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Based on some recent progress on a relation between four dimensional super Yang-
Mills gauge theory and quantum integrable system, we study the asymptotic spectrum
of the quantum mechanical problems described by the Mathieu equation and the Lamé
equation. The large momentum asymptotic expansion of the eigenvalue is related
to the instanton partition function of supersymmetric gauge theories which can be
evaluated by a combinatorial method. The electro-magnetic duality of gauge theory
indicates that in the parameter space, there are three asymptotic expansions for the
eigenvalue, and we confirm this fact by performing the Wentzel–Kramers–Brillouin
(WKB) analysis in each asymptotic expansion region. The results presented here
give some new perspective on the Floquet theory about periodic differential
equation. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4926954]

I. INTRODUCTION

Nonrelativistic quantum mechanics is naturally related to the second order differential equa-
tions. Exactly solvable quantum mechanics models play a very fundamental role in demonstrating
the basic concepts and methods of quantum theory. A special interesting class of ordinary differen-
tial equations are those with periodic coefficients; in quantum mechanics, they describe a particle
moving in one dimensional periodic potentials. Therefore, spectral problem of these equations is of
particular interesting for both quantum physics and functional analysis. In this paper, we study two
typical equations of this kind, the Mathieu equation and the Lamé equation. They are respectively
associated to two mathematicians who studied them in the 19th century.1,2 The two equations and
their solutions are related to each other: the Mathieu equation is a particular limit of the Lamé
equation.

Our approach to the problem would be different from the conventional methods; the spectral
solution of the equations is studied in the context of their relation to supersymmetric quantum gauge
theory. It is surprising that such simple quantum mechanics problems are related to seemly much
more complicated quantum gauge theories. In general, the quantum dynamics of gauge theory is
very complicated; nevertheless, in supersymmetric gauge theory models, the dynamics is tamed
and many exact results are obtained. The quantum gauge theory relevant to our study is the N = 2
Seiberg-Witten gauge theory3,4 subject to the Ω background deformation.22 According to the recent
proposal of Nekrasov and Shatashvili,5–7 the low energy dynamics of the deformed N = 2 gauge
theories is equivalent to the spectral problem of some quantum integrable systems. This connection
leads to two particular examples relating quantum gauge theory to the periodic Schrödinger oper-
ator: the SU(2) pure gauge theory is related to the Mathieu equation and the SU(2) gauge theory
with an adjoint matter (the N = 2∗ theory) is related to the Lamé equation.

We summarise the structure of the paper as follows. In Section II, we explain the relation
between differential equations and corresponding gauge theories. In Section III, we show how the
asymptotic spectrum of the Mathieu equation is related to the effective action of SU(2) pure gauge
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theory. In Section IV, we obtain the large quasimomentum asymptotic eigenvalue for the Lamé
equation from the instanton partition function of the N = 2∗ gauge theory. In Section V, we perform
the Wentzel–Kramers–Brillouin (WKB) analysis for the large quasimomentum eigenvalue, based
on the Floquet theory, to confirm the results obtained from the gauge theory. In Section VI, using
the same differential operators obtained in Sec. V, we obtain other two eigenvalue expansions; the
relation between the three eigenvalue expansions can be understood by the electro-magnetic duality
of the effective gauge theory. Section VII is for conclusion and open problems. Some technical
details are presented in the Appendixes.

II. DIFFERENTIAL EQUATIONS AND GAUGE THEORY

In this section, we first explain some basic facts about the Mathieu and the Lamé equations, in
the context of Floquet theory. We are interested in their asymptotic energy spectrum which by itself
is an interesting topic in quantum theory. Then, we explain how the spectral theory of Schrödinger
operators is related to the instanton partition function of gauge theories.

A. The Mathieu equation

The Mathieu differential equation is

d2Ψ

dz2 + (λ − 2h cos 2z)Ψ = 0. (1)

The related modified Mathieu equation is obtained by z → iz, then cosine potential is transformed
to the hyperbolic potential. The (modified) Mathieu equation is useful in various mathematics and
physics problems, including the separation of variables for the wave equation in the elliptical coor-
dinates, describing a quantum particle moving in periodic potential. It also appears in problems such
as wave scattering by D-brane of string theory8 and reheating process in some inflation models.9 In
quantum integrable theory, it is the two body Shrödinger equation of the Toda system.

The potential cos 2z is periodic along the real axes; therefore, the Mathieu equation is a Flo-
quet differential equation. The Floquet (or Floquet-Bloch) solution is a function with the following
monodromy property under the shift of argument by a period π:

Ψ(z + π) = eiπνΨ(z), (2)

where the quantity ν = ν(λ,h) is the Floquet exponent. For periodic Shrödinger equation, the Flo-
quet exponent of wave function is the quasimomenta of particles. Our focus in this paper is the
asymptotic solution for the eigenvalue λ as a function of ν,h.

In general, the eigenvalue relation λ(ν,h) cannot be written in elementary functions, and only
asymptotic expansions are obtained when a small expansion parameter is available. For the Mathieu
equation, there are three asymptotic expansions for λ, and the leading order terms are

λ ∼ ν2 + O( h2

ν2 ), ν ≫ 1,
h
ν2 ≪ 1,

λ ∼ ±2h + O(ν√h), h
ν2 ≫ 1.

(3)

These are well known results about the Mathieu equation; they can be found in handbooks such as
Refs. 10–12. We would explain their relation to gauge theory effective action in Sec. III.

B. The Lamé equation

The Lamé differential equation contains an elliptic potential, and it can be written in several
forms. In the Jacobian form, it is

d2Φ

dκ2 − [A + n(n − 1)k2sn2κ]Φ = 0, (4)
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where snκ = sn(κ|k2) is the Jacobi elliptic function. In the Weierstrass form, it is

d2Φ

dz2 − [B + n(n − 1)℘(z)]Φ = 0, (5)

where ℘(z) = ℘(z;ω1,ω2) is the Weierstrass elliptic function. The coefficient n(n − 1) is in accor-
dance with the usual literature, but we will not discuss whether n is an integer or not which is crucial
for the classification of the solution; this does not affect the discussion of asymptotic spectrum. The
Lamé equation is obtained from separation of variables for the Laplace equation in the ellipsoidal
coordinates. In quantum physics, it is the Shrödinger equation of two body elliptic Calogero-Moser
system.

The elliptic modulus of the function snκ is k, while the elliptic modulus of the function ℘(z) is
q = exp(i2πω2

ω1
); they are related through relation (A5) given in Appendix A. Equations (4) and (5)

are related by a change of variables,13

κ − iK ′
√

e1 − e2
= z, (6)

where K ′ = K(k ′) is the complete elliptic integrals of the first kind, k ′ =
√

1 − k2 is the complemen-
tary module, and ei(q) = ℘(ωi). Their eigenvalues are related by

B = (e1 − e2)A − e2n(n − 1) (7)

or

A =
B

e1 − e2
− 1 + k2

3
n(n − 1). (8)

The two equations are equivalent provided the change of variables is smooth. However, the change
is actually singular in the limit k → 0, as in this limit K ′ → ∞. Therefore, the two equations may
reduce to different equations in limits involving k → 0.

The elliptic functions snκ and ℘(z) are doubly periodic. The periods of snκ are 4K and 2iK ′ and
the periods of ℘(z) are 2ω1 and 2ω2. They are related by

ω1 =
K

√
e1 − e2

, ω2 =
iK ′

√
e1 − e2

. (9)

Since we have sn(κ + 2K) = −sn(κ),sn(κ + iK ′) = 1
ksn(κ) , the periods of the potential sn2κ are 2K

and 2iK ′.
The Lamé equation also falls into the equations of Floquet type; however, as the potential is

the elliptic function, a generalised version of the Floquet theory is needed. The generalised Floquet
theory for elliptic potential is one of the main results of this paper, and the details are given in Secs.
III–VII. One of the periods 2K (or 2ω1) actually can be treated by the conventional Floquet theory,
see Section V for detail. When the coordinate κ shifts a period 2K , or coordinate z shifts a period
2ω1, the phase shift of the function Φ defines the Floquet exponent by

Φ(κ + 2K) = ei2K µ
Φ(κ) (10)

or

Φ(z + 2ω1) = ei2ω1νΦ(z). (11)

We use different letters µ and ν to denote the exponent for the Lamé equation, depending on its
appearance in solution of the equation in Jacobian form (4) or in Weierstrass form (5). The phase
shifts should be the same, then we have the relation

ν

µ
=

K
ω1
=
√

e1 − e2. (12)

In the limit k → 0, µ and ν coincide. This limit is needed when we reduce the Lamé equation to
the Mathieu equation, and indeed their eigenvalue expansions share some common features if we
compare the formulae (19) and (34), (23) and (52).
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In the limit k → 0, we have 2K → π and 2iK ′ → i∞’. This indicates the period 2iK ′ (or 2ω2) is
a bit different from the period 2K (or 2ω1), and indeed it needs a special treatment when concerns
the Floquet theory, see Section VI.

