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Using passive control by a pendulum
in a portal frame platform with
piezoelectric energy harvesting

Rodrigo T Rocha1, Jose M Balthazar2,3, Angelo M Tusset1

and Vinicius Piccirillo1

Abstract

This work presents a passive control strategy using a pendulum on a simple portal frame structure, with two-to-one

internal resonance, with a piezoelectric material coupling as a means of energy harvesting. In addition, the system is

externally base-excited by an electro-dynamical shaker with harmonic output. Due to internal resonance the system may

present the phenomenon of saturation, which provides some nonlinear dynamical behavior to the system. A pendulum is

coupled to control nonlinear behaviors, leading to a periodic orbit, which is necessary to maintain energy harvesting.

The results show that the system presents, most of the time, as being quasiperiodic. However, it does not present as

being chaotic. With the pendulum, it was possible to control most of these quasiperiodic behaviors, leading to a periodic

orbit. Moreover, it is possible to eliminate the need for an active or semi-active control, which are usually more complex.

In addition, the control provides a way to detune the energy captured to the desired operating frequency.
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1. Introduction

In recent decades, research into electro-mechanical sys-
tems that are able to scavenge/harvest energy from an
operating environment has increased substantially.
Vibration-based energy harvesting is the most studied
form in recent years, and these systems are usually
excited by wind, sea waves and vehicle traffic, i.e. exter-
nal excitation. In addition, with technological advances,
smaller devices with low power consumption have been
developed. Most use a battery as an energy source.
However, batteries are finite energy sources, which
require recharging or replacement. Thus, one of the
most promising and studied devices as a means of low
power energy harvesting are piezoelectric materials,
which convert mechanical energy into electrical energy.

Piezoelectric materials have shown themselves to be a
great means of low power transduction, and have been
widely studied by Preumont (2006), Stephen (2006),
DuToit and Wardle (2007), Twiefel et al. (2008), Erturk
et al. (2009), Jalili (2009), Priya and Inman (2009),
Stanton et al. (2010), Erturk and Inman (2011), Litak
et al. (2012), Friswell et al. (2015), Litak et al. (2015)

and Syta et al. (2015), among others. These authors
studied the materials in different devices, for example,
as a piezomagnetoelastic structure and device harvesting
energy from environmental vibration, exploring the re-
use of wasted vibration energy in the environment, which
is a very important subject because of the search for new,
mainly renewable, energy sources.

However, these materials present certain nonlineari-
ties related to their strain constants. There is a non-
linear relation between the strain and the electric field
of a piezoelectric material (DuToit and Wardle, 2007;
Twiefel et al., 2008). Crawley and Anderson (1990)
identified experimentally these nonlinearities showing
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their relevance to the nonlinear theoretical model and
the experimental model. Because of this, an analytical
approximation of the nonlinearities of the material was
proposed by Triplett and Quinn (2009). A recent and
complete review of these properties was presented by
Daqaq et al. (2014). As the nonlinearities became an
important feature for the usage of these materials,
many authors introduced the nonlinear piezoelectric
coupling to their work and showed that energy harvest-
ing can be more or less efficient. In particular we men-
tion the works of Iliuk et al. (2013a, 2013b), Balthazar
et al. (2014) and Iliuk et al. (2014).

The piezoelectric material, generally, is coupled to a
main structure that will vibrate, causing deformation of
the ceramic, consequently transforming the vibration
energy into electrical energy. However, a structure
with two degrees of freedom contains some nonlinea-
rities because of the coupling. In particular, some can
be coupled with an associated quadratic nonlinearity
under a two-to-one internal resonance. Because of
these conditions, when these systems are subjected to
a resonant external excitation, one of the degrees of
freedom transfers part of its available vibratory
energy to the other one. This is a phenomenon called
saturation, as described by many authors, for example
Nayfeh et al. (1973), Mook et al. (1985), Nayfeh (2000),
Mankala and Quinn (2004), Quinn (2007) and Nayfeh
and Mook (2008). The implementation of saturation as
a control method was proposed by Golnaraghi (1991),
Oueini et al. (1997), Oueini (1999) and Pai and Schulz
(2000), and studied by Pai et al. (1998), Felix at al.
(2005), Shoeybi and Ghorashi (2005), Warminski
et al. (2013), Felix et al. (2014) and Tusset et al.
(2015), among others.

