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Abstract Here,we demonstrate that entangled states can bewritten as separable states
[ρ1...N =∑i piρ

(1)
i ⊗· · ·⊗ρ

(N )
i , 1 to N refering to the parts and pi to the nonnegative

probabilities], although for some of the coefficients, pi assume negative values, while
others are larger than 1 such to keep their sum equal to 1. We recognize this feature
as a signature of non-separability or pseudoseparability. We systematize that kind of
decomposition through an algorithm for the explicit separation of density matrices,
and we apply it to illustrate the separation of some particular bipartite and tripartite
states, including a multipartite

⊗N2 one-parameter Werner-like state. We also work
out an arbitrary bipartite 2×2 state and show that in the particular case where this state
reduces to an X-type density matrix, our algorithm leads to the separability conditions
on the parameters, confirmed by the Peres-Horodecki partial transposition recipe. We
finally propose a measure for quantifying the degree of entanglement based on these
peculiar negative (and greater than one) probabilities.
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1 Introduction

The entanglement phenomenon has undertaken joint efforts from experimental and
theoretical research since the proposition of Bell’s theory in the mid-1960 [1]. With
the goal to demonstrate the violation of Bell’s inequalities, a major development in
experimental techniques has been carried out to produce entangled photons, from the
cascade atomic process [2] to the parametric down-conversion processes [3]. Massive
entangled particles have also been produced through radiation–matter interaction in
cavity QED [4] and trapped ions [5–7]. In the latter case, a controlled entanglement
of 14 quantum bits has been recently generated enabling the implementation of the
largest quantum register to date [8]. The violation of a form of Bell’s inequality has
also been verified with massive entangled particles within an ion trap [9]. Parallel to
the experimental achievements, theoretical physics has been struggling with recently
advanced striking features of entanglement, such as quantumcorrelations sudden death
[10,11], quantum discord [12], and the derivation of separability criterion for density
matrices [13,14].

A significant expansion of scope in the debate on quantum non-locality comes with
the issue of separability of mixed density matrices, which is the focus of this work.
Beyond the boundaries of testing non-locality of entangled pure states—guideline that
defined the research on non-locality of the decade from 1970 to the 1990s— the intro-
duction of themixed densitymatrices brings the notion thatwhile separable systems do
satisfy Bell’s inequality, the converse is not necessarily true [15–19]. Consequently,
Bell’s inequalities are not sufficiently sensitive tools for detecting inseparability of
mixed states.

A simple necessary condition for separability of bipartite systems having dimen-
sions 2 × 2 and 2 × 3, based on the partial transposition condition, was presented in
Ref. [13]. Soon after it has been shown in Ref. [14] that for the dimensions considered,
the necessary partial transposition condition is also a sufficient one. For higher dimen-
sions, the necessary and sufficient condition for separability are derived from positive
maps instead of the simple partial transposition technique, as also demonstrated in
Ref. [14]. After all, the separability is an NP-hard problem [20–22]. In the wake of the
criteria presented in Refs. [13,14], a number of alternative partial criteria for separa-
bility have surfaced which apply only for particular families of states [23–26]. More
recently, separability criteria for different classes of multiparticle entanglement has
been provided [27,28], which again are both necessary and sufficient for particular
families of states, as for example N-qubit GHZ states [27]. We finally note that meth-
ods to characterize the set of separable states with arbitrary precision, the well-known
complete criteria for separability detection, have also been formulated [29–32].

Taking a different approach to the separability problem, we consider the following
point: A separable quantum state of a multipartite system can be written in the form
ρ1...N =∑i piρ

