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Abstract
Metric spaces are characterized by distances between pairs of elements. Systems that are physically similar are expected to present
smaller distances (between their densities, wave functions, and potentials) than systems that present different physical
behaviors. For this reason, metric spaces are good candidates for probing quantum phase transitions, since they could identify
regimes of distinct phases. Here, we apply metric space analysis to explore the transitions between the several phases in spin-
imbalanced systems. In particular, we investigate the so-called FFLO (Fulde-Ferrel-Larkin-Ovchinnikov) phase, which is an
intriguing phenomenon in which superconductivity and magnetism coexist in the same material. This is expected to appear
for example in attractive fermionic systems with spin-imbalanced populations, due to the internal polarization produced by
the imbalance. The transition between FFLO phase (superconducting phase) and the normal phase (non-superconducting)
and their boundaries have been subject of discussion in recent years. We consider the Hubbard model in the attractive regime
for which density matrix renormalization group calculations allow us to obtain the exact density function of the system. We
then analyze the exact density distances as a function of the polarization. We find that our distances display signatures of
the distinct quantum phases in spin-imbalanced fermionic systems: with respect to a central reference polarization, systems
without FFLO present a very symmetric behavior, while systems with phase transitions are asymmetric.
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1 Introduction

Quantum phase transitions are characterized by sudden
changes in the physical properties of the system driven by
one of its parameters. The transition may be of first order,
which has a discontinuity in the first derivative with respect
to the parameter, or it may be smoother, as in second-
order transitions and crossovers [1]. Ideally, to investigate
a quantum phase transition, one needs to obtain the order
parameter, but this is not trivial in most of the cases.
Therefore, it is quite common to use other properties of the
system for example witnesses of quantum phase transitions,
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such as quantum correlations, entanglement measures, and
Fisher information [2–8].

In this context, metric-spaces analysis appears as a pow-
erful mathematical tool to investigate these transitions.
In metric space, one can assign distances between wave
functions, densities, and external potentials of two sys-
tems, which quantify the closeness between the systems.
Recently, natural distances have been proposed for physical
systems [9–11] and applied in several contexts [12–19].

In spin-imbalanced fermionic systems, several interest-
ing phases might emerge across the imbalance strength.
In the regime of attractive interactions, in particular, the
system may present a conventional superfluid phase, as
described by the Bardeen-Cooper-Schrieffer theory (BCS
phase) [20], a normal magnetic (non-superfluid) phase, a
fully polarized (FP) phase, a phase separation [21, 22],
and a fascinating phenomenon denominated Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) phase [23, 24]. The FFLO
phase is characterized by the exotic coexistence of super-
conductivity and magnetism and expected to survive against
the normal regime for small imbalances. Experimentally,
there is only indirect evidences of the FFLO phase: in
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solid-state materials [25] and in one-dimensional Fermi
gases [26].

From the theoretical point of view, regardless of the
complexity of handling many-particle interactions and the
harmonic confinement necessary to describe state-of-the-
art experiments, considerable understanding of the FFLO
general properties has been achieved [4, 27–32]. However,
the regime of polarizations at which the FFLO phase can
be found is still under debate, as well as the nature of the
transition to the other phases of the spin-imbalanced system.

Here, we apply a metric-space analysis to investigate
the transitions between BCS, FFLO, normal, and FP
phases in spin-imbalanced systems described by the one-
dimensional fermionic Hubbard model. We obtain the exact
density functions of finite but large chains via density
matrix renormalization group (DMRG) calculations and
thus calculate density distances between systems with
different polarizations. We find that the metric spaces are a
suitable tool to detect quantum phase transitions. Our results
suggest (i) that the BCS-normal and the FFLO-normal phase
transitions are of first order and (ii) that the normal-FP
transition is a second-order phase transition or even a mere
crossover.

2 Theoretical and Computational Methods

We consider the one-dimensional homogeneous Hubbard
model [33]:

H =−t
∑

i,σ

(
ĉ
†
i,σ ĉi+1,σ + ĉ

†
i+1,σ ĉi,σ

)
+ U

∑

i

n̂i,↑n̂i,↓, (1)

where t is the hopping parameter, U is the intra-site
interaction, and ĉ

†
i,σ andĉi,σ are creation and annhilation

operators of fermionic particles at site i with z-spin
component σ , up (+1/2) or down (-1/2). Although it is one
of the simplest model to describe itinerant and interacting
particles in a chain, the Hubbard model describes very
important phenomena [34] and has been proved to model
properly nanostructures [35–40] and disordered systems
[41].