However, the saturation phenomenon may present
some nonperiodic motions because of its high level of
instability (Nayfeh and Mook, 2008). Besides, energy
harvesting needs stable periodic behavior to maintain
harvesting. Therefore, the implementation of a passive
control strategy is considered.

The study of a passive controller is shown to be very
useful for the control of some nonperiodic motions
that tend to a periodic orbit. In particular, the work
of Iliuk et al. (2013a) considered a model of energy
harvester based on a simple portal frame with a
single-degree-of-freedom structure. The system was
considered as a nonideal system (NIS) due to the full
interaction of the structure’s motion with the energy
source, a DC motor with a limited power supply.
Moreover, it was found to be a bi-stable Duffing oscil-
lator presenting chaotic behavior. The nonlinear piezo-
electric material was considered in the coupling
mathematical model. The structure was controlled
using a pendulum as a passive control and improved
the energy harvesting of the system. In addition to that

work, Iliuk et al. (2013b) considered a nonenergy sink
(NES) passive control for the same model, which also
very well controlled the chaotic behavior, which led to a
periodic orbit. Advanced studies of passive controllers
can be found in the works of Jiang et al. (2003),
Musienk et al. (2006), Gourdon et al. (2007),
Malatkar and Nayfeh (2007), Manevitch et al. (2007),
Vakakis (2008), Luongo and Zulli (2012, 2013), Zulli
and Luongo (2015) and Rocha et al. (2016), amongst
others.

Therefore, as saturation phenomenon may present
different kinds of behavior such as periodic, quasiper-
iodic and even chaotic behavior, this work will imple-
ment a passive control by a pendulum in order to
investigate the best configuration for harvesting
energy with periodic behavior.

The results showed that the passive controller is a good
way to eliminate the need for an active or semi-active
controller that need electricity for interaction. Thus, the
energy harvesting is totally natural. Rocha et al. (2015)
studied the influence of a pendulum in a simple portal
frame of two degrees of freedom with harmonic base exci-
tation. The system presented chaotic behavior and, with
the usage of a pendulum, control and tuning of the energy
harvesting of the system was possible.

However, in this work, the external excitation is
simulated by an electro-dynamical shaker, of which
the mechanical and electrical parts are considered
(Wang and Jing, 2004; Xu et al., 2005, 2007; Lenci
et al., 2008; Litak et al., 2010; Lenci and Rega, 2011;
Yokoi and Hikihara, 2011; Lenci et al., 2012; Alevras
et al., 2014; Avanço et al., 2015). The main reason for
using this shaker is that we can simulate theoretically
the influence of the shaker and, in the future, prove
experimentally the results. This work, however, is
entirely theoretical.

This work is organized as follows. In the first section
we introduce the motivation for this work. Section 2
shows the modeling of the full system through the
energy method of Lagrange. The next section presents
the parameters and some numerical simulations of the
system without the control. In the following section,
the pendulum is considered as a passive controller
and some numerical simulations are carried out to
evaluate the usage of the control. Finally, the last sec-
tion presents the conclusions from the work.

2. Modeling of portal frame platform
energy harvesting

The energy harvesting model in this work, illustrated in
Figure 1, consists of a structure with two degrees of
freedom with piezoceramic material coupled to a
column, a linear pendulum coupled to the mid-span
of the beam, which is the passive controller of this
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work, and an electro-dynamical shaker to base-excite
the portal frame.

The portal frame consists of two columns clamped at
their bases with height h and a horizontal beam pinned
to the columns at both ends with length L. Both col-
umns and beam have flexural stiffness EI. The mass at
mid-span of the beam is M. We consider that m repre-
sents the masses of the columns. The structure is mod-
eled as a lumped mass system with two degrees of
freedom. The coordinate q1 is related to the horizontal
displacement (sway mode), with natural frequency !1,
and q2 is related to the vertical displacement (first sym-
metrical mode), with natural frequency !2. The general-
ized coordinates qi are the displacements of the mass at
the mid-span of the beam M. The linear stiffness of the
columns and the beam can be evaluated by a Rayleigh–
Ritz procedure using cubic trial functions. Geometric
nonlinearity is introduced by considering the shorten-
ing due to bending of the columns and of the beam.

