
J Glob Optim (2018) 72:89–107
https://doi.org/10.1007/s10898-018-0638-x

Mixed integer quadratically-constrained programming
model to solve the irregular strip packing problem with
continuous rotations

Luiz H. Cherri1,3 · Adriana C. Cherri2 ·
Edilaine M. Soler2

Received: 25 April 2017 / Accepted: 6 March 2018 / Published online: 14 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The irregular strip packing problem consists of cutting a set of convex and non-
convex two-dimensional polygonal pieces from a board with a fixed height and infinite
length. Owing to the importance of this problem, a large number of mathematical models
and solution methods have been proposed. However, only few papers consider that the pieces
can be rotated at any angle in order to reduce the board length used. Furthermore, the solution
methods proposed in the literature are mostly heuristic. This paper proposes a novel mixed
integer quadratically-constrained programmingmodel for the irregular strip packing problem
considering continuous rotations for the pieces. In the model, the pieces are allocated on the
board using a reference point and its allocation is given by the translation and rotation of the
pieces. To reduce the number of symmetric solutions for themodel, sets of symmetry-breaking
constraints are proposed. Computational experiments were performed on the model with and
without symmetry-breaking constraints, showing that symmetry elimination improves the
quality of solutions found by the solutionmethods. Tests were performedwith instances from
the literature. For two instances, it was possible to compare the solutions with a previous
model from the literature and show that the proposed model is able to obtain numerically
accurate solutions in competitive computational times.
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1 Introduction

Irregular strip packing problems belong to a class of cutting problems and arise in many
industries such as garmentmanufacturing,metalmechanic, furniture, footwear, amongothers.
In a brief description, the problem consists of determining an efficient configuration of cutting
a set of two-dimensional irregular polygonal pieces fromaboardwith afixedheight and length
long enough to be considered infinite. The objective is usually to minimize the length of the
board used to cut all the pieces. Since the shape of pieces in these problems are irregular, an
additional difficulty is to formulate the geometry of these problems, taking into account that
it is necessary to define when two pieces allocated in a board are overlapping, touching or
are separated. Furthermore, it should be ensured that the pieces are completely allocated on
the board.

Irregular strip packing problems have been widely studied in the literature and belong to
the class of NP-hard problems [10]. There are few studies in the literature that have used exact
solution methods for irregular strip packing problems without any piece rotations. The first
model was proposed by Carravilla et al. [5] in which the authors presented a solution method
to solve the nesting problems based on constraint programming. In their model, the pieces
can only be placed over discrete positions on the board. Also using a finite set of positions
to place pieces on a board, Toledo et al. [22] proposed a mixed-integer model. Although the
models proposed by Carravilla et al. [5] and Toledo et al. [22] were solved by exact methods,
the solutions they obtained are subject to discretization points and will hardly ever be truly
optimal.

Models where the pieces can be placed continuously on (X,Y)-coordinates of the board
were proposed by Fischetti and Luzzi [9], Alvarez-Valdes et al. [1] and Cherri et al. [7].
Alvarez-Valdes et al. [1] redefined some structures of Fischetti and Luzzi’s [9] model and
proposed a branch and bound algorithm for their model. Attempting to combine the perfor-
mance of discrete models and the accuracy of the linear models, Leão et al. [17] proposed a
semi-continuous model, where the pieces can be placed on continuous positions on the x-axis
and on discrete positions on the y-axis. Cherri et al. [7] proposed a model that enable pieces
to be rotated at a finite number of angles. The authors proposed the first mixed integer linear
programming model that does not use the no-fit polygon to prevent overlapping between
pieces.

Bennell et al. [2] considers a container (rectangle, circle, convex polygon) of variable
sizes and only two irregular pieces bounded by circular arcs and/or line segments that can
be continuously translated and rotated. Although this is not a strip packing problem, the
authors proposed a mathematical model to represent the problem, taking into account allow-
able distances between pieces and between each piece and the edge of the container. The
model uses the concept of phi-functions and provides new benchmark instances to find the
containing region that has either a minimal area, perimeter or a homothetic coefficient of a
given container.

An important characteristic observed in real world applications, especially in the leather
and metal industry, is the possibility of rotating the pieces at any angle. Due to the fact that in
these industries the orientation of the piece on the board is irrelevant, it is possible to make
better use of the rawmaterial when the pieces can be continuously rotated. Some papers from
the literature have proposed heuristic procedures to solve this problem. Aiming to minimize
waste, Fujita et al. [11] proposed a hybrid approach combining a genetic algorithmwith a local
minimization algorithm to solve nesting problems with convex polygons and a continuous
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rotation of the pieces. A computational example showed the effectiveness and potential of
the approach.

Rocha et al. [19] represented the pieces by sets of overlapping circles, aiming to achieve a
certain degree of approximation while minimizing the necessary number of circles, allowing
for any possible rotation. Rocha et al. [20] proposed a two-phase approach to the nesting
problem with continuous rotations based on a common compaction strategy which relies on
the observable concept that the core structure of a layout is usually defined by the position and
orientation of its largest pieces. Liao et al. [18] proposed an algorithm to allocate irregular
pieces in a rectangular sheetwithout overlapping based on the rubber band packing algorithm.
This algorithm simulates the physical movements of a set of pieces wrapped by a rubber band.
The main advantage of the proposed heuristic is its ability to translate, slide and rotate the
pieces into a compact layout obtaining a good solution in an acceptable time.

