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A B S T R A C T

Bark is a residue that can be used as fuel by the industry. One of the problems of its use is the impurity that it
may contain. This study aimed to characterize physically and thermo-chemically the eucalyptus bark used as a
fuel in a wood panel industry, relating the high heating value (HHV) with the ash content. Six treatments were
provided according to particle size and washing process of the bark: T1 (850 μm to 425 μm/unwashed), T2
(retained on 250 μm/unwashed), T3 (< 150 μm/unwashed), T4 (850 μm to 425 μm/washed), T5 (retained on
250 μm/washed), T6 (< 150 μm/washed). The material was assessed regarding moisture content. The treat-
ments were subjected to HHV and proximate analysis. The ashes were analyzed under SEM-EDS to identify the
components/impurities. The data obtained in this study were statistically analyzed using the software R. The
material presented moisture content of 70% on a dry basis, which is considered high for use in bioenergy. It was
identified the presence of silica and calcium in the ash, which indicates the presence of soil in the material. The
process of washing the bark was efficient for the reduction in ash content only in particle size< 150 μm. The
separation of the bark in particle size was a better technique to reduce the impurities. The proximate analysis
showed a significant difference among treatments. The ash content presented values from 2.63% (T1) to 13.86%
(T3). The HHV was 18 828 J g−1 (T1) and 15 757 J g−1(T3). The separation in particle size reduced 81.02% in
the ash content, which represented an increase of 21.05% in the HHV. This result showed the effect of the ash
content in the energy potential.

1. Introduction

Power generation is a topic that over the years has gained more
importance due to its influence on economic stability and also political
and environmental issues. Renewable resources are alternative energy
sources, which may have advantages compared to fossil fuels, such as
availability, easy workability, and lower cost. The renewable energy
source is already seen as sustainable, and has presented a growing
usage fee (Eia, 2015; Nematollahi et al., 2016).

Different sectors can provide biomass, such as lignocellulosic ma-
terials, agro-food and also waste from any organic source (Akbi et al.,
2017). There is a high availability of biomass in Brazil. This biomass is
mainly derived from plantations with energy purposes or from planta-
tions’ residue. The area of planted forests is of approximately 7.6 mil-
lion hectares, of which almost 70% are eucalyptus forests (Ibá, 2015).

Biomass provided from vegetable resources represents a very im-
portant storage of energy. In order to use this energy, it is necessary to

perform an appropriate process, such as burning/combustion
(Madanavake et al., 2017). The combustion of the biomass is already a
very common practice in several industrial sectors. It is usually inserted
into a boiler, in which is provided heating and drying, followed by
pyrolysis, combustion and post-combustion. This entire process can
release hot air, and heat water and oil (Moraes, 2013).

This process may also offer some drawbacks. Biomasses frequently
are presented in uneven characteristics, and can be classified en-
ergetically according to the moisture content (MC), impurities com-
pounds (ash content), and high heating value (HHV) (Furtado et al.,
2012). Modifications in any of these parameters will have an effect on
the energy generation. It is recommended that energetic materials have
a MC smaller than 10% (in dry basis) and up to 2% of ash content
(Enplus, 2015).

The ash content is an inorganic residue that represents the percen-
tage of the material that is not part of the burning process and its in-
crease represents a reduction in the HHV. This component may also
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result in damage to the burning equipment by corrosive processes or by
the material deposition on the structure which may reduce the thermal
capacity (Garcia et al., 2014). Consequently, there is a concern about
the reduction of ash content to prevent maintenance of equipment or to
optimize the heat generation.

The ash content of a biomass may vary with the availability of
minerals from the soil where it is developed. The minerals are absorbed
by the plant and can be found in all organs and tissues. When the ash
content is over the expected value, there is the possibility of the ma-
terial having some type of external contamination (Fredo et al., 1999;
Hansted et al., 2016).