The linear pendulum is coupled to the mass of the
mid-span of the beam, consisting of a mass m3, rota-
tional stiffness k3 and rotational damping as c3, with
natural frequency !3.

The nonlinear piezoelectric material is distributed
along the column as an electric circuit, which is excited
by an internal voltage (back-emf) proportional to a
mechanical velocity related to its deformation due to
the vibration of the column where the electrical energy
will be harvested. This circuit consists of a resistor Rp, a
produced charge Qp and a capacitance Cp of the cap-
acitor. The dimensionless relation of nonlinearity of the

piezoceramic is given by dðq1Þ ¼ �ð1þ�jq1jÞ defined by
Triplett and Quinn (2009), where � is the linear piezo-
electric coefficient and � is the nonlinear piezoelectric
coefficient.

The mechanical system is base-excited by an electro-
dynamical shaker whose output force is harmonic. The
mechanical part of the shaker consists of a base with
mass m0, with displacement S, stiffness k0 and damping
c0, with natural frequency !0. The electrical part is con-
sidered as a RL circuit, which possesses an inductance
L0, resistance R0 and an output harmonic source with
amplitude e0 and frequency !n.

The frequency of the shaker is set to near resonance
with the symmetric mode. Natural frequency of the
symmetric mode !2 is also set to twice the natural fre-
quency of the sway mode as 2!1 ¼ !2. These conditions
of resonance are necessary to have modal coupling in
the nonlinear adopted model, i.e. the saturation phe-
nomenon occurs.

The natural frequencies of the structure are depend-
ent on each other because they are coupled, i.e. they are
evaluated with the presence of the pendulum and the
excited base.

The modeling of the governing equations of the
motion of the system is carried out below.

2.1. Modeling of the dynamical system

The modeling of the physical system was developed
with Lagrange’s energy method, which uses the
Lagrangian function and the Euler–Lagrange equation.

Figure 1. Portal frame platform physical model.
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Nodal displacements shown in Figure 1 are

u1 ¼ q1 u2 ¼ u1 þ
B

4
v21 u3 ¼ u1 �

B

4
v21

v1 ¼ q2 þ S v2 ¼ S�
A

2
u21 v3 ¼ S�

A

2
u21

X1 ¼ u1 þ l sin�

Y1 ¼ v1 � l cos�

ð1Þ

where A ¼ 6=5h and B ¼ 24=5L. The stiffness of
the beam and column calculated by the Rayleigh–
Ritz method are kb ¼ 48EI=L3 and kc ¼ 3EI=h3,
respectively.

Using nodal displacements of equation (1), the kin-
etic energy is obtained, denoted by equation (2)

T ¼
1

2
M _q21 þ _q22 þ 2 _q2 _Sþ _S2
� �

þ
1

2
m 2 _q21 þ 2 _S2 � 4Aq1 _q1 _S
� �

þ
1

2
m0

_S2 þ
1

2
L0

_Q2
0 þ

1

2
m3

�
_q21 þ _q22 þ 2 _q2 _Sþ _S2

þ l2 _�2 þ 2l _�
�

_q1 cos�þ _q2 þ _S
� �

sin�
��

ð2Þ

The potential energy of the system is given by the
strain energy of the structure, the stiffness of the pendu-
lum, the work of the weight of the masses of the beam,
columns and pendulum, and the stiffness of the shaker
base. In addition is considered the electrical part of the
piezoelectric circuit, with the contribution of the piezo-
electric and the capacitor, and the electrical part of the
shaker with its coupling through its base displacement
with the electrical current of the shaker, i.e. the electro-
magnetic force of the device. The potential energy is
given by equation (3)

V ¼ ðkc �mgAÞq21 þ
1

2
kb q22 þ Aq2q

2
1

� �
þ ðMþ 2mÞ gS

þMgq2 þ
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2
k0S

2 þ K _Q0Sþm3gðq2 þ S� l cos�Þ

þ
1

2
k3�

2 �
dðq1Þ

Cp
Qp q1 þ Sþ

B

4
q22

� �
þ
1

2

Q2
p

Cp

ð3Þ

The energy of dissipation of the system is considered,
comprising the structure, pendulum and shaker damp-
ing defined by the Rayleigh function and the resistor of
the electrical circuit. Then, in equation (4)