Exact solutionsmethods for solvingmathematical models for irregular strip packing prob-
lems with continuous rotations were proposed by some authors. Kallrath [16] developed
mathematical models to describe the problem of cutting circles, rectangles and convex poly-
gons while minimizing the area of the rectangular board used. An exact algorithm based on
the idea of the separating hyper-plane theorem to ensure that the pieces do not overlap with
each other was proposed. Cases including a maximum of 10 circles or circles and rectan-
gles were solved in a short time to global optimality. According to the author, in tests with
instances involving non-rectangular polygons, it is difficult to obtain small gaps.

The mathematical model proposed by Chernov et al. [6] also considered irregular
pieces with continuous rotations. Piece overlap was evaluated evaluated using phi-functions.
Although the authors proved the exactness of the proposed model, a heuristic that uses a
variation of the proposed model was developed. Their heuristic method found good quality
solutions in an acceptable computational time, however their computational results did not
evaluate how far these solutions were from optimality.

In Jones [15], an exact algorithmwas developed allowing the pieces to be freely translated
or rotated. To solve the problem, circles are inscribed inside of each irregular piece and then
the non-overlap constraints are formulated ensuring that the circles inscribed in one piece
do not overlap the inscribed circles from another piece. The problem was formulated as a
quadratic programming problem and it was solved to optimality by non-linear global solvers.
Although the strategy used by the author is interesting, the pieces may not be represented
accurately, affecting the evaluation of overlapping between the pieces.

Stoyan et al. [21] formulated a basic irregular placement problem for cutting and packing
problems. The authors considered the pieces bounded by circular arcs and line segments and
allowed continuous rotations and translations within the rectangular and circular containers.
An exact non-linear programming model for the problem using ready-to-use phi-functions
was proposed. The solution presented by the proposed algorithm improved the best published
results for some benchmark instances provided that free piece rotations are allowed.

Although some mathematical formulations and solution methods for the irregular strip
packing problem with continuous piece rotations were proposed by some researchers, in
most of these studies heuristic methods were used to solve the problem. Furthermore, the
exact solution methods proposed have some limitations in terms of representing the pieces
and high computational time.

In this paper, a mathematical formulation for the irregular strip packing problem with
continuous rotations of the pieces is proposed and solved by exact methods proposed in the
solvers COUENNE, SCIP andBARON. This formulation has linear and quadratic constraints
and differs from theKallrath’s [16]model in theway the non-overlap constraints are designed.
Furthermore, the proposed model can handle non-convex pieces.
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The main contributions of this paper are: (1) a mixed integer quadratically constrained
model is proposed to represent the irregular strip packing problem using pieces with continu-
ous rotations; (2) the model invokes only simple geometric structures to be built making them
easy to be reproduced; (3) great precision when packing polygonal pieces; and (4) smaller or
equal computational times when compared to the only two the instances solved by another
exact method from the literature and solution for other challenging instances of the literature.

After this introductory section, Sect. 2 presents the irregular strip packing problem and
some definitions used throughout the paper. The mixed integer quadratically-constrained
model for the irregular strip packing problem is proposed in Sect. 3. Section 4 discusses
the bounds for this problem and how they can be obtained, as well as a set of symmetry-
breaking constraints and domain reductions which can be used in the model without affecting
its optimality. The computational experiments performed with the proposed mathematical
models are depicted in Sect. 5. Finally, some conclusions are drawn in Sect. 6.

2 Definitions and basic structures

In the irregular strip packing problem addressed in this paper, a set of N convex and non-
convex polygonal pieces must be placed on a board with a fixed height H and an infinite
length. These pieces can be rotated at any angle, they must be completely inside the board
and must not overlap. The objective is to minimize the board length used to cut all the pieces.

To mathematically formulate this problem, the polygonal pieces are represented by a set
of points ordered in a counterclockwise direction. A reference point is used to indicate the
locus of the piece on the board, i.e., this point is used to translate the piece into the board
and to rotate the piece around it. Figure 1 illustrates a piece, its reference point, and the
coordinates of the system.

Note that the reference point can be arbitrarily chosen, however, in this study, we consider
the leftmost vertex of the piece as the reference point. In case of a tie, the bottommost vertex
is chosen among the candidates.

A decomposition of the non-convex pieces into convex pieces is used to formulate the
mathematical model. For this, Greene’s dynamic programming algorithm for optimal parti-
tioning [14] is used. By this algorithm, the pieces are decomposed in a minimum number of
convex parts, considering that new vertices cannot be included into the polygon. Although
this decomposition is not unique, using the algorithm the same decomposition will always
be found. Figure 2 illustrates this decomposition for the piece given in Fig. 1. Note that all
the vertices of the decomposed piece (Fig. 2) exist on the complete piece (Fig. 1).