The ashes are heterogeneous regarding their composition, varying
according to the source of biomass and the burning process (Vassilev
and Vassileva, 2007). The ashes present main components in their
structure, such as silicates, cenospheres, and carbonaceous particles.
Silicates are particles with spherical shape, composed by silica dioxide
(SiO2); cenospheres are spherical particles composed by a mixture of
metal oxides; and carbonaceous are particles with irregular shape,
mainly the remaining parts of the incomplete burning, which may be
present in the material when it is burned in commercial scales (Hwang
et al., 2002; Cordeiro et al., 2008; Ahmaruzzaman, 2010).

The physicochemical characterization allows a better understanding
of the material, enabling the implementation of treatments for the op-
timization of biomass use. The main purpose of this study was the
physicochemical characterization of eucalyptus bark used as fuel in a
wood panel industry. The specific objectives were to identify methods
to reduce the biomass impurities.

2. Materials and methods

2.1. Material

The biomass was collected in a wood panel company in the city of
Itapetininga/SP-Brazil (23°35′40″ S; 48°3′14″ W). The material is ori-
ginated from plantations of hybrid eucalyptus (Eucalyptus urophylla x
Eucalyptus grandis) with seven years old. The material used was the
bark, obtained after the debarking of the logs. This process was held at
the company’s yard.

2.2. Preparation of the bark

The bark was fragmented into small pieces and it was milled in a
crushing machine. Before the process of milling, it was provided the
treatments that will be detailed on item 2.4.

The original moisture content of the material was calculated ac-
cording to ASTM E871-13 standard. The moisture content was calcu-
lated in dry basis, using the Eq. (1):

=

−MC ww dw
dw

( )*100
(1)

The variables shown in the formula represent: ‘MC’: moisture con-
tent in percentage; ‘ww’: wet weight in g; and ‘dw’: the dry weight in g.

In order to obtain the material dried, it was kept in the oven, at a
temperature of 100 °C until it presented constant weight.

2.3. Treatments

In the laboratory, the material was subjected to three different
particle sizes separation (between 850 and 425 μm sieve, retained on
the 250 μm sieve and smaller than 150 μm sieve) and two processes
regarding washing:

• washed (W) in running water for 10min, with a total volume of 2L;

• unwashed (UW), the material was kept with the original char-
acteristics.

Resulting in six treatments according to Table 1:

2.4. Particle size analysis

The biomass was placed in a stack of sieves arranged from the lar-
gest to the smallest opening. The sieves sizes selected were: 850 μm,
425 μm, 250 μm, 150 μm, and< 150 μm, according to the standard
ASTM D293-93 (2010). The set of sieves was placed on the Ro-Tap sieve
shaker. The duration of sieving was 3min and after sieving, the mass
retained on each sieve was weighed.

2.5. Proximate analysis

Prior to these analyses, the biomasses (all treatments) were dried in
an oven at 100 °C.The determination of the ash content was held ac-
cording to the standard ASTM D1102-84 (2007), and the volatile con-
tent, according to ASTM E872-82 (2013); both tests done in triplicates.
Both standards were adapted, since all the material was used for the
calculation. The fixed carbon content was calculated according to the
Eq. (2):

FCC= 100− (AC+VC) (2)

The variables shown in the equation represent: FCC= fixed carbon
content (%); AC=ashes content (%); and VC=volatile content (%).

2.6. High heating value

The high heating value of all treatments preformed was obtained in
the calorimeter IKA C200 based on the standard ASTM D5865-13. For
each treatment, three repetitions were carried out.

2.7. Morphological characterization

Morphological characterization of the ash was performed by scan-
ning electron microscopy (SEM). The tests were performed at the
Electron Microscopy Laboratory of the National Nanotechnology
Laboratory using the microscope Inspect F50, by FEI.

In order to identify the components that were present in the SEM
analysis, in other words, which mineral material constitutes the ashes,
it was performed peripheral energy dispersive spectroscopy (EDS)
analysis.

2.8. Statistical analyses

The effects of experimental treatments were analyzed using soft-
ware R version 2.11.1,by analysis of variance (ANOVA) and Tukey’s
multiple range tests (5% of probability).

3. Results and discussion

The material was obtained in the same conditions in which it is used
by the company, without any processing or cleaning. The initial
moisture content was approximately 70% (dry basis). This high level
may be explained by the storage in silos, without drying, keeping the
moisture in the material. The high moisture content is a negative factor

Table 1
Treatments established regarding particle sizes and the process of washing the material.