D ¼
1

2
c1 _q21 þ

1

2
c2 _q21 þ

1

2
c0 _S2 þ

1

2
c3 _�2 þ

1

2
R0

_Q2
0 þ

1

2
Rp

_Q2
p

ð4Þ

The unique external force is given by the electrical
source of the shaker, which has a harmonic as

in equation (5)

Q0ext ¼ e0 cos!nt ð5Þ

Therefore, the Lagrangian function is defined by
equation (6) and, using Euler–Lagrange, equation (7),
we have the equations of motion of the system that are
equations (8) to (11), (13) and (14)

Lð _qi, qi, tÞ ¼ T� V ð6Þ

d

dt

@L

@ _qi

� �
�
@L

@qi
þ
@D

@ _qi
¼ Fext i ¼ q1, q2,S,�,Q0,Qp ð7Þ
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Cp
Qp

ð8Þ

ðMþm3Þ €q2 þ €S
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þ c2 _q2 þ kbq2 þ ðMþm3Þ g

¼ �
Akb
2

q21 �m3l €� sin�þ _�2 cos�
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Cp
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Qpq2

ð9Þ

ðMþ 2mþm0 þm3Þ €Sþ ðMþm3Þ €q2

þ ðMþ 2mþm3Þ gþ c0 _Sþ k0Sþ K _Q0

¼ 2mA _q21 þm3l €� sin�þ _�2 cos�
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þ
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Cp
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m3l
2 €�þm3l €q1 cos�þ €q2 þ €S

� �
sin�

� 	
þ k3�þ c3 _� ¼ m3gl sin�

ð11Þ

L0
€Q0 � K _Sþ R _Q0 ¼ e0cos!nt ð12Þ

or, considering I ¼ _Q0, the equation for the electrical
part of the shaker becomes equation (13)

L0
_I� K _Sþ RI ¼ e0cos!nt ð13Þ

Rp
_Qp �

dðq1Þ
Cp

q1 þ Sþ B
4 q

2
2

� �
þ

Qp

Cp
¼ 0 ð14Þ

For a better analysis, a dimensionless process was
carried out resulting in the dimensionless governing
equations of motion of the system

x001 þ �1x
0
1 þ x1 ¼ �1 �

02 sin�� �00 cos�
� �

þ �1x
0
1Y
0

� �1x1x2 þ �ð1þ�jx1jÞ�1V

ð15Þ
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where the dimensionless parameters are
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To calculate the harvested power, equations (22) and
(23) are given as dimensional and dimensionless har-
vested power, respectively

P ¼ R _Q2
p ð22Þ

P ¼ R0V
02 ð23Þ

where R0 ¼ Rð!1Qp0Þ
2.

The average power of the system can be calculated
by equation (24)

Pavg ¼
1

T

Z T

0

Pð
Þd
 ð24Þ

In the next section, numerical simulations will be
discussed with and without the usage of the pendulum
considering the nonlinear piezoelectric contribution
fixed as �¼ 1.

3. Numerical simulations results and
discussions

The numerical simulations carried out in this work were
performed through the method of Runge–Kutta
of fourth and fifth order with a fixed-step h¼ 0.001.
The parameters considered for the numerical simula-
tions are in Table 1. These parameters were adjusted
to the saturation phenomenon conditions, which are
!2 ¼ 2!1, and the frequency of the shaker source was

Table 1. Adopted system parameters.

Parameter Value Mean

g (m/s2) 9.81 Gravity acceleration

M (kg) 2.00 Beam mass

m (kg) 0.50 Column mass

m3 (kg) Various Pendulum mass

m0 (kg) 15.88 Mass of the shaker’s base

c1 (N s/m) 0.001 Column damping

c2 (N s/m) 0.002 Beam damping

c3 (N s m/rad) 0.061 Torsional pendulum damping

c0 (N s/m) 534 Damping of the shaker’s base

EI (N m2) 128 Linear stiffness

k3 (N m/rad) 0.403 Torsional pendulum stiffness

k0 (kg/m) 86176 Stiffness of the shaker’s base

L (m) 0.52 Beam length

h (m) 0.36 Column length

Rp ðk�Þ 100 Piezoelectric resistance

Cp (�F) 1 Piezoelectric capacitance

!n (rad/s) Various External excitation frequency

� 0.01 Linear piezoelectric coefficient

� 1 Nonlinear piezoelectric coefficient

e0 (V) 40 Shaker source amplitude

K (N/A) 130 Electromagnetic force of the shaker

L0 (mH) 2.626 Inductance of the shaker

R0 (�) 0.3 Shaker resistance

3688 Journal of Vibration and Control 24(16)



set in resonance with the symmetric mode
(� ¼ !2 þ �), where � is a detuning factor.