(1)
i ⊗· · ·⊗ρ

(N )
i (1 to N standing for the parts), where the coefficients

pi are nonnegative and
∑

i pi = 1, and therefore, they can be assumed being prob-

abilities, once Trkρ
(k)
i = 1 and the marginal state for each subsystem k = 1, . . . , N

is ρk =∑i piρ
(k)
i . Here, we demonstrate that even non-separable or entangled states

can be written in that very same form, although some of the pi are forcefully negative
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while others are larger than 1. This feature we call pseudoseparability, and it consti-
tutes a signature of a non-separable system. The negative coefficients pi were called
negative probabilities by Richard Feynman [33]. Regarding this pseudoseparability,
we show —for a number of density matrices—how to realize it formally through an
algorithm that consists of a sequence of procedures. The algorithm is based on the use
of sets of selected state vectors, and the balancing of their expansion coefficients is
the central ingredient for the implementation of a genuine probability or a pseudosep-
arability, so as to eliminate non-entangled states with negative probabilities. From
the derivation of the negative probabilities, we propose a measure for quantifying the
degree of entanglement of arbitrary multipartite states.

We must observe that our algorithm, although based on the density matrix for-
malism, presents some conceptual overlap with the discretized version of the Wigner
function [35–37] and the quasiprobability-based criterion for classicality [38,39]. One
could also recognize some overlap with Ref. [40], where the concept of negative prob-
ability is analyzed in the context of the micromaser which-path detector, and also with
Ref. [41],where negative probabilities are used as awitness of non-classicality. Finally,
we mention the cross-norm criterion for entanglement [42–44], whose idea is to write
a density matrix ρ in a pseudoseparate decomposition ρ =∑i piρ

(1)
i ⊗· · ·⊗ρ

(N )
i and

then define the cross-norm of ρ to be the smallest possible value of
∑

i pi in any such
decomposition of ρ. It turns out that this norm equals 1 if and only if ρ is separable
(if and only if 0 ≤ pi ≤ 1 for all i).

For the purpose of clarity, we start by presenting only a brief description of our
algorithm, and then, to better illustrate its steps, we apply it to the case (1) of the

single-parameter two-qubit
(⊗22

)
Werner state, because it allows a simple analyti-

cal manipulation. We next focus our attention on particular (2) bipartite 2×3 state, (3)

tripartite 2 × 2 × 2 state, and finally a (4)Werner-like multiqubit
(⊗N2

)
state, con-

fronting, again, our method with the partial transposition separability criterion. (The
symbol

⊗N2 stands for a tensorial product ρ(1)
i ⊗· · ·⊗ρ

(N )
i of N 2×2 parts.) There-

after, we handle the case (5) of an arbitrary bipartite state, finding that our algorithm
leads to separability conditions which are analytically verified by the partial transpo-
sition method for the particular case of an X-type density matrix. We next demonstrate
that an arbitrary multipartite state ρ can always be written in a pseudoseparable form.
Finally, we propose a formula to measure the degree of entanglement based on the
negative probabilities and we present our conclusions.

2 An overview of our separability algorithm

Although we really intend to clarify the whole idea of our algorithm by applying it to
paradigmatic cases like Werner state, we here present an overview of the method, in
order to facilitate the understanding of its application. We have a four-step algorithm
which start with the decomposition of the desired N -partite state ρ1...N into diagonal
and non-diagonal components ρ1...N = ρ

(D)
1...N + ρ

(ND)
1...N using a convenient basis of

states for each particle composing the entanglement. Of course, a separable state is
made only by the diagonal component. In the second step, the non-diagonal compo-
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nent ρ
(ND)
1...N must be transformed into a diagonal form with the help of another set

of arbitrary superposition states, each again for a particle in the entanglement. The
arbitrary expansion parameters {am} of these superpositions are key ingredient of
the algorithm and shall be determined from this and the next steps of the algorithm.
We show that it is always possible to write ρ

(ND)
1...N as a sum of two diagonal forms �

and �, the former (latter) containing only positive (negative) expansion coefficients
or probabilities. In the third step, we add and subtract the separable operator � to

ρ1...N , to obtain ρ1...N =
(
ρ

(D)
1...N + � − �

)
+ 2�. Thus, as far as the coefficients of

� are already nonnegative, only the sum of terms in the parentheses must be analyzed
so that we can derive a separability condition, i.e., the range of values of the para-
meters am that lead to a genuine separable state with positive probabilities. Finally,
a fourth step is necessary since a pseudoseparable state with negative probabilities
is not necessarily entangled. In fact, as to be demonstrate in Sect. 7, any state ρ can
be written in a pseudoseparable form. To guarantee that the negative probabilities are
a signature of entanglement, we have to introduce the fourth step, where a balance
of the inequalities derived in the third step (made through the expansion coefficients
{an}) ensures positive probabilities for separable states. The fourth step is an essential
requirement to guarantee that any negative probability remaining after the balancing
procedure is indeed a signature of entanglement.

