown to accelerate algorithms as
ISTA and non-linear conjugated gradient for �2-�1 problems,
only in [15] it was tested for FISTA family of methods, more
precisely, in one version of the OMFISTA presented in [12].
However, here we show that line search can be applied to other
members of this family as well.

A. Line Search on MFISTA

In FISTA and MFISTA, the inner step parameter c controls
the speed of convergence, but it is limited due to c ≥ ||AT A||2
in the synthesis form, and due to τ ≥ ||HT H||2 in the analysis
form. These limits are important to ensure convergence with
fixed step.

One can use line search in MFISTA, allowing convergence
to be faster, basically finding a better point than the one
specified by (10). Even though not explicit in [11], any fk in
which �(fk) ≤ min(�(zk),�(fk−1)) can be used to replace
the zk or fk−1. In this sense, one can apply line search using the
iteration (9), and optimizing�(fk−1+μk(zk−fk−1)), replacing
the originally possible steps μk = 1 or μk = 0. This choice
of the new solution can increase the speed of the MFISTA
algorithm.

In Figure 1, we illustrate these accelerated steps comparing
the first three iterations of ISTA, FISTA and MFISTA-LS in
a two-dimensional example. One can clearly see that, in the
second iteration, linear search places MFISTA-LS in a point
much closer to the final optimizing limit point than FISTA or
ISTA in the third iteration.

The MFISTA-FGP algorithm is described in Table I. Note
that the synthesis version is nearly the same as in Table I,
except that fk must be replaced by uk , H replaced by A, and L
is replaced by the identity, while the FGP algorithm is simply
changed to the shrinkage-thresholding operator.

The most computationally expensive parts of this algorithm
are expected to be the left multiplications by matrix H and
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TABLE I

MFISTA-FGP-LS

TABLE II

LINE SEARCH SPECIFIC COMPUTATIONS

its adjoint. The computations using matrix L should be cheap,
otherwise the FGP algorithm will be very costly.

One important remark here is that if c or τ are not known,
then methods like backtracking can be utilized to check if
the current ck or τk values satisfy convergence conditions of
FISTA, MFISTA or OMFISTA [9], [12], or if they need to be
increased. Here we assume c ≥ ||AT A||2 or τ ≥ ||HT H||2
can be computed.

B. Revisiting OMFISTA-LS

In [15], line search was applied to OMFISTA with success-
ful results, but only on the synthesis version and with βk = 1.
Also, not all convergence conditions stated in (15) were strictly
respected. In this paper, the general version of the OMFISTA
is considered. The algorithm is detailed in Table III. Again,
only the OMFISTA-FGP with line search is shown, but the
non-FGP form is straightforward.

Even though good performance can be obtained respecting
convergence conditions in (15), here we show that these
theoretical limits can be increased. In [12], it is shown that:

�(fk)−�(f∗)

≤ 4η1

ηk(1 + ∑k
i=1 αk)2

[�(f1)−�(f∗)

+ 1

2η1
‖η1α1β

−1
1 z1 + (1 − η1α1β

−1
1 )y1 − f∗‖2]. (32)

TABLE III

OMFISTA-FGP-LS

This result from [12] indicates that large αk steps increase
OMFISTA convergence speed. In the present work we note
that we can use any αk sequence that satisfies:

αk ≤ max

(
1,
�(fk)− �(fk−1)

�(zk)−�(fk−1)

)
, (33)

This choice of αk is required so the following relation holds:

�(fk) ≤ (1 − αk)�(fk−1)+ αk�(zk), (34)

This condition is always satisfied for αk ≤ 1 because
of (13) and convexity of �(f). However, we notice that larger
steps αk can increase the speed of convergence of OMFISTA.
Convergence analysis of OMFISTA is extended in the
Appendix to support (33), keeping most the analysis already
provided in [12]. Note the improvement of OMFISTA for
αk > 1 is independent of the line search. However, in the
same way as MFISTA-LS, line search can give an extra boost
on the convergence speed.

V. EXPERIMENTS

In this section, the MFISTA and the OMFISTA are com-
pared with its line search-equipped counterparts, MFISTA-LS
and OMFISTA-LS respectively. Unless otherwise stated, the
line search procedure used was the one proposed in [16].
We focus here on tomographic image reconstruction. The
purpose of this experiment is to illustrate the speed up of
MFISTA and OMFISTA obtained with the use of line search.

Two tomographic setups were used: For the wavelet
(synthesis) reconstructions, a sinogram with 176 angles and
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Fig. 2. Algorithms with wavelet regularization according to the iterations.
(a) Cost function convergence. (b) Proximity with the optimal solution.