All of the parametrical analysis and bifurcation dia-
grams were obtained using the same initial condition
x1ð0Þ ¼ 0:01, which is the displacement of the horizon-
tal direction. Other initial conditions were zero.

A control parameter will be considered in order to
configure the system while optimizing its behavior and
energy harvesting. This new parameter is defined by
equation (25)

e ¼
2m

m3
ð25Þ

The control parameter e will be varied with an
acceptable ratio so that the pendulum mass (m3)
should not exceed the value of the mass of the mid-
span of the beam (M). This interval is 0:5 � e � 100.

The sections below present the results of numerical
simulations considering and not considering the passive
control and then compare the results showing the effi-
ciency and contribution of the pendulum as a passive
controller. All of the numerical simulations were

carried out using the parameters in Table 1, except
when as described below.

It is highlighted that the parameters are used in the
dimensional form for the analysis of the system; how-
ever, the numerical analysis and responses of the system
are shown in dimensionless form.

Figure 2. Bifurcation diagram of the system without a pendulum. (a) Horizontal displacement; (b) vertical displacement; (c) base

motion.

Figure 3. Parametrical analysis of the frequency in relation to

the harvested power without a pendulum.
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3.1. Nonlinear dynamical analysis of the platform
structure

In the first subsection of numerical simulations, the
behavior of the system was analyzed related to the vari-
ation of the frequency of the shaker without the coupling

of the pendulum. In addition, the harvested power was
evaluated. The frequency of the shaker is varied in an
interval that satisfies the conditions of the saturation
phenomenon, which is near resonance between the
shaker and the symmetric direction � ¼ 2:0. Thus, the
chosen interval is 1:8244 � � � 2:162.

First, a bifurcation diagram was built in order to
observe the behavior of the system for each value of
the frequency of the shaker, illustrated in Figure 2. The
analysis of the harvested power related to the frequency
is presented in Figure 3.

The bifurcation diagram, shown in Figure 2, shows
the interval for which the saturation phenomenon
occurs and the system changes its behavior, where
the interval is approximately 1:8838 � � � 2:0973.
Without saturation phenomenon, the system is entirely
periodic. When the phenomenon is considered, the
system becomes quasiperiodic most of the time.

Figure 5. Bifurcation diagrams considering pendulum when � ¼ 1:9189, where the red dotted lines represent the interval for e, and

P and Q-P represent the periodic and quasi-periodic behaviors, respectively. (a) Horizontal coordinates; (b) vertical coordinates.

Figure 4. Phase plane (in black) and Poincare maps (in red) of the system without control, � ¼ 1:9189. (a) Horizontal motion; (b)

vertical motion; (c) base motion.

Table 2. Cases of non-periodic behaviors.

Case Frequency Behavior

Average

power

1 1.9189 Quasiperiodic 0.1664

2 1.9594 Quasiperiodic 0.2291

3 1.9730 Quasiperiodic 0.1409

4 2.0 Quasiperiodic 0.2841

3690 Journal of Vibration and Control 24(16)



Figure 7. Phase plane (in black) and Poincare maps (in red) of the system without control for � ¼ 1:9594. (a) Horizontal motion; (b)

vertical motion.

Figure 8. Bifurcation diagrams considering pendulum when � ¼ 1:9594. (a) Horizontal coordinates; (b) vertical coordinates.

Figure 6. Parametrical analysis of e related to the average

harvested power with pendulum, � ¼ 1:9189 where the red

dotted lines represent the interval for e, and P and Q-P represent

the periodic and quasi-periodic behaviors, respectively.

Figure 9. Parametrical analysis of e related to the average

harvested power with pendulum, � ¼ 1:9594.
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Figure 2(c) shows the bifurcation diagram for the
base motion, which is different from the platform’s
motion, in the saturation interval, where there is an
increase of the amplitude of the base motion. This is
due to the increase of the frequency; the velocity of the
base increases the change of the axis of oscillation of
the base, which does not result in an increase of the
amplitude of the base’s motion.