We focus on finite chains, with size L = 80, polarization
(or imbalance) quantified by

P = N↑ − N↓
N

, (2)

fixed number of particles N = N↑ + N↓ and average
particle density (filling factor) n = N/L. Here, the spatial
inhomogeneity is only due to finite size effects and the
density profile is obtained via DMRG techniques [42].

In all calculations, we will use attractive interactions
(U < 0) in units of t and set t = 1. At P = 0, the
system is expected to be a conventional BCS superfluid,

while at P = 1, a fully polarized magnetic system. For
intermediate polarizations, we should have the FFLO phase
up to a certain critical value, PC [29], and a normal non-
superfluid phase for P > PC . The metric-space analysis
will be performed here to distinguish between these several
phases.

We thus consider the metric for densities as discussed in
Ref. [9]:

D(ρ1, ρ2) = 1

2N

∫
|ρ1(r) − ρ2(r)| dr, (3)

where the scaling factor 2N was added such that distances
are within [0, 1] to facilitate straightforward comparisons.
Here, ρ1 and ρ2 are the particle density functions of any
two systems: the more dissimilar the systems, the greater
the distance.

In order to identify the several phases that emerge
by sweeping the polarization P , we explore the distance
between densities corresponding to different P ’s. We use
the central polarization value, P = 0.5, to define the
reference system, ρref ≡ ρP=0.5 and thus quantify the
density distance between this central reference and the
system at P :

D(P ) = 1

2N

∫ ∣∣ρP (r) − ρref (r)
∣∣ dr. (4)

The choice of the reference system is very important, as
it defines which similarities and differences of the systems
will be revealed by the distance measure. We have chosen
it such that it does not correspond to any of the P ’s related
to the transitions between distinct phases (neither P = 0,
P = PC , nor P = 1) and we have also avoided a reference
system within the FFLO regime (0 < P < PC , where
P max

C = 1/3 as shown in Ref. [29]). This particular choice:
(i) avoids to emphasize characteristics of only one of the
phase transitions, (ii) avoids possible strong fluctuations due
to the inherent inhomogeneity of the FFLO phase, and (iii)
allows us to explore a possible symmetry: in the absence
of any phase transition, i.e., if the system presents only the
normal phase within 0 < P < 1, there should exist a
symmetric behavior with respect to the central point P =
0.5, once the differenceswould be triggered exclusively by P .

3 Results and Discussion

We start by applying our density distance (4) in systems
without FFLO phase. This may occur when the attractive
interaction is too small (here, we use U = −1), such that
the systems undergo directly a transition from the BCS
superfluid to the normal phase. So, our systems without
FFLO are characterized by three phases: BCS at P = 0,
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normal non-superfluid phase for 0 < P < 1, and fully
polarized magnetic phase at P = 1.

In the upper panel of Fig. 1, we present the density
distance as a function of P for systems without FFLO
phase. The distance is essentially symmetric with respect
to the central point for 0.1 � P � 0.9, confirming the
fact that there is no phase transition within 0 < P < 1.
In contrast though, there is a clear asymmetry between the
BCS and the FP cases. This can be seen quantitatively in
the upper panel of Fig. 2: the distance at the BCS phase
(P = 0) is considerably larger than at any other P > 0
(some examples shown in Fig. 2), including the FP phase
(P = 1). That means that the FP and the normal phase (the
reference) are physically closer than the BCS and the normal
phases. This is not only reasonable—that magnetic phases
(normal and FP) are closer than magnetic and superfluid
ones—but it is also consistent with previous works [27,
43, 44], which suggest that the BCS-normal transition is
a first-order phase transition, while the normal-FP is a
second-order phase transition. Thus, our distance properly
reveals all the features of the system without FFLO: greater
distance at P = 0, consistent with a first-order transition,
for 0.1 � P � 0.9 an almost symmetric behavior with
respect to P = 0.5, confirming the absence of any other
transition and, finally, the suggestion that from the normal to
the FP, the transition is possibly of second order or simply a
crossover.

Now, we consider systems with FFLO, which present, in
addition to the BCS and the FP phases, the exotic superfluid
phase for 0 < P ≤ PC and the normal magnetic phase for
PC < P < 1. The intermediate and the bottom panels of
Fig. 1 present the results for the density distance in these
systems. In contrast to the previous non-FFLO cases, we
now see that the asymmetry appears not only at P = 0, but
also for P > 0. This proves that our distance measure is
sensing the FFLO-normal phase transition.