We would find the eigenvalue of Lamé equation, A (or B), as a function of µ (or ν) and n, k (or
q). The Lamé eigenvalue also has three asymptotic expansion regions, and their leading order terms
are

A ∼ −µ2 − κ2

2
+ O( κ

4

µ2 ), µ ≫ 1,
κ

µ
≪ 1,

A ∼ −i2κµ + O(µ2), κ

µ
≫ 1,

A ∼ −κ2 + i2κµ + O(µ2), κ

µ
≫ 1,

(13)

where κ2 = n(n − 1)k2. The more precise form of the expansions are in the formulae (36), (52),
and (63). The first expansion was obtained recently by Langmann as a special case in his solution
to quantum elliptic Calogero-Moser model,14 however expressed in terms of B(ν,n,q). The second
expansion has been given by E. L. Ince, and later by Müller, see the book Ref. 12. To our knowl-
edge, the third expansion is a new result not given in the previous literature. In the Secs. IV–VI, we
derive all three asymptotic expansions in the context of the generalised version of Floquet theory.

In quantum mechanics we often study spectral solution with real eigenvalue; however, in this
paper,we treat all quantities z, λ,h and κ, A,n (and z,B) as complex variables. The N = 2 gauge
theories are related to algebraic integrable systems where mechanical systems are investigated by
complex analysis methods. The spectral curves of the integrable systems are defined over the field
of complex numbers, the Abelian variety of the curve, which governs the linearized motion of
corresponding mechanical system, is the Jacobian variety which carries a complex structure, i.e., a
complex tori. Quantization of the algebraic integrable system needs to find the eigenvalues of com-
plex Hamiltonian operators among which is the complex Schrödinger operator. When we compare
the magnitude of these parameters with some numbers, we mean taking their absolute values or
restoring their real values.

C. The spectrum of Schrödinger operator and quantum gauge theory

In this section, we explain the relation between integrable systems and quantum gauge theories,
which provides the basic background for our study. It has been known that the exact solution of
Seiberg-Witten on N = 2 supersymmetric Yang-Mills (SYM) gauge theory can be understood by
the fact that the low energy dynamics on the special Kahler moduli space of gauge theory is equiv-
alent to the dynamics of classical algebraic integrable system.16–21 Classical mechanical system can
be quantised, and the quantization procedure can be understood as a deformation of the phase space
and associated functional relation; correspondingly, the gauge theory also allows a deformation by
background field parameterized by ϵ1, ϵ2,22–26 and indeed the gauge theory deformation is exactly
the quantization of classical mechanical system mentioned above. Their precise relation is recently
pointed out by Nekrasov and Shatashvili:7 the Coulomb vacua of Ω deformed supersymmetric
gauge theories, in the limit ϵ1 = ~, ϵ2 = 0, are in one to one correspondence with the spectra of
certain quantum integrable systems.

The action of the gauge theory has a scalar potential which leads to the vacuum expectation
value (VEV) for the scalar; it breaks the gauge group and gives mass to some fields. The VEV
takes value in the Cartan subalgebra of the gauge group, ⟨φ⟩ = r

i=1 φiHi, with r the rank of gauge
group. The eigenvalues of the matrix ⟨φ⟩ are denoted by ai. The low energy effective theory is
obtained by integrating all heavy particles and instanton effects, which is described by the prepo-
tential function which includes a perturbative term and infinite many terms of instanton correc-
tion, F (ai,qin) = F pert +

∞
ℓ=1Fℓqℓ

in, where qin is the instanton expansion parameter.3,4 Upon the so
called Ω background field deformation, the gauge theory remains well defined, and even better:
while it is very difficult to compute the instanton contribution Fℓ(ai,qin) in the undeformed gauge
theory by quantum field theory method, the deformed prepotential F (ai,qin, ϵ1, ϵ2) can be exactly
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computed by a localization method.22 In the limit ϵ2 = 0, the gauge theory is effectively confined on
a two dimensional plane; therefore, the Gauge/Bethe correspondence of Refs. 5 and 6 relates the ϵ1

deformed gauge theory to quantum integrable system. More precisely, ϵ1 in the gauge theory plays
the role of Planck constant, the ai are identified with the quasimomenta of excitations in integrable
model, and the vacuum expectation value of gauge invariant operators ⟨Trφℓ⟩ are identified with
eigenvalues of the Hamiltonian operators Hℓ. Finally, the prepotential of gauge theory is identified
with the Yang-Yang potential; the equation selecting the vacua of gauge theory is the Bethe equation
selecting the allowed quasimomenta of integrable model.

In a few simple cases, this correspondence relates SU(2) gauge theories to 2-body quantum
mechanics problems and provides simple examples to examine the relation in detail. The SU(2)
pure gauge theory is related to the Schrödinger equation of 2-particle periodic Toda model, i.e., the
Mathieu equation; SU(2) gauge theory with adjoint matter is related to the Schrödinger equation
of 2-particle periodic elliptic Calogero-Moser model, i.e., the Lamé equation.7 The eigenvalues of
Mathieu and Lamé equations are generally transcendental; in this paper, we are interested in their
asymptotic solutions. Some results about their asymptotic solutions are already known, and here
we revise the problem from the perspective of quantum gauge theory. Our focus is the asymptotic
eigenvalue; we do not try to solve the asymptotic wave function, although it is argued to be related
to gauge theory partition function in the presence of surface operator and can be computed by
localization.27,28

For the SU(2) gauge theory, the only nontrivial Trφℓ is for ℓ = 2; it gives the eigenvalue for the
Schrödinger equation. The expectation value ⟨Trφ2⟩ is a function of gauge theory parameters,

⟨Trφ2⟩ = u(a,qin, ϵ1, ϵ2). (14)

The Matone’s relation29,30 states a relation between u and the prepotential F ,

2u = qin
∂

∂qin
F . (15)

As u also expands according to the instanton parameter, u =
∞

ℓ=0 uℓqℓ
in, therefore we have

2u0 = qin
∂

∂qin
F pert, 2uℓ = ℓFℓ, ℓ > 1. (16)

This relation holds for generic deformation ϵ1,2, and after taking the limit ϵ2 = 0, we can interpret
the relation in the context of quantum mechanical problem. As a consequence, if we properly iden-
tify a parameter in the quantum mechanical problem with the gauge theory parameter qin, then the
ℓ-th coefficients of qin-expansion of the eigenvalue is proportional to the ℓ-th instanton contribution
of SU(2) gauge theory prepotential.

III. SPECTRUM OF THE MATHIEU EQUATION

As the Mathieu and the Lamé equations are closely related to each other, the procedures of
deriving their eigenvalues are largely parallel. The results in this section have already been given
in earlier works.31–35 Here, we give a brief summary on the Mathieu eigenvalue as an educational
example to illustrate, and to further explain, the basic method and logic of our approach.

There are three aspects we would explain. (1) One of the asymptotic eigenvalues, for which
ν ≫ 1, is directly related the gauge theory partition function, in the way explained in Subsection
II C. (2) An independent exact WKB analysis can be performed for the Schrödinger equation with
periodic potentials to obtain the asymptotic eigenvalue for ν ≫ 1. During the process, we obtain
a tower of higher order differential operators. (3) Last, the electro-magnetic duality of gauge the-
ory indicates other two asymptotic expansions for the eigenvalue. Using the differential operators
obtained before, we can compute the other two asymptotic expansions.

After understanding the procedure for the Mathieu eigenvalue, it is straightforward to apply this
method to the Lamé eigenvalue problem.
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FIG. 1. Singularities in the u-plane.

A. Combinatorial evaluating in the electric region

First, we state the relation between singularities in the moduli space of the gauge theory and
asymptotic expansion regions of the Mathieu eigenvalue. The moduli space of the N = 2 SU(2)
pure gauge theory is parameterized by the only complex gauge invariant variable u = ⟨Trφ2⟩ which
breaks SU(2) symmetry to Abelian U(1). The moduli space is singular at u = ∞,±Λ2 in the sense
that at each singularity, there are massless particles that can be used to describe the effective gauge
theory as a weakly coupled theory. These singularities are labeled by the U(1) charges of the mass-
less particles, denoted as “electric,” “magnetic,” and “dyonic,” respectively. Near each singularity,
the gauge theory has an unique weak coupling description; therefore, perturbative expansion is
valid. Our calculation in Refs. 32 and 33 shows that there is a one to one correspondence between
the perturbative expansion of gauge theory near a singularity in the moduli space and the asymptotic
expansion for the corresponding Mathieu eigenvalue. In each asymptotic expansion region, the
intervals between adjacent energy levels are very small compared to the eigenvalues themselves;
therefore, the eigenstates are dense there, see Figs. 1 and 2.