Fig. 1 Representation of a piece
and its reference point

(0,0)
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Fig. 2 Convex decomposition of
the piece presented in Fig. 1

Specifically, let Ki be the set of vertices of piece i , i = 1, . . . , N , and Ki,s the set of
vertices of its s-th decomposed part, s = 1, . . . , Si , where Si is the number of convex parts
of piece i . Thus, Ki,s ⊂ Ki and

⋃Si
s=1 Ki,s ≡ Ki . These two piece representations are used

in this paper to illustrate the relation between pieces by constraints.
Another important information is the relation between a point and a line. To obtain this

value, the D-function [3] is used. Precisely, given a oriented line and a point, the D-function
value identifies the relative position of the point and the line. This equation is derived from
the line point distance equation. Consider two points A(ax , ay) and B(bx , by) from a line

and a point P(px , py). The normal vector of a line
−→
AB is given by −→v = (ay − by, bx − ax ).

Thus, the distance from point P to line
−→
AB is obtained by Formula (1).

∣
∣(ax − bx ) (ay − py) − (ay − by) (ax − px )

∣
∣

√
(ax − bx )2 + (ay − by)2

, (1)

where |.| is the absolute value of the equation.
Considering (1), only positive values are obtained, which is correct as they represent an

Euclidean distance. However, the sign of the distance between the point and the line is an
important piece of information for our proposal. Moreover, by removing the denominator of
Eq. (1), the relative position between a point and a line can be identified. The D-function of

line
−→
AB and point P is given by Eq. (2).

DABP = (ax − bx ) (ay − py) − (ay − by) (ax − px ) . (2)

The D-function has a simpler formula compared with the real distance equation and
provides the information of the relative position between a point and a line. If DABP is equal

to zero, point P is over line
−→
AB; if DABP is lower than zero, point P is to the right of line−→

AB; and if DABP is greater than zero, point P is to the left of line
−→
AB.

3 Translate and Rotate Piece Model (TRPM)

Throughout this section, the constraints for the Translate and Rotate PieceModel (TRPM) are
described. The most difficult and important constraints ensure that the pieces are completely
inside the board and they do not overlap.

To formulate the constraints, consider that the locus of piece i on the board is defined by
a translation of its reference point (xi , yi ) and a rotation θi of the piece around its reference
point. A single angle θi is sufficient to define the rotation matrix for piece i , but as the sine
and cosine functions are non-convex, the computational effort to calculate the sine and cosine
for each angle in the constraints might unnecessarily increase the complexity of the model,
affecting its resolution. Therefore, consider the variables si and ci , as well as Eq. (3).
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Fig. 3 Placing the piece on the board. a Piece before it is rotated or translated, b rotated piece and c piece
translated and rotated

s2i + c2i = 1, i = 1, . . . , N . (3)

Considering Eq. (3), the values of si and ci are exactly the same value as sin(θi ) and

cos(θi ), thus the Ri =
[
ci si

−si ci

]

represents the two dimensional rotation matrix. Consider

μil,x (μil,y) as the signed distance between vertex l of piece i and xi (yi ) as illustrated in
Fig. 3a, where μil = (μil,x , μil,y)

T . The position of each vertex of the piece after a rotation
around the reference point is illustrated in Fig. 3b. Figure 3c illustrates the positions of each
vertex of the piece after rotation and translation to the desired point.

The position of vertex l of each piece i (pil ) is formally defined by Eqs. (4) and (5).

pil,x = xi + μil,x ci + μil,ysi , i = 1, . . . , N , l ∈ Ki , (4)

pil,y = yi + μil,yci − μil,x si , i = 1, . . . , N , l ∈ Ki . (5)

As in the irregular strip packing problem the board has a fixed height (H), one can ensure
that the pieces are entirely inside the board by maintaining the piece points inside the board,
as expressed by constraints (6) and (7).

pil,x ≥ 0, i = 1, . . . , N , l ∈ Ki , (6)

0 ≤ pil,y ≤ H, i = 1, . . . , N , l ∈ Ki . (7)

Note that only one bound was imposed for pil,x as the board length is considered as an
open dimension in the problem.

To ensure that the pieces do not overlap, the D-function presented in Sect. 2 is used. Let
l be a vertex of part s of piece i and l its consecutive vertex. Consider also vertex m of part
s′ of piece j . If inequality (8) holds for all m ∈ K j,s′ , it ensures that part s′ of piece j does
not overlap part s of piece i by being on the left side of the line defined by vertices l and l.
Figure 4 illustrates a case where inequality (8) holds.

(pil,x − pil,x ) (pil,y − p jm,y) − (pil,y − pil,y) (pil,x − p jm,x ) ≤ 0 (8)

According to the Separating Axis Theorem, it can be stated that in a feasible solution, for
each pair of parts of different pieces, there is one line which passes by an edge of one of the
parts that ensures these piece parts are separated into different sides of the line. Note that this
line could pass on an edge of one of both of the parts of the pieces. Further details about the
Separating Axis Theorem can be found in Gottschalk [13].
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i, s
l

l

j, s

m

Fig. 4 Example of a case in which Eq. (8) holds

To simultaneously consider all these constraints, consider variable γ isl
js′ , which is 1 if part

s′ of polygon j is to the left side of the line that pass by vertices l and l of part s of polygon i ,
and 0 otherwise. Thus, two parts of the different pieces are separated if constraint (9) holds
for one or more γ isl

js′ equal to one.