3 The method applied to the 2× 2 Werner state

To illustrate our algorithm, we consider the simple and ubiquitous two-qubit Werner
state

ρ12 = x
∣
∣�−

12

〉 〈
�−

12

∣
∣+ 1 − x

4
I, (1)

which describes a bipartite 2×2 system in the Bell basis
{∣
∣�±

12

〉 = (|1102〉 ± |0112〉)/√
2,
∣
∣�±

12

〉 = (|1112〉 ± |0102〉)/
√
2
}
, I being the unit operator. We next expose our

four-step algorithm for separability:
i) Firt step: Diagonal and non-diagonal decomposition of ρ12. Decompose the

“two-particle” state ρ12 into its diagonal and non-diagonal components, ρ12 = ρ
(D)
12 +

ρ
(ND)
12 , in the basis {|1�〉 , |0�〉}, eigenstates of Pauli matrix σ�

z (� = 1, 2),

ρ
(D)
12 = 1 − x

4
[(|11〉 〈11| + |01〉 〈01|) ⊗ (|12〉 〈12| + |02〉 〈02|)

+ x

2
|01〉 〈01| ⊗ |12〉 〈12| + x

2
|11〉 〈11| ⊗ |02〉 〈02|

]
, (2a)

ρ
(ND)
12 = − x

2
[|11〉 〈01| ⊗ |02〉 〈12| + |01〉 〈11| ⊗ |12〉 〈02|] . (2b)

ii) Second step: Transforming ρ
(ND)
12 into a diagonal form |�〉 〈�|. Introduce k

= 1, . . . , M arbitrary states for each particle (� = 1, 2):
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∣
∣
∣ψ

(�)
k

〉
= N (�)

1∑

m=0

ei2πmk/Ma(�)
m |m�〉 , (3)

whereN (�)=
(∣
∣
∣a

(�)
0

∣
∣
∣
2 +

∣
∣
∣a

(�)
1

∣
∣
∣
2
)−1/2

. The expansion parameters a(�)
m , so far arbitrary,

shall be determined from this and the next steps of the algorithm. Moreover, we must

have M ≥ Mmin where Mmin stands for the minimum number of states
∣
∣
∣ψ

(�)
k

〉
needed

to write the interference terms (|01〉 〈11| and its Hermitian conjugate) into a diagonal
form. In fact, the diagonal operator

M−1∑

k=0

(
N (�)

)−2
ei2πk/M

∣
∣
∣ψ

(�)
k

〉 〈
ψ

(�)
k

∣
∣
∣

=
1∑

m,n=0

[
M−1∑

k=0

ei2π(m−n+1)k/M

]

a(�)
m

(
a(�)
n

)∗ |m�〉 〈n�| , (4)

becomes proportional to the interference operator |0�〉 〈1�| if and only if the sum in the
brackets, in the rhs of Eq. (4), equals Mδm,1−n , that happens whenever M > Mmin =
max(m−n+1) = 2. It is also straightforward to prove that, in the general case where

D is the dimension of the arbitrary states
∣
∣
∣ψ

(�)
k

〉
of a partite: Mmin = 2D − 1. For

M ≥ 3, a non-diagonal element can be expanded in terms of elementary projectors∣
∣
∣ψ

(�)
k

〉 〈
ψ

(�)
k

∣
∣
∣,

|0�〉 〈1�| = 1

Ma(�)
0

(
a(�)
1

)∗
M−1∑

k=0

(
N (�)

)−2
ei2πk/M

∣
∣
∣ψ

(�)
k

〉 〈
ψ

(�)
k

∣
∣
∣ ; (5)

then, comparing and equaling this form with Eq. (2b), we set the following constraint
for the coefficients a(�)

m ,

a(1)
0 a(2)