The N = 2 gauge theory is formulated by a classical Lagrangian suitable for weak coupling
region near u ∼ ∞ where Λ

a
≪ 1; the combinatorial method is used to compute the effective pre-

potential F (a,qin, ϵ1, ϵ2) at that point.22 Along with the logic explained in Sec. II, we identify the
parameters of gauge theory and Mathieu eigenvalue as32

λ =
8u
ϵ2

1

, ν =
2a
ϵ1
, h =

4Λ2

ϵ2
1

=
4
√

qin

ϵ2
1

. (17)

In order to compute formula (15), we need to compute the Nekrasov partition function from
which the deformed prepotential F (a,qin, ϵ1, ϵ2) can be derived.22 There are formulae convenient
for program treatment,35,36 and the complete expressions of the first three F1,F2,F3 are presented in

FIG. 2. Spectrum and duality of cosine-potential.
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Ref. 35. As observed in Ref. 34, according to Matone’s relation (15), and taking into account (17),
the Mathieu eigenvalue is

λ = ν2 +

∞
ℓ=1

ϵ4ℓ−2
1

16ℓ
4ℓFℓ(2a, ϵ1, ϵ2 = 0)h2ℓ

= ν2 +

∞
ℓ=1

4ℓFℓ(ν,1,0)( h
4
)2ℓ. (18)

The leading term ν2 comes from the perturbative contribution. We have used the fact that the numer-
ator and denominator of Fℓ(a, ϵ1) are homogeneous polynomials of a, ϵ1 of degrees 2ℓ + 2 and 6ℓ,
respectively. We get the asymptotic expansion

λ = ν2 +
1

2(ν2 − 1) h2 +
5ν2 + 7

32(ν2 − 1)3(ν2 − 4) h4 + · · ·, (19)

for h ≪ 1, ν ≫ 1, and/or h ≫ 1, h
ν2 ≪ 1.

B. Extension to other regions

A crucial ingredient of the Seiberg-Witten theory3 is that the effective gauge theory demon-
strates electro-magnetic duality in the moduli space; the dual descriptions are valid at u = ±Λ2;
accordingly, this indicates there are other two asymptotic expansions for the eigenvalue. In order to
extend the asymptotic expansion from u ∼ ∞ to other two regions near u = ±Λ2, we recall how the
duality is studied in the undeformed gauge theory where ϵ1 = ϵ2 = 0. Actually, the situation at −Λ2

is related to that at Λ2 by a simple map; therefore, we can simplify the following explanation a bit by
focusing on the singularity at Λ2.

In order to determine the prepotential, the dual scalar VEV aD is defined and related to a by
the relation aD = ∂aF . Moreover, a and aD are given by integrals of the Seiberg-Witten form along
the homology circles α and β of the Seiberg-Witten curve determined by the moduli space which is
a torus for SU(2) gauge theory, a =


α λSW and aD =


β λSW . As λSW depends on the parameters

u,Λ2, in this way we get relations a(u,Λ2) and aD(u,Λ2). The two functions are globally defined on
the moduli space; a(u,Λ2) has an asymptotic expansion at u ∼ ∞ and aD(u,Λ2) has an asymptotic
expansion at u = Λ2.

The gauge theory with ϵ1 , 0, ϵ2 = 0 is the “quantized” version of theory with ϵ1 = ϵ2 = 0. As
first studied in Ref. 31, there is a way to incorporate the ϵ1 deformation into the integrand λSW ;
therefore, we have the quantized Seiberg-Witten form λSW(ϵ1). The integrations of λSW(ϵ1) along
the homology circles of the torus give us the deformed relation a(u,Λ2, ϵ1) and aD(u,Λ2, ϵ1). The
relation a(u,Λ2, ϵ1) also has an asymptotic expansion at u ∼ ∞, by identification (17); the inverse
series of the expansion is exactly eigenvalue solution (19). At the point u = Λ2, the dual relation
aD(u,Λ2, ϵ1) has an asymptotic expansion; it turns out that the inverse series of the expansion gives
another eigenvalue solution (23).

The remaining detail is how to compute the deformed integrand λSW(ϵ1). As the deformed
gauge theory is related to certain quantum mechanics problem, it is not surprising that the WKB
method provides an efficient method to obtain higher order quantum corrections. Actually in
Ref. 31, it shows that λSW(ϵ1) can be generated from the undeformed λSW by the action of certain
differential operators with respect to u and Λ2. In practice, setting Λ2 = 1 will further simplify the
procedure; it can be restored by dimensional consideration. We use D(u, ∂u, ϵ1) to represent the
differential operator, then the deformed relation a(u, ϵ1) is computed by

a(u, ϵ1) = D(u, ∂u, ϵ1)

α

λSW . (20)

The integral a(u) = 
α λSW is the leading order WKB approximation; higher order ϵ1 correc-

tions are generated by D(u, ∂u, ϵ1). The operator D(u, ∂u, ϵ1) can be expanded as D(u, ∂u, ϵ1) =
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1 +
∞

n=1 ϵ
n
1 Dn(u, ∂u), and here the n should not be confused with the n(n − 1) in the Lamé poten-

tial. The differential operators Dn(u, ∂u) are polynomials of u and ∂u; the first few of them can
be found in Refs. 32 and 33. Restoring the Λ2 dependence and reversing the large u asymptotic
series of a(u,Λ2, ϵ1), we get the series u(a,Λ2, ϵ1) which gives eigenvalue (19) through parameters
identification (17).

The dual relation aD(u, ϵ1) is given by integral of the same deformed integrand along the dual
homology circle,

aD(u, ϵ1) = D(u, ∂u, ϵ1)

β

λSW . (21)

After restoring the dependence on Λ2, the function aD(u,Λ2, ϵ1) has an asymptotic series at u = Λ2

and its reverse series is u = (aD,Λ
2, ϵ1). In order to relate it to the eigenvalue solution of the Mathieu

equation, we identify the parameters as

λ =
8u
ϵ2

1

, ν =
2iaD

ϵ1
, h =

4Λ2

ϵ2
1

=
4
√

qin

ϵ2
1

. (22)

Then, the asymptotic series expansion of u(aD,Λ
2, ϵ1) gives another well known eigenvalue expan-

sion,

λ = 2h − 4ν
√

h +
4ν2 − 1

23 +
4ν3 − 3ν

26
√

h
+ · · ·, (23)

for h ≫ 1, h
ν2 ≫ 1. The details are given in Ref. 33, see there for result up to the order h−

7
2 .

Moreover, the third expansion region near u = −Λ2, the dyonic region, is mirror of the region near
u = Λ2. The eigenvalue there is obtained from (23) by the map ν → iν,h → −h,

λ = −2h + 4ν
√

h − 4ν2 + 1
23 − 4ν3 + 3ν

26
√

h
+ · · ·. (24)

In Appendix C, we give an algorithm that gives the operator D(u, ∂u, ϵ1), therefore the deformed
λSW(ϵ1), up to arbitrary higher order of ϵ1.

IV. COMBINATORIAL APPROACH TO THE LAMÉ EIGENVALUE

We adopt the same method to the Lamé equation which is quite similar to the Mathieu equa-
tion. In the limit n → ∞, k → 0 while keeping n(n − 1)k2 = κ2 fixed, the Jacobi sn-function be-
comes the trigonometric function sin, and Eq. (4) becomes equivalent to Eq. (1). According to the
argument of quantum field theory, the moduli space of the corresponding N = 2∗ gauge theory also
has three singularities, hence there are three asymptotic expansions for the Lamé eigenvalue. In this
section, we derive the eigenvalue expansion at the electric region from the deformed prepotential of
gauge theory, and write it in a proper form.

A. Identify parameters

First, we have to make the identification between the module parameters in the Lamé equation
and in the N = 2∗ gauge theory. The parameter k appearing in Eq. (4) is the elliptic module of the
Jacobi elliptic function. The Weierstrass elliptic function uses another module parameter, the nome
q. The two parameters are related to each other, and their precise relation is

k2 = 16q
1
2 − 128q + 704q

3
2 − 3072q2 + · · · = θ2(q)4

θ3(q)4 . (25)

Our claim is that q is exactly the instanton expansion parameter of the N = 2∗ theory and is the
“good” expansion parameter for the eigenvalue B in the electric region, while k is the “good”
module parameter for the eigenvalue A in the magnetic and dyonic regions.