In relation to the harvested power, illustrated in
Figure 3, when the system presents saturation phenom-
enon the amount of power greatly increases in compari-
son to those regions without the phenomenon.

Therefore, we separated four cases of quasiperiodic
behavior to apply to the passive controller and seek a
periodic solution where we could maintain good energy

harvesting. The four cases are shown in Table 2, and
are the colored lines in Figures 2 and 3.

In the next section the passive controller is applied in
order to study its influence on each case in Table 2.

3.2. Passive control strategy

From this part of this work, the pendulum will be con-
sidered to be coupled to the mass M of the mid-span of
the beam in order to seek an optimal configuration to
find periodic behaviors to maintain energy harvesting.

The following subsections are about the four cases in
Table 2, using the passive controller. For the numerical
simulations, it is important to study and understand the
behavior of the main structure, i.e. the portal frame

Figure 10. Phase plane (in black) and Poincare maps (in red) of the system without control for � ¼ 1:9730. (a) Horizontal motion;

(b) vertical motion.

Figure 11. Bifurcation diagrams considering pendulum with � ¼ 1:9730 where the red dotted lines represent the interval for e, and

P and Q-P represent the periodic and quasi-periodic behaviors, respectively. (a) Horizontal coordinates; (b) vertical coordinates.
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platform. Therefore, we will only show the results for
x1 and x2, although the base and pendulum motions
have the same coordinates. Therefore, each case from
Table 2 will use the control strategy and study its
influence.

3.3. Control of Case 1

In case 1, the frequency is set at � ¼ 1:9189. The behav-
ior of the system presents a quasiperiodic orbit as can be
seen in the Poincare maps (red line), see Figure 4.

Knowing the quasiperiodic orbit, passive control
was considered and then a bifurcation diagram for

the two coordinates of the portal frame related to the
control parameter e was built, as illustrated in Figure 5,
in order to find a periodic orbit. It is possible to see
that, in this case, passive control was effective and con-
trolled the quasiperiodic behavior leading to a periodic
orbit between the interval 20 � e � 58, which is equiva-
lent to 0:0172 � m3 � 0:050 (kg). The periodic behav-
iors are represented by the area P in Figure 5, between
the red dotted lines. The other values of e in the bifur-
cation diagrams that are quasiperiodic are the limited
areas Q-P.

Figure 6 shows the average harvested power with the
variation of e. The periodic interval has an average
power 0:1556 � Pavg � 0:16. None of these values are
higher than the initial average power in Table 2.
However, they are almost of the same value when
including the periodic orbit, which is the required
behavior for maintaining energy harvesting.
Therefore, the passive control was very useful in this
case.

3.4. Control of Case 2

In case 2, the frequency is set to � ¼ 1:9594 and the
system also presents quasiperiodic behavior, as can be
seen in the Poincare maps (red line) in Figure 7.

Thus, a bifurcation diagram considering the passive
control e is shown in Figure 8. In this case, the passive
control was not enough to influence a change of the
behavior of the system to keep quasiperiodic behavior,
whatever the value of the control parameter. Hence,
energy harvesting is not recommended for this
frequency.

Figure 9 shows the evaluation of the average har-
vested power along the e interval.

Figure 13. Phase plane (in black) and Poincare maps (in red) of the system without control for � ¼ 2:0. (a) Horizontal motion; (b)

vertical motion.

Figure 12. Parametrical analysis of e related to the average

harvested power with pendulum, � ¼ 1:9730 where the red

dotted lines represent the interval for e, and P and Q-P represent

the periodic and quasi-periodic behaviors, respectively.
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3.5. Control of Case 3

Case 3 considers the frequency � ¼ 1:9730, which is
close to case 2. Through the Poincare map (red line)
in Figure 10, the system continues to present quasiper-
iodic behavior.

Therefore, a bifurcation diagram of the system
related to the pendulum parameter was constructed in
Figure 11. In this case, the pendulum was very effective
for the control of quasiperiodic behavior in the interval
of approximately 14 � e � 48, leading to a periodic
orbit. That is equivalent to 0:0208 � m3 � 0:0714
(kg). Hence, in this case is possible to maintain
energy harvesting.