Figure 2 shows that while for P > PC , PC ≈ 0.3, the
distances behave similarly for systems with (bottom panel)
or without (upper panel) FFLO, for P < PC , the distances
present distinct behaviors. Quantitatively, for n � 0.4,
BCS phase leads to the largest distances, followed by the
FFLO-related distances and then by normal and FP-related
distances. For n � 0.4, in the presence of FFLO and P <

PC , density distances get closer to the distances for P = 0
and further from the ones corresponding to P = 1. This
suggests similarities between the FFLO-to-normal phase
transition and the BCS-to-normal one, and would support
the FFLO-to-normal phase transition being first order, like
the BCS one. For smaller densities, n � 0.4, the increase
in Coulomb interactions leads to a crossover between the
P = 1 (FP) and P = 0 (BCS) distances (compare
upper and lower panels of Fig. 2). However, FFLO-related
distances remain closer to the P = 0 curve, while normal
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Fig. 1 Density distances D as a function of P for several average
densities: upper panel shows non-FFLO systems, while middle and
bottom panels present FFLO systems, where solid squares indicate the
related PC

phase-related distances remain closer to the P = 1,
confirming the resemblances between BCS and FFLO
phases and between normal and fully polarized phases.
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Fig. 2 Density distances as a function of the average density (filling
factor). Upper panel: BCS phase (P = 0), normal phase (0 < P < 1),
and FP phase (P = 1) for U = −1 (without FFLO). Bottom panel:
BCS phase (P = 0), FFLO phase (0 < P < PC ), normal phase
(PC < P < 1), and FP phase (P = 1) for U = −8 (PC ∼ 0.3, with
FFLO)

Therefore, our distance reveals all the transitions of the
system with or without FFLO: we find a distinct behavior
at P = 0 (e.g., larger distances for low U and all n values,
see upper panel of Fig. 2) which is mimicked for P <

PC , suggesting that both BCS-normal and FFLO-normal
phase transitions are of first order, while we find no special
behavior at P = 1, suggesting that the normal-FP transition
is a crossover or of second order.

Aiming at a quantitative comparison between the
asymmetries found in Fig. 1, we explore the following
difference between distances:

�D(P ) = |D(1 − P) − D(P )|. (5)

As it quantifies the asymmetry between two equidistant
polarizations with respect to the central, P = 0.5, this gives
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Fig. 3 Difference between equidistant density distances �D, with
respect to the central P = 0.5, as a function of P for non-FFLO
systems (U = −1) and FFLO systems (U = −4 and U = −8), for
distinct average densities: n = 0.7 (upper panel), n = 0.6 (middle
panel), and n = 0.3 (lower panel)

us a precise comparison between asymmetries for each P , in
particular for the FFLO regime. As one can see in Fig. 3, in
general,�D is larger for the systemswithFFLO (U = −4 and



476 Braz J Phys (2018) 48:472–476

U = −8) than for systems without FFLO (U = −1). Despite
the fact that there are some fluctuations, it is clear that for
non-FFLO systems (black curves), �D is significant only
at the BCS-normal transition, while for FFLO systems (red
and blue curves), it is significant also for P > 0. For
n = 0.3 and intermediate-to-large U , we are close to the
crossover between BCS and FP-related distances shown in
the lower panel of Fig. 2), so that �D approaches zero. We
note that �D is not able to identify precisely PC , where
the FFLO-normal phase transition appears. We attribute the
difficulty to precisely determine PC to the intrinsic density
fluctuations of the inhomogeneous superfluid FFLO phase:
this contributes additional fluctuations to the distances and
therefore a fair comparison between densities within the
FFLO regime becomes impracticable.

4 Conclusions

In summary, we used metric-spaces analysis to probe
quantum phase transitions. We find that our distances are
able to distinguish among the quantum phases present
in spin-imbalanced fermionic systems. Our results—via
a distance measure defined with respect to a reference
at the normal phase regime—suggest that both the BCS-
normal and the FFLO-normal phase transitions are of first
order, while the normal-FP phase transition is a smoother
transition, of second order or simply a crossover. Future
work includes refining the metrics such that one can identify
precisely the critical P values and to apply the metric-spaces
approach for investigating other quantum phase transitions.
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