072302-9 Wei He J. Math. Phys. 56, 072302 (2015)

Another thing we have to identify is the relation between the parameter n in the Lamé equation
and the adjoint mass of the gauge theory. The equivalent parameter m appears in the instanton
partition function of N = 2∗ theory, as clarified in Ref. 37; the parameter m differs from the physical
mass m∗ by ϵ1, ϵ2 shift, m = m∗ + (ϵ1 + ϵ2)/2. We identify n = ϵ−1

1 m.
Last, we have to identify the relation between the eigenvalue A, or B, and the scalar condensa-

tion u. The Seiberg-Witten curve of the undeformed N = 2∗ theory is

y2 = (x − e1ũ −
1
8

e2
1m2)(x − e2ũ −

1
8

e2
2m2)(x − e3ũ −

1
8

e2
3m2), (26)

with ũ related to the VEV of scalar field by

u = ⟨Trφ2⟩ = ũ − m2

24
(1 − 2E2), (27)

where E2(qin) is the second Eisenstein series. We have rescaled the mass in Ref. 4 by m2 → m2

2 in
order to match the mass parameter that appears in the instanton counting formula. Again this is an
elliptic curve, with two conjugate homology circles α and β, and the Seiberg-Witten differential one
form. ũ and u differ by terms caused by the mass deformation. It turns out that ũ is directly related to
the eigenvalue B.

In summary, we identify

B = −8ũ
ϵ2

1

, ν =
2a
ϵ1
, n =

m
ϵ1
, q = qin. (28)

The moduli space has three singularities in the ũ plane, as showed in Fig. 3; they are located
at ũ = 1

8 eim2, i = 1,2,3. Elliptic curve (26) degenerates at each singularity. Note that the stationary
points of the potential ℘(z) are exactly at z1,2,3, where ∂z℘(z)|zi = 0, ∂2

z℘(z)|zi , 0 and ℘(zi) = ei. In
the u plane, the singularities are located at

u = m2(1
8
− 4q2 − 12q4 + 12q5 + · · ·),

u = ∓m2(√q ± 3q + 4q
3
2 ± 7q2 + · · ·).

(29)

As in the case for the pure SU(2) SYM (the Mathieu equation), there are only three singularities in
the moduli space; therefore, there are only three asymptotic expansion regions for the eigenvalue.
While the Mathieu eigenvalue has two free parameters h and ν, the Lamé eigenvalue has three free
parameters, n, k, and ν; it is not a prior fact the number of expansion regions remains to be three.
However, the gauge theory argument indicates there is no other expansion region.

FIG. 3. Singularities in the ũ-plane for N= 2∗ theory.
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B. Combinatorial evaluating in the electric region

We derive the eigenvalue in the electric region. Let us look at the perturbative part, in the limit
ϵ2 = 0; the deformed prepotential is given by7

F pert = πiτ
2

i=1

a2
i + 2πiϵ1

2
i, j=1

(ϖϵ1(ai j) −ϖϵ1(ai j − m − ϵ1)), (30)

and due to the convention of instanton computation, the variable a for SU(2) gauge theory is
represented by a1,a2 satisfying a1 = −a2 = a, while ai j = ai − a j and the complex gauge coupling
constant τ is related to the instanton expansion parameter by qin = exp(2πiτ); the definition of the
function ϖϵ1(x) can be found in Ref. 7. Only the first term a2 ln qin contributes to the eigenvalue.

Then, we come to the instanton part of the gauge theory, or the q correction part of the Lamé
eigenvalue. Following the line of instanton counting, we derive the prepotential Fℓ(a12,m, ϵ1, ϵ2), ℓ =
1,2,3, . . ., and set ϵ2 = 0; the eigenvalue B can be obtained via the Matone’s relation. Without
presenting the results of Zℓ, ℓ = 1,2,3 . . ., which are fairly lengthy, we only give the final results of
the prepotential. For example, the 1-instanton contribution is

F1qin =
2m(m − ϵ1)[m(m − ϵ1) − a2

12 + ϵ
2
1]

a2
12 − ϵ

2
1

qin. (31)

Writing in terms of n, ν, and q, it is

F1qin = ϵ
2
1
2n(n − 1)q
ν2 − 1

× [n(n − 1) − (ν2 − 1)]. (32)

In a similar way, we can compute all other coefficients Fℓ. A notable fact is that in the final results
of instanton counting, the parameter n always appears in the form n(n − 1), consistent with its
appearance in the Lamé equation. This is already visible in the numerator of counting formula in
Ref. 36 where terms involving m combine to m(m − ϵ1).

According to the Matone’s relation, the scalar condensation u is given by 2u = q ∂
∂q
F , and in

the presence of ϵ1 deformation, ũ and u are related by

ũ = u +
m(m − ϵ1)

24
(1 − 2E2(q)). (33)

Here, we have turned on the ϵ1 quantum correction to the classical relation (27); this is the only
consistent way to deform classical relation. Now we are in the position to get the eigenvalue B,
using identification (28),

B = − 4
ϵ2

1

q
∂

∂q
F − n(n − 1)

3
(1 − 2E2(q))

= −ν2 − n(n − 1)
3

(1 − 2E2(q)) − 8n(n − 1)q
ν2 − 1

[n(n − 1) − (ν2 − 1)]

− 8n(n − 1)q2

(ν2 − 1)3(ν2 − 4) × [n
3(n − 1)3(5ν2 + 7) − 12n2(n − 1)2(ν2 − 1)2

+ 6n(n − 1)(ν2 − 1)2(ν2 − 2) − 3(ν2 − 1)3(ν2 − 4)] + O(q3). (34)

The term −ν2 comes from the perturbative result q∂qF pert = ϵ2
1ν

2/4. Expansion (34) for B is valid
when

q ≪ 1, n ≫ 1, ν ≫ 1, nq
1
4 ≪ ν. (35)

Close to the electric singularity, we have the leading order behavior 8u ∼ m2, that is ν2 ∼ n(n − 1),
therefore B ∼ − 2

3 n(n − 1) + O(n(n − 1)q). An equivalent expansion was also obtained by Lang-
mann in Ref. 14 by a different method. We have shown the equivalence of his eigenvalue expansion
E and our expansion B, see Appendix B.

At this point, we should emphasise a subtle point, as explained in Ref. 42; the Nekrasov
partition function actually computes the instanton effects of U(2) gauge theory; even after setting
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a1 = −a2 = a due to the traceless condition of SU(2), it differs from SU(2) theory by an U(1)
factor. Therefore, the deformed prepotential F in this subsection should be understood as U(2)
prepotential subject to the traceless condition; it differs from the SU(2) prepotential by the value
1

12 m(m − ϵ1)(1 − E2). There is no such U(1) factor difference for pure gauge theories with gauge
groups U(2) and SU(2).

In order to compare (34) with the WKB results, we rewrite the asymptotic expansion in terms
of A(µ, k). It can be derived from the expansion of B, taking into account the relation between A and
B in (8), the relation between µ and ν in (12), and the relation between k and q in (25). We get

A = −µ2 − 1
2

n(n − 1)k2 − n(n − 1)( 1
16

k4 +
1

32
k6 +

41
2048

k8 +
59

4096
k10 + · · ·)

−n2(n − 1)2
µ2 [ 1

32
k4 − 1

4096
k8 − 1

4096
k10 + · · ·]

−n2(n − 1)2
µ4 [ 1

32
k4 − 1

64
k6 − (7 + 6n(n − 1)

4096
)k8 − (7 + 6n(n − 1)

8192
)k10 + · · ·]

+O( 1
µ6 ). (36)

Before doing the WKB check, we first give a simple consistent check using a limit of the Lamé
equation. The N = 2∗ theory has a decoupling limit. When the energy scale is very small, or the
mass is very large, the adjoint mass decouples and the theory flows to the pure gauge theory. The
limit is q → 0,m → ∞ with m2√q → −Λ2 or equivalently k → 0,m → ∞, with m2k2 → −16Λ2. In
this limit, every singularity in the moduli space of the N = 2∗ theory becomes a singularity of the
pure gauge theory. This can be clearly seen in (29). Writing in terms of the parameters of the differ-
ential equation, the limit is q → 0,n → ∞ with n(n − 1)√q → − h

4 or equivalently k → 0,n → ∞
with n(n − 1)k2 → −4h. Accordingly, in this limit, the Lamé equation reduces to the Mathieu equa-
tion, and the Lamé eigenvalue expansions (34) and (36) reduce to Mathieu eigenvalue expansion
(19), −B → λ − 1

3 n(n − 1),−A → λ − 2h.

V. EIGENVALUE FROM THE WKB ANALYSIS

We perform the WKB perturbation to confirm that the asymptotic expansions in (34) and (36)
are indeed eigenvalue solutions for the Lamé equation. The method is explained in Section III, for
some periodic potentials including the elliptic potential; the higher order WKB perturbations are
generated from the leading order by the action of differential operators.31 In this section, we do the
same thing for the Lamé equation, as have done for the Mathieu equation in Refs. 31–33.