(pil,x − pil,x ) (pil,y − p jm,y) − (pil,y − pil,y) (pil,x − p jm,x ) ≤ (1 − γ isl
js′ ) M,

i, j = 1, . . . , N , i 	= j, s = 1, . . . , Si , s
′ = 1, . . . , S j , l, l ∈ Ki,s,m ∈ K j,s′ (9)

where M is a number large enough to relax constraint (9) when γ isl
js′ is equal to zero. The

value of this constant will be analyzed in Sect. 4.2.
If, for a given part s of piece i and part s′ of piece j , exactly one variable γ isl

js′ is equal to

one (activated), then these parts do not overlap as formulated by constraints (10).
∑

l∈Ki,s

γ isl
js′ +

∑

m∈K j,s′
γ

js′m
is = 1, i, j = 1, . . . , N , i ≤ j,

s = 1, . . . , Si , s
′ = 1, . . . , S j . (10)

Although a set of γ isl
js′ variables can be activated to avoid the overlap between these parts,

selecting only one variable to activate eliminates symmetries without losing the solution
optimality. Figure 5 illustrates the symmetry elimination. In the figure, although variables
γ isl
js′ and γ isl ′

js′ activate different regions to place part s′ of piece j , there is an intersection
area among them. With constraint (10), a vertex of part s′ of piece j can be placed on this
intersection area by either γ isl

js′ = 1 or γ isl ′
js′ = 1, however, both variables cannot be one at

the same time. This does not eliminate feasible solutions, as the intersection region can still
be used to place the vertices from part s′ of piece j , This restriction also helps the solution
methods to reduce the number of solutions to be explored until the optimality is proved.

The objective the problem is to minimize the length of the board (L) used to cut of all the
pieces. Constraint (11) supports this objective:

pil,x ≤ L , i = 1, . . . , N , l ∈ Ki . (11)

The complete Translate and Rotate Piece Model (TRPM) is presented in the following. It
is a mixed integer quadratically-constrained programming model.

min: L

s. t.: 0 ≤ pil,x ≤ L , i = 1, . . . , N , l ∈ Ki , (12)
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Fig. 5 Example of symmetry
elimination

0 ≤ pil,y ≤ H, i = 1, . . . , N , l ∈ Ki , (13)

s2i + c2i = 1, i = 1, . . . , N , (14)

pil,x = xi + μil,x ci + μil,ysi , i = 1, . . . , N , l ∈ Ki , (15)

pil,y = yi + μil,yci − μil,x si , i = 1, . . . , N , l ∈ Ki . (16)

(pil,x − pil,x ) (pil,y − p jm,y)−
(pil,y− pil,y) (pil,x− p jm,x )≤(1−γ isl

js′ ) M, i, j = 1, . . . , N , i 	= j,

s = 1, . . . , Si , l, l ∈ Ki,s,

s′ =1, . . . , S j ,m ∈ K j,s′ , (17)
∑

l∈Ki,s

γ isl
js′ +

∑

m∈K j,s′
γ

js′m
is = 1, i, j = 1, . . . , N , i ≤ j,

s=1, . . . , Si , s
′ =1, . . . , S j , (18)

(xi , yi ) ∈ R
2, i = 1, . . . , N , (19)

(
pil,x , pil,y

) ∈ R
2, i = 1, . . . , N , l ∈ Pi,u, (20)

si , ci ∈ [−1, 1], i = 1, . . . , N , (21)

γ iul
jv ∈ B, i, j =1, . . . , N , u=1, . . . , Si ,

v = 1, . . . , S j , l ∈ Pi,u, (22)

L ∈ R. (23)

4 Bounds, estimations and symmetries

In Sect. 3, a mixed integer quadratically-constrained model was proposed to represent the
irregular strip packing problem with continuous rotations. The model contains many sym-
metric solutions and poor bounds due to the big-M term in the constraints (9). This section is
dedicated to studies better bounds, tighter M terms and some symmetry-breaking constraints
that can help speed up the solution methods.
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4.1 Bounds

Finding good lower bounds for irregular cutting and packing problems is a difficult task
that worsens when rotations are considered. The most common and simple estimation is
considered where pieces can fit perfectly inside the board, that is, the lower bound is obtained
by the sum of the piece’s areas divided by the board height. Other bounds can be obtained,
however, in many cases the problem to be solved might be as difficult as it is to solve the
complete problem. For example, using Jones’ [15] model with a restricted number of circles
to represent the pieces leads to a lower bound for the problem, however, the computation
time to obtain this lower bound might be prohibitive.

Although studying good lower bounds encourages researchers to reduce the gaps from the
literature, in most cases when they are imposed in the model they can affect the resolution
as they lie about the nodes current bounds. Thus, the lower bounds will not be used in the
resolution of the proposed model.