Process Treatments Particle sizes (μm)

UW T1 850–425
T2 250
T3 >150

W T4 850−425
T5 250
T6 >150
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for use in heat generation, since there is a loss of energy potential to the
withdrawal of the excess water. It is recommended moisture content up
to 10% for energy purposes (Enplus, 2015).

The eucalyptus bark, which is used as fuel by the company, goes
through the stripper, which reduces the pieces dimensions. At the time
of collection, the greatest percentage (55%) of the material got retained
on the sieve with opening of 2”(50mm). After the material passed
through the mill, it showed smaller particles, with higher percentage
(45%) retained on the sieve with opening of 425 μm.

The results of proximate analysis for all treatments: unwashed (UW
– T1, T2, T3) and washed (W – T4, T5, T6) are presented in Table 2,
ANOVA and Tukey’s test were applied. It was possible to notice that the
values obtained for ash content in this study are above what was ex-
pected when comparing to other researches regarding eucalyptus bark.
For instance, Chen et al. (2015) and Yu et al. (2016) presented values
for ash content lower than 4%. This difference can occur due to the
eucalyptus harvesting process of the company, which may aggregate
dirt to the bark.

In Table 2 it is possible to notice significant differences in the UW
(unwashed) and W (washed) treatments. For both parameters, UW and
W, the highest percentage of ash is concentrated in the smaller particle
sizes (T3 and T6).

To verify the differences in ash content, it was calculated the
ANOVA between washed (W) and unwashed (UW) treatments (with the
same particle size extracts). The results showed no significant difference
between T1 and T4, that is, the washing does not influence the de-
termination of the ash content in particles of 850–425 μm. The same
pattern was observed for particles of 250 μm, and there was no sig-
nificant difference between T2 and T5 treatments. For thinner
material, > 150 μm (T3 and T6), the washing resulted in a significant
decrease in ash content. The material that showed no significant dif-
ference for washing process (850–250 μm) represents 67% of the total
sample. It means, washing the material was not an efficient method to
reduce the impurities. This process reduced the ash content only in

thinner particles. The particle size separation can be an efficient and
suitable method for reduction in ash content, since it enables the pro-
cess of separating the smaller particle sizes, which retains the major
part of mineral contents (Acquah et al., 2016; Nakashima et al., 2017).

High levels of ash (minerals) represent a decrease in energy po-
tential. The minerals do not participate in the combustion process and
thus it is inversely proportional to the heat generation, Fig. 1 (Brand,
2010; Protásio et al., 2011; Montes et al., 2011). All minerals represent
a loss in the heating potential, at the end of the combustion, the ashes
remain (Boumanchar et al., 2017). Also, the presence of a great amount
of ashes can result in loss of efficiency of the boiler; by turning the
structure thicker, it can reduce the useful life of the equipment, since it
generates corrosives processes, and increases the maintenance due to
the crusting in the structure where the ashes are accumulated (Brand,
2010; Protásio et al., 2011; Montes et al., 2011; Sabatti et al., 2014).

The low ash content is one of the characteristics of eucalyptus,
which makes it feasible for use in energy, presenting values below 1%
(Gominho et al., 2012). The values obtained in this study for ash con-
tent were from 2% (T1) to 13.86% (T3). These high amounts of ash are
explained by the external contamination of the material. With the
particle size separation, and the process of washing the material, it was
possible to identify the presence of impurities in the biomass. According
to Pereira et al. (2000), it is predicted that there is greater susceptibility
to impurities attached to the bark by dirt or any environment pollution.

The fixed carbon content is directly related to the quality of the
biofuel. The amount of fixed carbon present in the biomass can define
the potential for power generation. When in high amounts, from 15 to
25% (Vanloo and Koppejan, 2002), it increases the efficiency due to the
slow burning in the solid phase (Brito and Barrichelo, 1978; Erol et al.,
2010; Todaro et al., 2015). The fixed carbon and volatile content are
inversely related regarding energy, since the volatile fraction represents
the part of the material that burns quickly in gaseous form, resulting in
less burning time (Brito and Barrichelo, 1978).