Equation (4) is rewritten as

ϵ2

2
Φ
′′ − (ω + sn2κ)Φ = 0, (37)

where

ϵ2 =
2

n(n − 1)k2 , ω =
A

n(n − 1)k2 . (38)

Note that ϵ1 is contained in ϵ . Suppose ϵ ≪ 1, i.e., nq
1
4 ≫ 1, then ϵ is a small parameter for the

WKB expansion. We choose Eq. (4) to do the WKB analysis because there are readily available
integral formulae for the Jacobi elliptic functions. It is legal to choose Eq. (5) instead, as in Refs. 28
and 38 where the leading order expansion is performed. Expanding the function Φ as WKB series,

Φ(κ) = exp i
 κ

κ0

dκ′( p0(κ′)
ϵ
+ p1(κ′) + ϵp2(κ′) + ϵ2p3(κ′) + · · ·), (39)
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then substituting into the equation, pn can be determined recursively,

p0 = i
√

2
√
ω + sn2κ, p1 =

i
2
(ln(p0))′, p2 =

1
4p0

[3
2
( p
′
0

p0
)2 − p

′′
0

p0
],

p3 =
i
2
( p2

p0
)′, p4 =

i
2
( p3

p0
)′ − p2

2

2p0
, · · ·,

(40)

where the prime denotes ∂
∂κ

.
According to the Floquet theory, in order to obtain the dispersion relation A(µ), we have to

evaluate the contour integral

α pdκ, where α is the homology cycle of curve (26) relevant to

electric scalar VEV. Let us first carry out the integral for the leading order integrand

α p0dκ. The

integral can be computed using the amplitude, defined by ϕ = amκ, then we have

snκ = sin ϕ, dκ =
dϕ

1 − k2sin2ϕ

. (41)

The integral becomes


α

√
ω + sn2κdκ = 2

 K

0

√
ω + sn2κdκ = 2

 π
2

0


ω + sin2ϕ

1 − k2sin2ϕ
dϕ. (42)

In the electric region, A≫ κ2, therefore ω ≫ 1, we have the expansion
ω + sin2ϕ =

√
ω(1 + sin2ϕ

2ω
− sin4ϕ

8ω2 +
sin6ϕ

16ω3 + · · ·). (43)

All the integrals we need to do are of the form π
2

0

sin2nϕ

∆
dϕ, with ∆ =


1 − k2sin2ϕ, n = 0,1,2,3, . . . (44)

They are given in Chapter 2 of Ref. 39. After collecting all terms together, we get
α

√
ω + sn2κdκ = 2K

√
ω +

K − E
k2 ω−1/2 − (2 + k2)K − 2(1 + k2)E

12k4 ω−3/2

+
(8 + 3k2 + 4k4)K − (8 + 7k2 + 8k4)E

120k6 ω−5/2 + · · ·, (45)

where K and E are the complete elliptic integrals of the first and second kind, respectively.
For higher order contour integrals, similar to the case of Mathieu equation, they can be obtained

from higher order differential operators acting on

α p0dκ,

α

pndκ = Dn(ω,∂ω, k)

α

p0dκ. (46)

The odd order integrals actually vanish because the integrand are total derivatives,
α

p2l+1dκ = 0, l = 0,1,2 . . . (47)

Hence, we can set all odd differential operators D2l+1(ω,∂ω, k) = 0. While for the even order inte-
grals, using the trick of Ref. 31, we get the operator D2l(ω,∂ω, k). For example, we get D2(ω,∂ω, k)
from 

α

p2dκ = − 1
12

[(1 + 2ω + 2ωk2 + 3ω2k2)∂2
ω

+ (1 + k2 + 3ωk2)∂ω − 3
4

k2]

α

p0dκ. (48)
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And D4(ω,∂ω, k) is given by
α

p4dκ =
1

64
{ 2

135
[21 + (84 + 359k2)ω + (84 + 1394k2 + 359k4)ω2

+ k2(1077 + 1352k2)ω3 + 1014k4ω4]∂4
ω

+
4

27
[(18 + 73k2) + (36 + 341k2 + 146k4)ω + k2(432 + 597k2)ω2 + 597k4ω3]∂3

ω

+
1
18

[(60 + 191k2 + 225k4) + k2(667k + 1162k2)ω + 1743k4ω2]∂2
ω

+
1

18
[k2(8 + 63k2) + 189k4ω]∂ω − k4

8
}

α

p0dκ. (49)

In Appendix C, we give a systematic method to obtain higher order differential operators.
The contour integral along the α circle computes the phase shift of the function Φ(κ) in (10);

we have

2K µ =

α

dκp(κ) = (1 +
∞
n=1

ϵnDn(ω,∂ω, k))

α

dκ
p0(κ)
ϵ

. (50)

Therefore, the Floquet exponent is given by

µ =
1

2K


α

dκp(κ). (51)

The remaining work is straightforward but tedious: expand the p0 integral (45) as power se-
ries of ω and k, use the differential operators D2l(ω,∂ω, k) to generate higher order integrals for
p2,p4, . . ., hence we get the series expansion of µ = µ(ω, k). Then, inverse the series µ(ω, k) to get a
series ω = ω(µ, k); we finally get the series expansion for the eigenvalue A using A = n(n − 1)k2ω.
We have checked it indeed gives expansion (36).

VI. EXTENSION TO OTHER ASYMPTOTIC EXPANSION REGIONS

A. Magnetic expansion

The last task we have to do is extending the asymptotic expansion in the electric region to
the magnetic and dyonic regions, as what we have done for the Mathieu equation in Ref. 33. We
stress that the asymptotic expansion in the magnetic region has been worked out in the literature,
using purely mathematical technique. The explicit formula is given in the book by Müller-Kirsten,12

which cites results from earlier original paper of Ince and paper of Müller. It is also presented in
Chapter 29 of Ref. 11. It expands as

A = −i2κµ − 1
23 (1 + k2)(4µ2 − 1) − i

25κ
[(1 + k2)2(4µ3 − 3µ) − 4k2(4µ3 − 5µ)]

+
1

210κ2 (1 + k2)(1 − k2)2(80µ4 − 136µ2 + 9) + · · ·. (52)

The expansion is valid for nk ≫ 1,nk ≫ µ. Note k ∼ q
1
4 . We remind the readers about the notation

difference; the Floquet exponent in Ref. 12 is denoted by q, and its relation to our µ is q = 2iµ.
Also there the eigenvalue is denoted by Λ, related to ours by Λ = −A. In the limit n → ∞, k → 0
while keeping κ2 = n(n − 1)k2 → −4h fixed, eigenvalue (52) reduces to corresponding Mathieu
eigenvalue (23), −A → λ − 2h.

Now, let us look at how to extend Lamé eigenvalue (36) in the electric region to the magnetic
region. The tool is the differential operators obtained in Sec. V, and apply them to the β-contour

integral of p0. In the magnetic region located near A ∼ 0, where ω ≪ 1, we can expand

ω + sin2ϕ

as 
ω + sin2ϕ = sin ϕ +

ω

2
1

sin ϕ
− ω

2

8
1

sin3ϕ
+
ω3

16
1

sin5ϕ
+ · · ·. (53)



072302-14 Wei He J. Math. Phys. 56, 072302 (2015)

All the integrals now we need to do are
β

1
∆sin2n−1ϕ

dϕ = 2
 ϕ0

π
2

1
∆sin2n−1ϕ

dϕ, n = 0,1,2,3, . . . , (54)

with sin ϕ0 =
1
k

; note that both ϕ0 and k are complex quantities. They are also given in Chapter 2 of
Ref. 39. The first few orders of the integral


β p0dκ give


β

√
ω + sn2κdκ = iπ(1

2
ω − 1 + k2

16
ω2 +

3k4 + 2k2 + 3
128

ω3 + · · ·). (55)

Using the differential operators obtained in Sec. V, we can generate integrals

β pndκ for n > 2.

For the Floquet exponent in the magnetic region, our claim is

µ =
1
iπ


β

dκp(κ). (56)

There is a point a bit puzzling. When we go through the circle β, the coordinate κ shifts 2iK ′ =
2iK(k ′); according to the Floquet theory, the exponent is defined by the relation 2iK(k ′)µ = 

β pdκ.
Therefore, the phase


β pdκ should be divided by 2iK ′ to get the exponent µ. But we find the correct

number to divide by is iπ, in order to reproduce known expansion (52).
The remaining work is the same as that in Sec. V: use the differential operators D2l(ω,∂ω, k)

to generate higher order integrals for p2,p4, . . ., so we get the series expansion of µ = µ(ω, k).
Then, inverse the series µ(ω, k) to get a series ω = ω(µ, k). Finally, we get the series expansion
for the eigenvalue A using A = n(n − 1)k2ω = κ2ω. With the algorithm in Appendix C, we have
reproduced expansion (52) up to higher order.