Upper bounds for the irregular strip packing problem can be found by heuristic methods.
Good upper bounds can improve the convergence speed of the methods by not exploring
parts of the solution space in which only worse solutions could be found. In cases where the
pieces can be rotated in a finite set of angles, many heuristics have been proposed [8,12].
These solutions can be used as an upper bound for the irregular strip packing problem
with continuous rotations. Furthermore, many studies heuristically address the irregular strip
packing problem considering continuous piece rotations to find good upper bounds [18,20].

A simpleway to obtain upper bounds for the problem is to solve one of the proposedmodels
by a mixed integer non-linear programming solver which searches for the local optimal, thus
finding a local solution to the problem.

4.2 The big-M term value

It is important to analyze how big the M term used in the non-overlap constraints must
be to ensure that the model finds optimal solutions. Although a huge value is sufficient to
completely disable these constraints, it is known that a tighter M can boost the permanence
of solution methods by improving the quality of the model relaxations.

Consider the non-overlap constraints (9). Estimating M is only necessary if γ isl
js′ is equal

to 0, thus:

Mi jl ≥ (
pil,x − pil,x

) (
pil,y − p jm,y

) − (
pil,x − p jm,x

) (
pil,y − pil,y

)
(24)

Consequently, by absolute value property it is known that inequality (25) holds.

(
pil,x − pil,x

) (
pil,y − p jm,y

) − (
pil,x − p jm,x

) (
pil,y − pil,y

)

≤
∣
∣
∣pil,x − pil,x

∣
∣
∣
∣
∣
∣pil,y − p jm,y

∣
∣
∣ +

∣
∣
∣pil,x − p jm,x

∣
∣
∣
∣
∣
∣pil,y − pil,y

∣
∣
∣ (25)

The values of |pil,x − pil,x | and |pil,y − pil,y | are, respectively, the horizontal and vertical
distances for two consecutive vertices of polygon i . These distances could not be larger than
the euclidean distance (dill ) between (pil,x , pil,y) and (pil,x , pil,y). In addition, the values
of |pil,y − p jm,y | and |pil,x − p jm,x | are respectively bounded by the H (board height) and
L (board length). Thus, the following inequality holds,

∣
∣
∣pil,x − pil,x

∣
∣
∣
∣
∣
∣pil,y − p jm,y

∣
∣
∣ +

∣
∣
∣pil,x − p jm,x

∣
∣
∣
∣
∣
∣pil,y − pil,y

∣
∣
∣ ≤ dill (H + L) (26)
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Then, the M term can be defined as in Eq. (27).

Mill = dill (H + L) (27)

Using the therm defined in (27) in inequality (9) causes a product of L and γ isl
js′ . For some

solutionmethods, it can hamper the resolution, therefore, an alternative is use an upper bound
for the board length (L) instead of using variable L , turning M into a constant.

4.3 Symmetry-breaking constraints

Symmetric pieces can lead to a set of redundant solutions for the problem. Precisely, if a given
piece i is a regular polygon, variables si and ci can have reduced domains. For example, if
a square must be packed, it is not necessary to evaluate all the rotations in the range [0, 2π].
As a matter of fact, evaluating only the angles in the range [0, π/2] is sufficient to maintain
the solution optimality.

To generalize this idea, consider φi , the symmetry angle which represents the smallest
angle whereby, if piece i is rotated, it remains equal to piece i at rotation 0. Thus, the rotation
angle of a symmetric piece i can be reduced to the range [0, φi ]. This range can also be
rewritten as [−φi/2, φi/2] and be used to redefine the domain of ci variables. Specifically,
given a symmetric piece i , the domains of variables ci are reduced to [cos(φi/2), 1]. Note
that to reduce the domains of the variables ci is sufficient to restrict the rotation angle into
the desired interval and no changes in the domain of variable si are needed.

For each solution found by the model, there is a symmetric one which can be obtained by
rotating the solution by π . If one or more ordering subset constraints were introduced into
the problem, then this type of symmetry is already eliminated. However, if no ordering subset
constraint is imposed, it may be assumed that one of the piece vertices can be allocated only
on one half of the board, thereby eliminating symmetric solutions. Specifically, the domain
of the y coordinate of the reference point of piece i is reduced to the interval [0, H

2 ].
Another type of redundant solution emerges when pieces with the same shape must be

packed. Precisely, if pieces i and j have the same shape, then symmetries can be eliminated
ensuring that the reference point of piece i precedes to the reference point of piece j in a
horizontal direction. Therefore, a subset of ordering constraints is introduced, that is, xi ≤ x j ,
if i < j and pieces i and j have the same shape.

5 Computational results

In this section, the performance of the proposed model when solved by three different global
optimization solvers is compared. Furthermore, the results found in the proposed formulation
are compared with the state-of-art model from the literature.