Figure 12 shows the average power related to the
control parameter. The interval for the amount of har-
vested power when the system is periodic is

0:1218 � Pavg � 0:1271. The amount of power in this
case is smaller than that of the original, shown in
Table 2, which is Pavg¼ 0.1409. However, as in
case 1, the amount of power is not so much smaller
than the original value, therefore, as energy harvesting
is possible, and the passive control becomes important.

3.6. Control of Case 4

In case 4, the frequency is set to � ¼ 2:0, which is
exactly the same condition where saturation phenom-
enon occurs, i.e. � ¼ !2 ¼ 2!1 þ �. At this frequency
the system also presents quasiperiodic behavior as illu-
strated in the Poincare map (red line) in Figure 13.

A bifurcation diagram of the system related to the
control parameter was built, as illustrated in Figure 14.
The system becomes totally controllable in the interval
14 � e � 100, i.e. the equivalent to 0:01 � m3 � 0:0714
(kg), which is the interval where the system becomes
periodic.

Figure 15 shows the parametrical analysis of the
average power related to the control parameter in this
case. The average power in the periodic interval is
0:1296 � Pavg � 0:1526. The values are very much

Figure 14. Bifurcation diagrams considering pendulum when � ¼ 2:0 where the red dotted lines represent the interval for e, and P

and Q-P represent the periodic and quasi-periodic behaviors, respectively. (a) Horizontal coordinates; (b) vertical coordinates.

Figure 15. Parametrical analysis of e related to the average

harvested power with pendulum, � ¼ 2:0 where the red dotted

lines represent the interval for e, and P and Q-P represent the

periodic and quasi-periodic behaviors, respectively.

Table 3. Summary of the controlled values of the pendulum

(periodic behavior).

Case e New average power

Original

average

power

1 20 � e � 58 0:1556 � Pavg � 0:16 0.1664

2 Uncontrolled – 0.2291

3 14 � e � 48 0:1218 � Pavg � 0:1271 0.1409

4 14 � e � 100 0:1296 � Pavg � 0:1526 0.2841
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smaller than those of the original, although the passive
controller was very useful.

4. Conclusions

In this work an energy harvesting model of two degrees
of freedom with two-to-one internal resonance was pre-
sented. The saturation phenomenon was considered,
presenting nonperiodic motion as quasiperiodic behav-
ior, which appeared most of the time in the system.
Thus, a passive control strategy using a pendulum
was proposed and studied in four cases as presented
in Table 2, to force the system to behave like a periodic
orbit. This kind of behavior is very important and is
required to maintain energy harvesting through the
piezoelectric material. Therefore, the most important
interest in this work is to control the quasiperiodic
behaviors for energy harvesting.

The pendulum was shown to be very useful as a
controller, as it eliminated the quasiperiodic behavior
most of the time, forcing the system to a periodic orbit,
depending on the value of the control parameter e.

In cases 1, 3 and 4 the system was controlled by the
usage of the pendulum leading their behaviors to a peri-
odic orbit. However, all of them decreased their average
harvested power in comparison to the original values.
Case 2 was the only case in which it was not possible to
control nonperiodic behavior with the pendulum.

Energy harvesting had peaks higher than 0.4 of the
amount of power in all four cases. However, the pre-
dominant behavior was quasiperiodic, which is not
required to harvest energy.

The advantage of using a passive control is that elec-
tronic component are not required for the control
of the system, in the form of an active or semi-active
controller. Therefore, we can tune energy harvesting by
choosing a control parameter.

In summary, the conclusions of this work are shown
in Table 3.

It is important to note that the results obtained by
the use of the passive controller in this work follow the
work of Iliuk et al. (2013a, 2013b) and Rocha et al.
(2015). The authors have also observed that there is a
higher amount of power under chaotic behaviors, and a
passive control strategy can be used for energy harvest-
ing when chaos is not desired.

Moreover, the energy harvesting analysis of the
system showed that, with irregular motion, the har-
vested power is higher than when the system has peri-
odic motion. When there is no restriction to the
piezoelectric material circuit, it is a valuable option to
consider. However, when the electrical components are
more sensitive, it is necessary to use strategies that save
its physical integrity, therefore reducing the need for
complex filters rectifying the energy harvesting output

of the system, according to the works of Iliuk et al.
(2012, 2013c).
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