From the magnetic expansion A(µ, k) given above, use relation (8) and change parameters
µ, k to ν,q; we get the magnetic expansion of B(ν,q). Of course, B(ν,q) is not economic for the
magnetic expansion.

B. Dyonic expansion

The eigenvalue at the dyonic point is mirror to the one at the magnetic point. This is most
obvious for B(ν,q) ∼ ũ. From Fig. 3, we know that the magnetic point ũ = e2m2/8 is mapped to the
dyonic point ũ = e3m2/8 by e2 → e3, or q

1
2 → −q

1
2 . Also from the story of Mathieu equation,32 we

know that the exponent of magnetic region is mapped to the exponent of dyonic region by ν → iν.
Therefore by the mirror map q

1
2 → −q

1
2 , ν → iν, we get the dyonic expansion Bd from its magnetic

expansion Bm.
It is also interesting to look at how the dyonic expansion of A can be obtained from its magnetic

expansion. For this purpose, we need to know how the other parameters are changed by the map.
It is simple to see that under q

1
2 → −q

1
2 , we have e2 and e3 interchanged while e1 unchanged.

Furthermore, since

k = 4q
1
4

∞
n=1

( 1 + qn

1 + qn− 1
2

)4, k ′ =
∞
n=1

(1 − qn− 1
2

1 + qn− 1
2

)4, (57)

the map leads to a simple change for k and k ′,

k → i
k
k ′
, k ′ → 1

k ′
. (58)

For the magnetic expansion, A and B satisfy

Bm = (e1 − e2)Am(µ, k) − e2n(n − 1)
= (e1 − e2)Am( ν

√
e1 − e2

, k(q)) − e2n(n − 1). (59)
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The mirror map changes the relation to

Bd = (e1 − e3)Am( iν
√

e1 − e3
, i

k
k ′
) − e3n(n − 1). (60)

The subscripts m,d are used to emphasize that A,B should be understood as asymptotic se-
ries in magnetic and dyonic regions. Then substituting this into the dyonic relation Bd = (e1 −
e2)Ad(µ, k) − e2n(n − 1), we get

Ad(µ, k) = e1 − e3

e1 − e2
Am( iν
√

e1 − e3
, i

k
k ′
) − e3 − e2

e1 − e2
n(n − 1)

=
e1 − e3

e1 − e2
A(iµ


e1 − e2

e1 − e3
, i

k
k ′
) − e3 − e2

e1 − e2
n(n − 1), (61)

where the function A is magnetic expansion (52) given in Subsection VI A. Taking into account the
relation of k2 and ei in (A5), we obtain

Ad = k ′2A( iµ
k ′
,
ik
k ′
) − k2n(n − 1). (62)

The first few terms expand as

Ad = −κ2 + i2κµ +
1
23 (1 − 2k2)(4µ2

k ′2
+ 1)

+
i

25κ
[ (1 − 2k2)2

k ′
(4µ3

k ′3
+

3µ
k ′

) + 4k2k ′(4µ3

k ′3
+

5µ
k ′

)] + · · ·. (63)

In the decoupling limit, Ad reduces to the corresponding Mathieu eigenvalue (24), −Ad → λ − 2h.
We can perform the WKB analysis to confirm the above argument. Set A = −κ2 + A, i.e., ω =

−1 + ω, then Lamé equation (37) becomes

ϵ2

2
Φ
′′ − (ω − cn2κ)Φ = 0. (64)

The WKB analysis for this equation is very similar as that in the magnetic case, now with the
leading order WKB integrand p0 = i

√
2
√
ω − cn2κ, and the integral contour is γ = α + β. Using the

amplitude variable, the integration is

(i√2)−1

γ

p0dκ = 2
 K+iK ′

0

√
ω − cn2κdκ = 2

 ϕ0

0


ω − cos2ϕ

1 − k2sin2ϕ
dϕ. (65)

In the dyonic region, the eigenvalue is expanded for κ ≫ 1, κ ≫ µ, i.e., ω ≪ 1; therefore, using
ω − cos2ϕ = i(cos ϕ − ω

2
1

cos ϕ
− ω2

8
1

cos3ϕ
− ω3

16
1

cos5ϕ
+ · · ·), (66)

the integrals we need to do are
γ

1
∆cos2n−1ϕ

dϕ = 2
 ϕ0

0

1
∆cos2n−1ϕ

dϕ, n = 0,1,2,3, . . . . (67)

The first few of them give
γ

√
ω − cn2κdκ = −π( 1

2k ′
ω + 1 − 2k2

16k ′3
ω2 +

8k4 − 8k2 + 3
128k ′5

ω3 + · · ·). (68)

For the higher order WKB integrals, they are given by the differential operators Dn(ω,∂ω, k)
acting on the leading order integral. As in Subsection VI A, for odd order integrals,


γ p2l+1dκ = 0;

therefore, we set D2l+1(ω,∂ω, k) = 0. For even order integrals, we get nontrivial D2l(ω,∂ω, k), for
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example, D2(ω,∂ω, k) is obtained from
γ

p2dκ = − 1
12

[(−1 + k2 + 2ω − 4k2ω + 3k2ω2)∂2
ω

+(1 − 2k2 + 3k2ω)∂ω − 3
4

k2]

γ

p0dκ. (69)

Appendix C gives the algorithm to obtain all D2l(ω,∂ω, k), in a simpler way they can also be
obtained from D2l(ω,∂ω, k) using property (72) explained below.

We find that for the dyonic expansion, the Floquet exponent is given by

µ =
k ′

π


γ

dκp(κ). (70)

The factor k ′/π also does not follow the conventional definition of the Floquet exponent; at the
moment we do not have a satisfying explanation for this, but the relation is indeed satisfied. We
check this relation against (62) up to high order.

Some interesting phenomena are observed and deserve mentioned. Look at the leading order
contour integrals for the magnetic and dyonic expansions, formulae (55) and (68); they are related
in a simple way,

k → i
k
k ′
, ω → −ω leads to

1
ϵ


β

√
ω + sn2κdκ → −1

ϵ


γ

√
ω − cn2κdκ. (71)

Note that ϵ ∼ κ−1 ∼ k−1 also changes as ϵ → −ik ′ϵ . Then, look at the differential operators, formulae
(48) and (69); they are also related in a simple way,

k → i
k
k ′
, ω → −ω leads to ϵnDn(ω,∂ω, k) → ϵnDn(ω,∂ω, k), n = 2. (72)

The relation continues to hold for larger n. Combining the two facts, under the mirror map, we have
β

dκp(κ) → −

γ

dκp(κ), i.e., µ → i
µ

k ′
. (73)

This is consistent with (62) where the Floquet exponent appears as iµ/k ′.

VII. CONCLUSION

Combinatorics is a very interesting and fruitful subject of mathematics; its relation to integrable
models is not new.40 In recent years, some progresses continue to reveal its fascinating connection
to quantum field theory, integrable model, and string/M theory.7,23,41,42 Based on a relation between
N = 2 gauge theory and quantum integrable system,7 we provide a quantum field theory approach
to spectral problem of the Mathieu equation and the Lamé equation. The approach is combinatorial,
based on the instanton counting method.22 We use the electro-magnetic duality in gauge theory to
derive all three asymptotic expansions of eigenvalue.

Our main results are about the gauge theory explanation of asymptotic expansion formulae
(34), (52), and (62) for the eigenvalue of the Lamé equation; the discussion relies on the Floquet
theory of periodic differential equation. While expansions (34) and (52) were obtained by some
other independent methods, to our knowledge, expansion (62) is a new result. Langmann’s paper
Ref. 14 gives an expansion equivalent to (34); we have shown the equivalence in Appendix B. We
perform the WKB analysis in Sections V and VI, given all three expansions. Also in the decoupling
limit, the expansions correctly reduce to expansions of the Mathieu eigenvalue.

In this paper, we do not discuss the combinatorial connection to the eigenfunctions: the Math-
ieu function and Lamé function/polynomial. There are examples for some integrable models; a full
combinatorial approach to the eigenvalue and eigenstate exists. The Calogero-Sutherland model
is a famous example, see a recent discussion in Ref. 43, and relevant references therein. In fact,
the Calogero-Sutherland model is the trigonometric limit of the elliptic Calogero-Moser model.
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It is argued that in the context of Alday-Gaiotto-Tachikawa(AGT) relation,42 the instanton parti-
tion function of gauge theory with full surface operator, in the semiclassical limit ϵ2 → 0, gives
the eigenfunction of the corresponding quantum integrable model.27,28 This maybe helpful for an
explicit combinatorial construction of the eigenfunction.