The computational experiments were conducted using a computer with an Intel i7 4790
processor using 16 gigabytes of memory and Ubuntu 16.04 operating system. The models
were implemented using the General Algebraic Modeling System. All the tests were carried
out using GAMS 24.9 [4]. The time limit adopted in the experiments was 7h (25,200s)
which is the same used in Jones [15]. Three global optimization solvers were used to solve
the models: COUENNE 0.5, SCIP 3.2 and BARON 16.5.16. These solvers were chosen
because they are free for academics (actually COUENNE is distributed under the Common
Public License).

For SCIP and BARON, the default solver options were used, however, some changes
were made in COUENNE solver options. The linear and mixed integer linear solvers were
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changed form CLP/CBC (COIN-OR project) to CPLEX (IBM). COUENNE uses a non-
linear branch and bound to solve the problems. The default search strategy of the method is
strong-branching which generally explores less nodes than other strategies. However, in pre-
liminary computational experiments, the reliability branching showed a better performance
than strong-branching in terms of computational time and solution quality. This improvement
was expected as reliability branching is generally the best branching choice for mixed integer
linear programming model solvers.

In Sects. 5.1 and 5.2, the TRPM model without and with symmetry-breaking constraints
were respectively analyzed. The instances used in this phase were taken from Jones [15] and
are called: four-part and six-part. In both instances, all the pieces have convex shapes and,
in the optimal solution, the pieces fit perfectly on the board. The four-part instance has four
pieces and the board height is equal to 10 and the six-part instance has six pieces and the
board height is also equal to 10.

Although these instances only deal with convex pieces, they are the only instances from
the literature solved by an exact method.

To further analyze the performance of the proposed models, in Sect. 5.3 some instances
with convex and non-convex pieces from the literature were used. In these instances, the
pieces do not fit perfectly on the board andwere taken and adapted from the ESICUPwebpage
(EUROSpecial Interest Group onCutting and Packing). Specifically, six instanceswere used.
Three and Shapes4 were used without any change. Blaze2[1] is a copy of each piece type of
instance Blaze[2]. Poly1A[1-5], Poly1A[6-10] and Ploy1A[11-15] are derived from Poly1A
instance and have a board of height 12. The number in brackets represents the range of
the piece types contained in them, i.e., Poly1A[1-5] contain the pieces 1 to 5 from Poly1A
instance.

It is important to highlight that for some instances, the figure that represents the feasible
solution gives the impression that they can easily be improved.However, thismay not possible
due to the various constraints for all pairs of pieces that limit the movements of each other,
and the heuristics used by the solvers to find and improve the solutions.

5.1 TRPM model without symmetry-breaking constraints

In this section, the proposed TRPM model without the symmetry-breaking constraints is
solved. Two variations of the model are analyzed: one using the M term estimated with
variable L and the other with M estimated with an upper bound of the board length L . In this
phase, the value of L is equal to 20 (two times the board height). These tests aim to verify
if the complexity introduced having a slightly tighter M benefits the quality and time of the
obtained solutions.

Table 1 shows the results found for the four-part instance by three solvers. In the table, the
first column shows the name of the solver used to solve the instance and the second column
depicts the information in the line:UpperBound (UB), LowerBound (LB) andComputational
Time (Time). The third column shows the results for the model with the big-M estimation
using the constant L (TRPME ). The results for the model with the big-M estimation with
variable L (TRPML ) are shown in the fourth column.

Looking for the solvers, SCIP found better solutions compared with COUENNE and
BARON for both models. In fact, SCIP found the optimal solution for TRPME in 48 s and for
TRPML in 64 s while the other formulations could not prove the solution optimality within
the time limit imposed.
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Table 1 Results found solving
four-part instance without
symmetry breaking constraints

TRPME TRPML

COUENNE

UB 7.021 6.889

LB 1.725 1.844

Time TL TL

SCIP

UB 5.000 5.000

LB 5.000 5.000

Time 48a 64a

BARON

UB 5.000 6.000

LB 3.125 3.125

Time TL TL

TL, time limit was reached
(25,200.00 s)
aThe optimality was proved

Fig. 6 a Presents the optimal
solution for four-part instance
with length 5. A feasible solution
with length 6 is also presented in
b

(a) (b)

The TRPML formulation had slightly better upper and lower bounds than TRPME when
COUENNE was chosen to solve it. Specifically, the first one had a GAP (1 − LB/UB) of
73.2% while the second had a GAP of 75.4%.

Using BARON, the best upper and lower bounds were found using TRPM with estimated
M . The GAP found by TRPME was 37.5% while the GAP found by TRPML was 44.2%.

Figure 6a illustrates the best solution for the problem found by SCIP. Note that as the
pieces fit perfectly onto the board, there is no doubt about its optimality. The solution found
using the TRPML in BARON is presented in Fig. 6b.

Table 2 shows the results for the six-part instance. This table has the same type of content
as Table 1.

For the six-part instance, the best upper boundwas found byCOUENNEusing theTRPME

formulation and the best lower bound was SCIP in both formulations. COUENNE and
BARON did not improve the lower bound within the time limit. SCIP found better lower
bounds, however, it ran out of memory.