The material presented the expected pattern, decreasing the high
heating value (HHV) as the ashes content increased (Fig. 1):

Many studies have pointed the ash as a component that can help the
prediction of the HHV (Cordero et al., 2001 and Shen et al., 2010). The
HHV was harmed by the ash content as expected. Treatment T3 pre-
sented the highest ash content (13,86%) and the lowest HHV (15
757 J g−1). Arteaga-Pérez et al. (2015) also studied eucalyptus bark,
and the highest result for HHV was 13 340 J g−1. The HHV of bark may
vary due to its impurities, since the heat potential of bark is the same of
the stem (Telmo and Lousada, 2011).

In the mapping of the elements present in the samples (Fig. 2), it is
possible to see the micrographs of the main particles found in the ash
samples, generated upon burning the bark.

Table 2
Mean values and standard deviation of the proximate analysis of bark in the established
treatments.

Ashes (%) Volatile (%) Fixed Carbon (%)

UW T1 2,63 c (± 0.28) 80,23 a (± 0.26) 17,12 a (±0.34)
T2 5,23 b (± 0.36) 76,89 b (± 0.62) 17,86 a (±0.40)
T3 13,86 a (± 0.26) 68,15 c (± 0.20) 17,98 a (±0.38)

W T4 2,78 c (± 0.12) 79,58 a (± 0.27) 17,62 b (± 0.33)
T5 3,12 b (± 0.15) 79,73 a (± 0.30) 17,13 b (± 0.23)
T6 5,15 a (± 0.12) 76,16 b (± 0.06) 18,45 a (±0.30)

Fig. 1. Ash content of the six treatments and high heating value variation.
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In the first column, it is possible to observe the particles with regular
shape and many pores on their surface (identified as calcium by EDS –
Fig. 3a). This particle was presented in a high proportion in the sam-
ples.

In the second column, it is possible to observe the particles with
angular walls and smooth surface, known in the literature as silicates
(Ahmaruzzaman, 2010). They are often identified as components of the
ashes (Blissett and Rowson, 2012).

In the third column, it is possible to visualize spherical particles
known as cenospheres. These were the less abundant particles, pre-
sented only in part of the ash samples. According to the literature, their
formation is associated with the presence of carbon and metal in the
sample, and also depends on the moisture content of the samples for
their formation (Fomenko et al., 2011). Thus, the shortage of ceno-
spheres in this study’s samples may be related to the drying carried out
before the burning process.

Fig. 3 shows micrographs with the results of EDS mapping at dif-
ferent adsorption spectra, it was possible to verify the mineral material

that constitutes the ashes.
It was possible to confirm the same structures in all treatments. The

following structures were present: particles with regular shapes
(Fig. 3a), spherical shapes (Fig. 3b), and angular shapes (Fig. 3c). The
components identified were calcium (Fig. 3a) and silica (Fig. 3b and c).
These components are commonly present in the ashes of eucalyptus
bark and indicate presence of foreign material in the bark (Fredo et al.,
1999; Borlini et al., 2005; González et al., 2009). It is important to
define the structures and components in the ashes, to identify the
melting temperature of the material. Depending on the components, the
melting temperature of biomass ashes can vary from 650 °C to 1455 °C
(Reinmöller et al., 2015 and Ma et al., 2016).

4. Conclusion

By this study, we were able to verify the feasibility of using eu-
calyptus bark as biofuel. It was identified a high quantity of ash content
(T3= 13.86%), indicating presence of foreign material in the bark. The

Fig. 2. Micrographs increasing the magnification of calcium particles in the first column, of silicates in the second, and of cenospheres in the third.
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biggest amount of contamination was detected in the smaller particle
sizes (< 250 μm).

The procedures tested here to reduce the mineral contents in the
material were washing and separation in different particle sizes. The
process of washing did not show efficiency regarding the decrease of
impurities in the bark. The process of separation in different particle
sizes had a better result and improved the heating efficiency of the
biomass analyzed.
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