While the basic tools of the paper, such as the Seiberg-Witten theory and instanton calculation,
have been extensively studied by mathematical physicists and have a solid mathematical foundation,
some points of our results lack rigorous mathematical proof. This includes the precise meaning
of the potential F for the differential equations, the relation between the instanton method and
Langmann’s method. Another unsatisfying point is about the puzzling factors (iπ)−1 and k ′(π)−1 in
relations (56) and (70). In our paper, Ref. 47 we use a different method to study the asymptotic
expansions for the eigenvalue of Schrödinger operator with elliptic potentials, including a new
example of the ellipsoidal wave equation, find the same factors are needed to define the Floquet
exponent in order to produce asymptotic expansions consistent with known results. These results
suggest that the Floquet theory for doubly periodic elliptic potentials requires a new treatment
unrecorded in conventional Floquet theory. Therefore, we do not present a mathematically rigorous
treatment of the Mathieu and the Lamé equations in this single paper, but just to show how the
quantum field theories are related to these classical differential equations and can be used to obtain
some consistent results of them. We hope to clarify some of the points in the future.
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APPENDIX A: MODULAR FUNCTIONS AND THETA CONSTANTS

We collect some basic facts about modular functions we have used in this paper. Our main
references are Refs. 44–46.

The complete elliptic integrals of the first kind is defined by

K =
 π

2

0

dϕ
1 − k2sin2ϕ

=
π

2
F(1

2
,
1
2
,1; k2), (A1)

where F(a,b,c; x) is the hypergeometric function. The complete elliptic integrals of the second kind
is defined by

E =
 π

2

0
dϕ


1 − k2sin2ϕ =
π

2
F(−1

2
,
1
2
,1; k2). (A2)

Then, we define the elliptic nome q = e2πiτ through τ = iK ′
K

, where K ′ = K(k ′). The theta
constant θi, which are the theta function θi(z; q) at z = 0, are given by

θ1(q) = 0, θ2(q) = 2q
1
8

∞
n=0

q
n(n+1)

2 ,

θ3(q) = 1 + 2
∞
n=1

q
n2
2 , θ4(q) = 1 + 2

∞
n=1

(−1)nq
n2
2 .

(A3)

They satisfy the relation θ4
3 = θ

4
2 + θ

4
4.

From the theta constant, we define

e1 =
2
3
θ4

3 −
1
3
θ4

2, e2 = −
1
3
(θ4

3 + θ
4
2), e3 = −

1
3
θ4

3 +
2
3
θ4

2. (A4)
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ei satisfy e1 + e2 + e3 = 0; they are related to the Weierstrass function, and the roots zi of ℘
′2(z) =

4℘3(z) − g2℘(z) − g3 = 0 satisfy ℘(zi) = ei. We have the following relation between k and q:

k2 =
e3 − e2

e1 − e2
=
θ4

2

θ4
3

, (A5)

which is equivalent to the relation in (25).
The second Eisenstein series is represented by

E2(q) = 1 − 24
∞
n=1

nqn

1 − qn
= 1 − 24

∞
n=1

qn

(1 − qn)2
= 1 − 24q − 72q2 − 96q3 − 168q4 − 144q5 − · · ·. (A6)

The equality of the two summation would be obvious from the following:

∞
n=1

nqn

1 − qn
=

∞
n=1

∞
m=0

nqn(m+1) =
∞
n=1

∞
m=1

nqnm,

∞
n=1

qn

(1 − qn)2 =
∞
n=1

( qn

(1 − qn)
1

(1 − qn) ) =
∞
n=1

(
∞
r=1

qrn)(
∞
s=0

qsn)

=

∞
n=1

(
∞
r=1

∞
s=0

q(r+s)n) =
∞
n=1

∞
t=1

tqtn. (A7)

The last step uses the fact for a fixed t = r + s; there are exactly t pairs of (r > 1, s > 0) satisfing it.
E2 is related to the Dedekind Eta function by d

dτ
ln η(τ) = iπ

12 E2(τ).

APPENDIX B: COMPARE TO LANGMANN’S EXPANSION

E. Langmann developed an algorithm to derive the eigenvalue and eigenfunction of elliptic
Calogero-Moser(-Sutherland) model for general particle number.14,15 In his paper, Ref. 14, a se-
ries expansion for the 2-body eigenvalue when q ≪ 1 is given(formulae 26(a)-26(d)). Although
his method is different from the instanton and WKB methods we present in this paper, we will
show that his expansion is equivalent to our expansion (34). Langmann considered the 2-particle
Shrödinger equation,

[−( ∂
2

∂x2
1

+
∂2

∂x2
2

) + 2λ(λ − 1)V (x1 − x2)]ψ(x⃗) = Eψ(x⃗), (B1)

with potential V (x) = −℘(x) + c0,

c0 =
1

12
− 2

∞
m=1

1
(qm/2 − q−m/2)2 =

1
12

E2(q)

=
1

12
− 2q − 6q2 − 8q3 − 14q4 + · · ·. (B2)

After changing variables, equation becomes the Lamé equation (5) describing the relative motion
of particles. The eigenvalue E is explicitly given as an expansion in q: E = E0 + E1q + E2q2 + E3q3

+ · · · . Especially notice that, in the notation of paper, Ref. 14, the relation is

2E0 = P2 + (n1 + n2)2, (B3)

where the term (n1 + n2)2 is the kinetic energy of center-of-mass motion.
The relation between the eigenvalues E and our B is

B = −2E + (n1 + n2)2 + 4λ(λ − 1)c0, (B4)
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provided we identify parameters as P = ν, λ = n. Then, using relation (B4) to Langmann’s expan-
sion of E, we can rewrite our expansion (34) in a slightly different form

B = −ν2 +
n(n − 1)

3
E2(q) − 8n2(n − 1)2q

ν2 − 1

− 8n2(n − 1)2q2

(ν2 − 1)3(ν2 − 4) × [n
2(n − 1)2(5ν2 + 7) − 12n(n − 1)(ν2 − 1)2

+6(ν2 − 1)2(ν2 − 2)] + O(q3). (B5)

Compare (34) and (B5), the difference between them is that we have collected some terms com-
ing from instanton contribution in (34) which summed into 1

3 n(n − 1)(1 − E2), together with
− 1

3 n(n − 1)(1 − 2E2(q)), which gives the term 1
3 n(n − 1)E2(q) in (B5). This fact can be checked

to higher order by calculating higher order instanton effects in gauge theory. Note that the value
1
3 n(n − 1)(1 − E2) exactly corresponds to the extra U(1) term contained in the prepotential of U(2)
gauge theory, see Subsection IV B.

APPENDIX C: A METHOD TO OBTAIN THE DIFFERENTIAL OPERATORS

When we derive the differential operators Dn(ω,∂ω, k), we need to separate from the integrand
some terms of total derivative. By discarding these total derivative terms from the contour integral,
we can simplify the differential operators as far as possible. It is necessary to find a systematic
method to deal with higher order WKB perturbations to make the program complete. After some
trial and error, we find a workable method.

The method is carried out as following.
In the first step, we solve the WKB relation for pn(κ), explicitly carry out the derivatives, and

the final expressions are of the form

p2l+1(κ) = snκcnκdnκ
(ω + sn2κ)3l+1 × (polynomial of sn2κ), l = 0,1,2, . . . , (C1)

p2l(κ) = 1

(ω + sn2κ)3l− 1
2
× (polynomial of sn2κ), l = 0,1,2, . . . . (C2)

The p2l+1(κ) can be written as a total derivative term, so its contour integral is zero. p1 ∼
∂κ(ln p0) is special. The polynomials in the numerator of p2l+1 for l > 1 are of the form c∗sn6l−2κ +
c∗sn6l−4κ + · · · + c∗sn2κ + c∗, where we use c∗ to represent all coefficients whose explicit form is not
important here; they are some polynomials of k2,ω. Keep in mind, in the following formulae, all c∗
(and later a∗) could be different from each other. Set ω + sn2κ = t, then p2l+1 can be written as

p2l+1(κ) = (snκcnκdnκ)(c∗t−(3l+1) + c∗t−3l + c∗t−(3l−1) + · · · c∗t−3 + c∗t−2). (C3)