Comparing the formulations, for the six-part instance, TRPME always found better upper
bounds than TRPML when using the same solver.
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Table 2 Results found solving
six-part instance without
symmetry breaking constraints

TRPME TRPML

COUENNE

UB 13.816 14.439

LB 0.000 0.000

Time TL TL

SCIP

UB 14.176 14.504

LB 4.491 4.491

Time 9891a 4982a

BARON

UB 14.314 15.096

LB 0.000 0.000

Time TL TL

TL, time limit was reached
(25,200.00 s)
aOut of memory

Fig. 7 Feasible solution for the
six-part instance with length
equal to 13.82

Figure 7 illustrates the solution for the six-part instance found by TRPME using
COUENNE.

5.2 TRPM model with symmetry-breaking constraints

In this section, the upper bounds and symmetry-breaking constraints proposed in Sect. 4 are
used to build TRPME and TRPML models. TRPME and TRPML with symmetry-breaking
constraints are represented by TRPMSBC

E and TRPMSBC
L , respectively. The initial solution

(upper bound) used was the same given in Jones [15] and presented in Fig. 8. This local
optimum is used as an initial solution in TRPMSBC

E and TRPMSBC
L .

Table 3 presents the results for the four-part instance. The columns of this table present the
same type of content as the columns in Table 1. It is important to highlight that COUENNE
uses the initial solution only to guide the search and not as a feasible solution, thus the
solutions found were worse than the initial solution.

The results found in Table 3 are better or equal to the ones found in Table 1 in terms of
upper bounds, lower bounds and computational time.

In Table 3, except for the lower bounds found by COUENNE, TRPMSBC
E obtained results

with better or equal quality compared with TRPMSBC
L . Analyzing the solvers, it is undeni-
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(a) (b)

Fig. 8 a Initial solution for the four-part instance (length 6.0), b initial solution for the six-part instance
(length 12.0)

Table 3 Results found solving
the four-part instance with
symmetry-breaking constraints

TRPMSBC
E TRPMSBC

L

COUENNE

UB 6.208 6.859

LB 1.926 2.081

Time TL TL

SCIP

UB 5.000 5.000

LB 5.000 5.000

Time 17a 20a

BARON

UB 5.000 6.000

LB 3.770 3.154

Time TL TL

TL, time limit was reached
(25,200.00 s)
aThe optimality was proved

able that SCIP has better results with better quality than BARON and COUENNE in both
formulations.

Despite the fact that COUENNE uses the initial solution only to guide the search, both
upper and lower bounds were better when compared with the results in Table 1.

Jones [15] solved this instance considering 13 circles to represent the pieces in his most
precise representation. The best solution found for the four-part instance was 5.000 in which
the optimality was proved in 20,807s considering the best approach.

Table 4presents the results for the six-part instance.The columnsof this table have the same
type of content as the columns in Table 1 . Despite the initial solution with value of 12.000,
COUENNE found a worse solution solving TRPMSBC

E than solving TRPME . Furthermore,
the initial upper bound was not improved by any method. However, all lower bounds in
the table improved when compared with the results in Table 2, showing the importance of
an initial solution and the symmetry-breaking constraints. The best lower bound was 7.903
and it was obtained by SCIP solver in 4491s. This value is better and was obtained in
a shorter computational time than the lower bounds presented in Jones [15] for the same
instance.
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Table 4 Results found solving
the six-part instance in the
models with symmetry-breaking
constraints

TRPMSBC
E TRPMSBC

L

COUENNE

UB 14.453 14.132

LB 4.419 4.419

Time TL TL

SCIP

UB 12.000 12.000

LB 7.903 6.677

Time 4491a 5790a

BARON

UB 12.000 12.000

LB 4.419 4.419

Time TL TL

TL, Time limit was reached
(25,200.00 s)
aOut of memory

Jones [15] improved the initial upper bound, however in hismodels the pieces are described
by inner circles, admitting a small intersection among the pieces in some cases. As a con-
sequence, near feasible solutions can be found and the optimal solution can only be proved
adding more circles to the representation of pieces and solving the model again.

5.3 TRPM model with convex and non convex pieces

In this section, the proposed model is used to solve instances with convex and non-convex
pieces which do not fit perfectly.

For each instance, the initial solution (upper bound) given to the formulations was found
using BONMIN, a mixed integer non-linear programming solver proposed to find a local
optimum. These solutions were found in less than 10min and are presented in Fig. 9.

As in the previous sections, these instances were run in TRPMSBC
E and TRPMSBC

L models
using three different solvers by 7h. The results obtained by the TRPMSBC

E model are presented
in Table 5 and the results obtained by TRPMSBC

L model are presented in Table 6.
In these tables, the first column presents the instance name. For the COUENNE, SCIP

and BARON solvers, the columns present respectively the lower bound (LB), upper bound
(UB) and the computational time (TIME) in seconds to run the instances.

In Tables 5 and 6, the best lower bounds for all tested instances were found by SCIP.
Moreover, except for Poly1A[1-5], SCIP found the best upper bound for all instances. For
the instance Three, the three solvers found the optimal solution and among them, the SCIP
solver for TRPMSBC

E performed best, as the optimality of the solution was proved in 34s. For
the SCIP solver in TRPMSBC

E , the instances Poly1A[1-5], Poly1A[6-10] and Poly1A[11-15]
did not reach the total run time due to the lack of computational resources. However, this
solver had better upper bounds and lower bounds compared to COUENNE and BARON.