1024 values per angle from real data provided by the LNLS
and a synthetic generated sinogram from Shepp-Logan phan-
tom and Brain phantom5 [26] with 256 angles and 1024 values
per angle. The reconstructed images have 1024 ×1024 pixels.
For finite difference (analysis) reconstructions, the same real
data was utilized, but the phantom sinograms with 128 angles
and 512 values per angle was utilized. The reconstructed
images have 512 × 512 pixels. The NUFFT from [18] with
2× oversampling and 6 × 6 interpolating filters was used to
compute Hf and HT g. The values of the cost function are
computed at each iteration as well as the error between the
solution and the minimum solution. The computing time is
also recorded.

For this experiments, the λ was chosen by visually inspect-
ing the reconstructed images, the same λ is used for all
methods with synthesis prior, and a different one was used
for all methods with analysis prior. The τ parameters were
computed using ‖HT Hf‖2/‖f‖2, where f is a constant inten-
sity image, the computation of c followed the same idea using
also the wavelet transform, and the same c and τ parameter
values were used in all methods. In the OMFISTA tests,
different parameters for βk were tested, but they were kept
constant during the iterative process. For synthesis prior, the
sparsity is enforced in the wavelet domain, where Daubechies
4 wavelet was empirically chosen. For analysis prior, vertical
and horizontal finite difference where utilized.

This experiment evaluates the evolution of the algorithms
with respect to minimizing the cost function (2) plotted as
�(fk)− �(f∗) and the proximity with the minimum solution
‖fk − f∗‖2/‖f∗‖2. The minimum value of the cost function

5Phantom based on a transaxial slice of the human head. The phantom
mimics an actual medical image; for details, see sections 4.3 and 4.4 of [26].
The phantom has a random assignment of local inhomogeneities and a random
introduction of small “tumors”; see section 5.2 of [26]. The 1024 × 1024
digitization of the phantom was produced by the software SNARK14 [27].

Fig. 3. Algorithms with finite difference regularization according to the
iterations. (a) Cost function convergence. (b) Proximity with the optimal
solution.

�(f∗) and the minimum point f∗ are determined by choosing
the point with minimum cost of all methods running 7 times
more iterations than those plotted.

A. Overview of the Methods
First, a direct comparison between FISTA, MFISTA,

OMFISTA and the line search-equipped MFISTA-LS and
OMFISTA-LS is shown in Figures 2 and 4 for wavelet
(synthesis) prior, and in Figures 3 and 5 for finite difference
(analysis) prior. Figures 2 and 3 show the convergence versus
iteration count, where one can see the improvement per
iteration achieved by the line search. In Figures 4 and 5
the convergence over processing time is shown, thus one can
observe also a better performance when line search is utilized.
These curves are averaged with the results for all phantoms.

In all eight plots, from Figure 2 to Figure 5, one can note
some similar behavior with respect to acceleration. First, line
search improved the method it was applied to, i.e. MFISTA-LS
and MFISTA-FGP-LS were faster than MFISTA and
MFISTA-FGP, as well as OMFISTA-LS and OMFISTA-
FGP-LS were faster than OMFISTA and OMFISTA-FGP
respectively. In all plots, OMFISTA-LS and OMFISTA-FGP-
LS were the fastest methods, specially with α > 1, and FISTA
and FISTA-FGP were the slowest. Considering the conver-
gence over iteration, on Figures 2 and 3, one can clearly see
that line search improved speed in all methods. Table IV shows
the average time6 taken by each iteration of each method in
the tested problems.

In Figure 9, some reconstructed images from synthetic
data are shown. The unregularized image, reconstructed
using filtered backprojection is shown in Figure 9(a) with

6Computational setup for numerical experiments: MATLAB R2015a,
Windows 7, Intel Core i5-4570s @2.9GHz CPU, 32GB of DDR3-1333
Memory.
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Fig. 4. Wavelet algorithms according to the processing time. (a) Cost function
convergence with time. (b) Proximity with the optimal solution with time.

Fig. 5. Finite difference regularization methods according to the processing
time. (a) Cost function convergence with time. (b) Proximity with the optimal
solution with time.

PSNR = 7.7 dB [3]. The �1-norm regularized image, using
wavelet transform (Daubechies 4), is shown in Figure 9(b)
with PSNR = 26.2 dB, while regularized image with finite
difference is shown in Figure 9(c) with PSNR = 31.0 dB.
In Figure 10 some reconstructed images from real data from
the LNLS are shown. There are no PSNR for these images
since we have no ground truth for them.

TABLE IV

AVERAGE TIME PER ITERATION

Fig. 6. Performance of OMFISTA with different βk according to the
processing time. (a) Cost function convergence with time. (b) Proximity with
the optimal solution with time.