Every term in (C3) is a total derivative given by

c∗∂κ(ω + sn2κ)−l′, l ′ = 1,2, . . . ,3l; l > 1, (C4)

with proper choice of the coefficient. Therefore,


dκp2l+1(κ) = 0 as expected.
So we only need to deal with p2l for l > 0. The polynomials in the numerator of p2l are of the

form c∗sn6lκ + c∗sn6l−2κ + · · · + c∗sn2κ + c∗. Then p2l can be expanded as a polynomial of t, let us
denote it as p(I )2l ,

p(I )
2l (κ) = c∗t−(3l−

1
2 ) + c∗t−(3l−

3
2 ) + c∗t−(3l−

5
2 ) + · · · c∗t−

1
2 + c∗t

1
2 . (C5)

It is generated by a differential operator acting on p0 ∼
√

t,
dκp(I )2l (κ) = (c∗∂3l

ω + c∗∂3l−1
ω + c∗∂3l−2

ω + · · · c∗∂ω + c∗)


dκp0(κ). (C6)
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The second step is to reduce the order of the differential operator for p(I )
2l . The method is to find

proper total derivative terms like ∂κ(∗ ∗ ∗) that can substitute terms of c∗t−(3l−
1
2 ) + c∗t−(3l−

3
2 ) + · · · +

c∗t−(2l+
1
2 ) in (C5), then abandon them in the contour integral


p(I )2l dκ. Therefore, the lowest order

of polynomial integrand (C5) is increased and the corresponding differential operator for p(I )2l is also
simplified. We find the total derivative terms are generated by

c∗∂2
κ(ω + sn2κ)−(3l− 3

2−l
′), l ′ = 1,2, . . . ,2l − 1. (C7)

A nice property of this term is that its final expression can be expressed in terms of sn2κ, or in terms
of t, as

c∗t−(3l+
1
2−l
′) + c∗t−(3l−

1
2−l
′) + c∗t−(3l−

3
2−l
′) + c∗t−(3l−

5
2−l
′). (C8)

Now we can discard some terms in (C5) using (C7). For l ′ = 1, choosing proper coefficient in
(C7), we can make the coefficient of the first term in (C8) equal to the coefficient of the first term in
(C5); hence,

p(I )2l (κ) =

c∗∂κ *

,

snκcnκdnκ

(ω + sn2κ)3l− 3
2

+
-
−
(
c∗t−(3l−

3
2 ) + c∗t−(3l−

5
2 ) + c∗t−(3l−

7
2 )
)

+

(
c∗t−(3l−

3
2 ) + c∗t−(3l−

5
2 ) + · · · c∗t−

1
2 + c∗t

1
2

)
. (C9)

Now the total derivative term can be abandoned, and the order of p(I )2l is increased to t−(3l−
3
2 ),

meanwhile the coefficients of other three terms are changed. Repeat this process for l ′ = 2, we can
increase the order of p(I )

2l to t−(3l−
5
2 ), an so on. For every l ′ ∈ {1,2, . . . , l}, the process of removing

(C7) is carried out once. After the process, we get the p(II)
2l ,

p(II)
2l (κ) = c∗t−(2l−

1
2 ) + c∗t−(2l−

3
2 ) + c∗t−(2l−

5
2 ) + · · · c∗t−

1
2 + c∗t

1
2 , (C10)

and the associated differential operator,
dκp(II)

2l (κ) = (c∗∂2l
ω + c∗∂2l−1

ω + c∗∂2l−2
ω + · · · c∗∂ω + c∗)


dκp0(κ). (C11)

The third step is to minimize the differential operator. After carrying out the process for
l ′ = 1,2, . . . , l, we get p(II)2l and the corresponding differential operator of the form in (C11). Re-
member that the coefficients c∗ in (C11) are polynomials of k2,ω; it turns out that these coefficients
can be further simplified. The reason is the following: we assume the differential operators for the
Mathieu equation, conjectured in Ref. 33; take the simplest form we can get through the simplifi-
cation process. We call these differential operators minimal. The differential operators of the Lamé
equation, if they are minimal, should reduce to the minimal differential operators of the Mathieu
equation in the limit k → 0,ω → (w − 1)/2. However, we find the differential operator obtained
after performing the second step for l ′ = 1,2, . . . , l is not minimal, some redundant terms can be
further discarded. We should continue the process for l ′ = l + 1, l + 2, . . . ,2l − 1 to remove total
derivative terms of (C7). For every l ′ ∈ {l + 1, l + 2, . . . ,2l − 1}, the process of removing (C7) may
be repeated for a few times, depending on l. The simplification does not further decrease the order
of the differential operator in (C11), but simplifies its coefficients to their minimal form.

Some details about this step would be helpful. Unlike the previous step where the whole coef-
ficient c∗ is subtracted, the new issue here is that only some terms in the coefficients c∗ should
be subtracted, and we have to determine which part. The key point here is that the criterion of
“minimal” comes from results of the Mathieu equation; so in order to get a clue, in this step, we
need to track the limit k → 0,ω → (w − 1)/2 for the formulae we have obtained and compare them
to the results of the Mathieu equation. In this limit, the p(II)

2l obtained from the second step becomes

lim−−→ p(II)2l = (· · · + a∗w l−4 + a∗w l−2 + a∗w l)t̂−(2l− 1
2 )

+(· · · + a∗w l−5 + a∗w l−3 + a∗w l−1)t̂−(2l− 3
2 ) + · · · + a∗w t̂−(l+

1
2 ) + a∗t̂−(l−

1
2 ), (C12)
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with a∗ some numerical coefficients, the powers of w are non-negative, and t̂ ∼
√
w − cos 2κ is the

limit of t. From the results of the Mathieu equation,33 we know that the minimal form of the expres-
sion on the right hand side should be a∗w l t̂−(2l−

1
2 ) + a∗w l−1t̂−(2l−

3
2 ) + · · · + a∗w t̂−(l+

1
2 ) + a∗t̂−(l−

1
2 );

this indicates all other terms can be represented by total derivative terms and should be subtracted. It
turns out that we should use formula (C7) with l ′ = l + 1, l + 2, . . . ,2l − 1. For example, in order to
get rid of the term a∗w l−2t̂−(2l−

1
2 ) in (C12), we should subtract a term from p(II)2l by

p(II)2l − a∗(2ω + 1)l−2∂2
κ(ω + sn2κ)−(3l− 3

2−(l+1)), (C13)

and the coefficient can be determined by comparing the coefficients of w l−2t̂−(2l−
1
2 ) in (C12) and

in
lim−−→ (2ω + 1)l−2∂2

κ(ω + sn2κ)−(3l− 3
2−(l+1)). Similarly, we can get rid of w l−2st̂−(2l−

1
2 ), with s =

2,3, . . . [ l2 ], by subtracting a term made of (2ω + 1)l−2s∂2
κ(ω + sn2κ)−(3l− 3

2−(l+1)). Formula (C7) with
l ′ = l + 1 is repeatedly used for l

2 (for even l) or l−1
2 (for odd l) times. In the same way, we can get

rid of the remaining unnecessary terms in the second non-minimal coefficient, a∗w l−3t̂−(2l−
3
2 ),a∗w l−5

t̂−(2l−
3
2 ), . . ., etc.; formula (C7) with l ′ = l + 2 is repeatedly used for l

2 − 1 (for even l) or l−1
2 (for

odd l) times. Continuing the process, we can minimize all coefficients in (C12); in general, the
coefficient of the term of order t̂−(2l−

1
2−r ) with 0 6 r 6 l − 2 is minimized by repeatedly using (C7)

with l ′ = l + 1 + r for l−r
2 (for even l − r) or l−r−1

2 (for odd l − r) times.
At last, we get the minimal polynomial p(III)2l and the associated minimal differential operator,

dκp(III)
2l (κ) = (c∗∂2l

ω + c∗∂2l−1
ω + c∗∂2l−2

ω + · · · c∗∂ω + c∗)


dκp0(κ), (C14)

now with c∗, still polynomials of k2,ω, be the minimal coefficients.
Using this method, we successfully derive differential operators for p2l of the Lamé equation,

for the first few l. In the limit k → 0,ω → (ω − 1)/2, these differential operators correctly reduce to
the minimal differential operators of the Mathieu equation derived in Ref. 33.

Apparently, the minimal differential operators of the Lamé equation in form (64) can be ob-
tained in the same way, with the total derivative terms for p2l generated by

c∗∂2
κ(ω − cn2κ)−(3l− 3

2−l
′), l ′ = 1,2, . . . ,2l − 1. (C15)

The relation between Dn(ω,∂ω, k) and Dn(ω,∂ω, k) in (72) holds for n > 2. And the differential
operators of the Mathieu equation can be obtained following the same steps, with the total derivative
terms for p2l generated by

c∗∂2
z (w − cos 2z)−(3l− 3

2−l
′), l ′ = 1,2, . . . ,2l − 1, (C16)

with the notation used in Ref. 33. This also gives an explanation for the conjectural form of
Dn(w,∂w) in that paper (in this paper denoted by Dn(u, ∂u)).
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