In both models, the SCIP solver improved the initial solution bounds for all the instances.
BARON improved the initial solution bounds of three instances using each model. For the
TRPMSBC

E , the COUENNE solver improved the initial solution bound for three instances
and found worse solutions for the other three instances. For the TRPMSBC

L , COUENNE also
improved the initial bounds for three instances, but it did not find a feasible solution for two
instances and found a worst solution than the initial bound for one instance.
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Fig. 9 Initial solutions

Table 5 Results found solving instances using TRPMSBC
E model

Instance COUENNE SCIP BARON

LB UB TIME LB UB TIME LB UB TIME

Three 5.495 5.495 354b 5.495 5.495 34b 5.495 5.495 418b

Blaze2 [1] 2.828 10.297 TL 4.000 7.540 TL 2.828 7.703 TL

Shapes4 8.485 32.675 TL 9.451 23.017 TL 8.485 31.276 TL

Poly1A [1-5] 0.000 18.736 TL 7.120 18.592 12,435a 0.000 18.720 TL

Poly1A [6-10] 0.000 14.637 TL 6.027 14.518 12,161a 0.000 15.889 TL

Poly1A [11-15] 0.000 30.875 TL 4.600 21.661 13,680a 0.000 27.616 TL

TL, time limit was reached (25,200.00 s)
aOut of memory
bThe optimality was proved

Considering TRPMSBC
E and TRPMSBC

L , the SCIP solver found the best upper bounds for all
instances, except for Poly1A[1-5], were the COUENNE solver found the best upper bound.
Figure 10 presents the best solution found for each instance tested in this section.
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Table 6 Results found solving instances using TRPMSBC
L model

Instance COUENNE SCIP BARON

LB UB TIME LB UB TIME LB UB TIME

Three 5.495 5.495 357b 5.495 5.495 188b 5.495 5.495 440b

Blaze2 [1] 2.828 – TL 4.000 6.960 15,120a 2.828 7.703 TL

Shapes4 8.485 35.481 TL 9.649 27.416 12,003a 8.485 31.276 TL

Poly1A [1-5] 0.000 18.395 TL 6.357 19.090 11,167a 0.000 18.741 TL

Poly1A [6-10] 0.000 15.462 TL 4.306 15.540 12,578a 0.000 20.051 TL

Poly1A [11-15] 0.000 – TL 5.375 23.380 15,337a 0.000 27.616 TL

TL, time limit was reached (25,200.00 s)
aOut of memory
bThe optimality was proved

To better analyze the behavior of the model, the shapes4 instance were run in SCIP
iteratively using the TRPMSBC

E formulation. This solver and formulationwere chosen because
they presented the best performance by solving the instance. The model was solved three
times and after each run, the solution obtained by the solver was used as a starting point for
the next run. This process was repeated until the solver stopped to improve this solution,
making a total of three runs. Figure 11 illustrates the solution obtained in the end of this
process.

Comparing the solution in Fig. 11 with Shapes4 in Fig. 10, it can be observed that the
solution had a significant improvement as the length reduced from 23.02 to 19.92. This
behavior of the solution was expected because the starting point for the next run is always a
better solution and the solver uses this solution to guide the search.

6 Conclusions

In this paper, a mixed integer quadratically-constrained programming model was proposed
to represent the two-dimensional irregular strip packing problem considering that the pieces
can be rotated in continuous angles. The model is flexible and can handle with polygonal
convex and non-convex pieces. A set of symmetry breaking constraints were proposed and
two variants of the model were analyzed, differing in the way that the non-overlapping
constraints are addressed.

Themathematical formulationwas solved using exactmethods available in free solvers for
academics. Computational experiments were performed using instances from the literature
considering convex and non-convex pieces and showed that the proposed method found
numerically accurate solutions in competitive computational times.

It can be stated that the SCIP solver performed better in the tests provided better lower
bounds. Furthermore, the formulations presented in this paper are able to handle non-convex
polygonal pieces in the irregular strip packing problem with continuous rotations.

Concerning this problem, to the best of our knowledge, the proposed model is the first
in the literature to solve it using direct trigonometry to deal with the non-overlap between
non-convex pieces. This simplicity in the representation of pieces and the non-overlapping
constraint formulation makes the formulation simpler, making it adaptable to other variants
of the problem of cutting and packing irregular pieces, which can be considered as future
work.
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Three

Length: 5.49

Blaze2[1]

Length: 6.96

Shapes4

Length: 23.02

Poly1A[1-5]

Length: 18.39

Poly1A[6-10]

Length: 14.52

Poly1A[11-15]

Length: 21.66

Fig. 10 The best solution found within 7 h

Fig. 11 Solution of Shapes4
instance, found by SCIP in
TRPMSBC

E after three runs of 7h.
The length of this solution is
19.92
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As the pieces are considered polygons, for many cases there is no approximation invoked
in the geometry, therefore without time or space constraints the proposed models are exact.
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