B. Exploiting OMFISTA Parameters

Many questions regarding the choice of OMFISTA para-
meters βk and αk can be raised. By now, there is no answer
to which are the best parameters for αk and βk . However, in
this section, we try to illustrate the performance of OMFISTA
with different parameters so one can have an idea of how this
choice affects the algorithm.

Regarding βk , considering that βk = 1 is the “neutral”
parameter, we tested values closed to it. The results are shown
in Figure 6 for Brain phantom only. Note that βk = 0.9 was
better than the others for OMFISTA-LS, βk = 1.15 improved
OMFISTA a bit.

Recall that theory from [12] requires αk ≤ 1 for conver-
gence guarantees. However, experimental practice here and in
previous work demonstrates that this limit can be extended
with improvements in convergence speed. In [15] we used
αk = μk with some success, even though there is no conver-
gence guarantee. Such results led us to take the effort to prove
convergence with αk > 1, resulting in this OMFISTA-LS
algorithm. Figure 7 illustrates its performance with different αk

choices, also, this OMFISTA-LS algorithm is compared with
the old OMFISTA-LS from [15] with η = 1. The results seen
in Figure 7 match well the theoretical predictions in which
large αk values should increase the convergence speed.
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Fig. 7. Performance of OMFISTA with different αk according to the
processing time. (a) Cost function convergence with time. (b) Proximity with
the optimal solution with time.

C. Performance Regarding the Line Search Algorithm

In this section, we compare the three fast line search
methods discussed in section III. For this experiment, we
denote as LO the method of Li and Osher, proposed in [13]
for denoising, and adapted in [15] as a line search. This
is a fast and exact one-dimensional optimization for �2-�1
problems. Another fast and exact line search tested here is
denoted by ZPD, which is the method proposed in [16]. Also,
we denote MFP6 as the method of false position [25] with
six iterations. This is an iterative method for line search,
and it did not provide the exact optimal point as the other
two methods, but it provides a reasonably accurate solution.
We also include a comparison of FISTA and FISTA with
backtracking. Backtracking in FISTA is utilized to find a c
that satisfy convergence conditions of the algorithm [9] when
c ≥ ||AT A||2 cannot be computed.

Figure 8 compares different line search methods for
OMFISTA-LS with α = 1 and βk = 0.9. The main purpose of
this test is to see if the line search method can make significant
difference here as it did in [16] for ISTA, NLCG and IRLS.
The conclusion is: very little difference between LO and ZPD,
but MFP6 may be unreliable.

Note that, in Figure 8 the OMFISTA-LS with MFP6 got
an instable behavior after 200 seconds, due to the precision
of the estimated step. This is an example of why computing
the optimal step, with LO or ZPD, is important. Also, back-
tracking usually makes FISTA a little slow since convergence
conditions needs to be tested at each update of ck or τk .

VI. CONCLUSIONS

This paper proposed an accelerating process through the
use of fast line search for MFISTA and OMFISTA. Also,

Fig. 8. Comparison of the line search algorithms utilized in
OMFISTA-LS. (a) Cost function convergence with time. (b) Proximity with
the optimal solution with time.

the synthesis prior, using wavelet transform, and analysis
prior, using anisotropic total variation, were considered in
this paper. The analysis version is based on FGP. These
algorithms were applied to tomographic image reconstruction
using synthetic data and data provided by the LNLS. The
experiments confirmed that line search made OMFISTA-LS
and MFISTA-LS, as well as their FGP counterparts, faster
than their original versions for CT problems. It is important to
restate that OMFISTA-LS is more flexible than MFISTA-LS,
and a proper combination of parameters may provide signifi-
cant acceleration over MFISTA-LS.

APPENDIX

CONVERGENCE OF OMFISTA

We need to further develop the theory from [12] in order to
accept rule (33), which may take values larger than 1. We will
start proving variations of [12, Lemmas 1(3) and 1(4)], but we
will first introduce some notations. The problem we want to
solve is a general form of (1) with:

�(f) = ψ(f)+ ρ(f)

where ψ is a smooth convex function with
Lipschitz-continuous gradient ∇ψ and ρ is a proper
lower semicontinuous convex function. We denote the
Lipschitz constant of ∇ψ as L(ψ) ≤ L. Furthermore, let

QL(f, g) := ψ(g)+ 〈∇ψ(g), f − g〉 + L

2
‖f − g‖2 + ρ(f),

proxβρ(f) := argmin
g

{
ρ(g)+ 1

2β
‖g − f‖2

}
,
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Fig. 9. Reconstructed images with synthetic data. The unregularized image has PSNR = 7.7 dB, the reconstructed �2-�1 images has PSNR = 26.2 dB for
wavelet and PSNR = 31.0 dB for finite difference. (a) Unregularized image. (b) Reconstructed �2-�1 image with wavelet regularization. (c) Reconstructed
�2-�1 image with finite difference regularization.

Fig. 10. Reconstructed images with real data from the LNLS. (a) Unregularized image. (b) Reconstructed �2-�1 image with wavelet regularization.
(c) Reconstructed �2-�1 image with finite difference regularization.

and

θL(f) := prox 1
L ρ

(
f − 1

L
∇ψ(f)

)
.

We now can proceed to the proofs.7

Lemma 1: Let y, w, u ∈ R
P, L, β, and α > 0 such that

�
(
θ 1
β
(y)

)
≤ QL

(
θ 1
β
(y), y

)

and

� (u) ≤ (1 − α)�(w)+ α�
(
θ 1
β
(y)

)
. (35)

Then for any f ∈ R
P we have

� (u) ≤ (1 − α)�(w)+ α� (f)− α

β

〈
θ 1
β
(y)− y, y − f

〉

+ α

(
L

2
− 1

β

) ∥∥∥θ 1
β
(y)− y

∥∥∥2
.

Proof: We notice that following the proof of
[12, Lemma 1(3)] we can arrive at8

�
(
θ 1
β
(y)

)
≤ �(f)− 1

β

〈
θ 1
β
(y)− y, y − f

〉

+
(

L

2
− 1

β

) ∥∥∥θ 1
β
(y)− y

∥∥∥2
.

7In order to simplify the proofs and the theory already presented, what
is β or βk here corresponds to βk/c or βk/τ in sections II and IV, as well
as ηk corresponds to ηk/c or ηk/τ . Also, for ψ(f) such as 1

2 ‖g − Hf‖2
2, the

L corresponds to c.
8We have the following correspondence of symbols: N = P , F = � ,

f = ψ , g = ρ, p = θ , x = f , y = y, ω = w, ξ = u, z = z, and λ = α.

Now use this at the right-hand side of (35). �
Lemma 2: Let the sequence {tk} be given as in (16) with

αk ≥ 0, then the following hold

t2
k = tk+1(tk+1 − α1αk+1), (36)

tk ≤ tk+1, and (37)

tk ≥ α1

2

(
2 +

k∑
i=2

αi

)
. (38)

Proof: The first two statements can be verified directly
from (16), while (38) can be verified by induction. In fact,
it holds as an equality for t1 = α1 and assuming that
tk ≥ αk/2

(
2 + ∑k

i=2 αi

)
we get

tk+1 ≥ α1

2

⎛
⎜⎜⎝αk+1 +

√√√√√α2
k+1 +

(
2 +

k∑
i=2

αi

)2
⎞
⎟⎟⎠

≥ α1

2

(
αk+1 + 2 +

k∑
i=2

αi

)
.

�
Theorem 1: Let f0 ∈ R

P be given and define y1 := f0.
Furthermore, suppose {αk} ⊂ [0,∞), {ηk} ⊂ (0,∞),
{Lk} ⊂ (0,∞), {βk} ⊂ (0,∞), and {fk} ⊂ R

P satisfy

ηk+1 ≤ ηk, (39)

Lk+1β
2
k+1 − 2βk+1 + ηk+1αk+1 ≤ 0, (40)

�(zk+1) ≤ QLk+1 (zk+1, yk+1), and (41)
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�(fk+1) ≤ (1 − αk+1)�(fk)+ αk+1�(zk+1), (42)

where zk+1 := θ 1
βk+1

(yk+1) and {yk+1} is given by:

yk+1 := fk + tk
tk+1

(zk − fk)+ tk − α1

tk+1
(fk − fk−1)

+ tk
tk+1

(1 − ηkαkβ
−1
k )(yk − zk),

where t1 := α1 and the remaining tk follow (16). Then we
have:

�(fk)−�(f∗)

≤ 4

(2 + ∑k
i=2 αi )2

η1

ηk
×

[
�(f1)−�(f∗)+ 1

2η1

∥∥∥∥η1α1

β1
θ 1
β1
(y1)

+
(

1 − η1α1

β1

)
y1 − f∗

∥∥∥∥
]
.

Proof: Notice that condition (41) allows us to use
Lemma 1 instead of [12, Lemma 1(3)] and proceed exactly like
in the proof of [12, Th. 1] (using Lemma 2 when necessary)
until we get:

�(fk)−�(f∗)

≤ α2
1

t2
k

η1

ηk
×

[
�(f1)−�(f∗)+ 1

2η1

∥∥∥∥η1α1

β1
θ 1
β1
(y1)

+
(

1 − η1α1

β1

)
y1 − f∗

∥∥∥∥
]
.

Then, using (38) we prove the claim. �
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