1

(
a(1)
1 a(2)

0

)∗ = x/2, (6)

and we succeed to write, through the set of states
∣
∣
∣ψ

(�)
k

〉
, the term ρ

(ND)
12 into a sum

of two diagonal forms,

� =
M−1∑

k,k′=0
(
cos
[
2π
M (k−k′)

]
<0
)
Pkk′

∣
∣
∣ψ

(1)
k

〉 〈
ψ

(1)
k

∣
∣
∣⊗
∣
∣
∣ψ

(2)
k′
〉 〈

ψ
(2)
k′
∣
∣
∣ , (7a)

� = −
M−1∑

k,k′=0
(
cos
[
2π
M (k−k′)

]
≥0
)
Pkk′

∣
∣
∣ψ

(1)
k

〉 〈
ψ

(1)
k

∣
∣
∣⊗
∣
∣
∣ψ

(2)
k′
〉 〈

ψ
(2)
k′
∣
∣
∣ , (7b)
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involving the elementary projectors and the coefficients are Pkk′ = 2
(N (1)N (2)

)−2

∣
∣cos

[ 2π
M

(
k − k′)]∣∣ /M2. The sums in Eqs. (7a) and (7b) are done under different

constraints, as explicitly specified in the underscript of the sum symbols, in order
to separate terms having positive coefficients from those assuming negative values.
Equation (7) is Werner state in a separablelike form. Before addressing the following
step of the algorithm, which allows to distinguish between separable and entangled
states, we observe that the pseudoseparable form is clearly not unique since it depends

on the number of arbitrary states
∣
∣
∣ψ

(�)
k

〉
introduced to write the interference terms into

a diagonal form.
iii) Third step: Conditions on the parameters. We add and subtract the already

separable operator� to ρ12, such that ρ12 =
(
ρ

(D)
12 + � − �

)
+2�(in the sense that

∑M−1

k,k′=0
(
cos
[
2π
M (k−k′)

]
<0
)+∑M−1

k,k′=0
(
cos
[
2π
M (k−k′)

]
≥0
) =∑M−1

k,k′=0

)

, thus only the sum

of terms in the parentheses must be analyzed carefully (reminding that the coefficients
of �, Eqs. (7a) and (3), are already nonnegative). Thus,

ρ12 =
[
1 − x

4
− ξ

∣
∣
∣a

(1)
1 a(2)

1

∣
∣
∣
2
]

|11〉 〈11| ⊗ |12〉 〈12|

+
[
1 − x

4
− ξ

∣
∣
∣a

(1)
0 a(2)

0

∣
∣
∣
2
]

|01〉 〈01| ⊗ |02〉 〈02|

+
[
1 + x

4
− ξ

∣
∣
∣a

(1)
0 a(2)

1

∣
∣
∣
2
]

|01〉 〈01| ⊗ |12〉 〈12|

+
[
1 + x

4
− ξ

∣
∣
∣a

(1)
1 a(2)

0

∣
∣
∣
2
]

|11〉 〈11| ⊗ |02〉 〈02| + 2�, (8)

where ξ = 2
(
1 − 21− j

)
for M = 2 j ( j ∈ N and j ≥ 2) and ξ = 2 otherwise. In order

to determine the range of values of the parameters in Eq. (8) that lead to a genuine
separable state (pn ≥ 0), the following four inequalities must be satisfied

1 − x ≥

⎧
⎪⎨

⎪⎩

4ξ
∣
∣
∣a

(1)
1 a(2)

1

∣
∣
∣
2

4ξ
∣
∣
∣a

(1)
0 a(2)

0

∣
∣
∣
2 , 1 + x ≥

⎧
⎪⎨

⎪⎩

4ξ
∣
∣
∣a

(1)
0 a(2)

1

∣
∣
∣
2

4ξ
∣
∣
∣a

(1)
1 a(2)

0

∣
∣
∣
2 , (9)

plus the condition
∣
∣
∣a

(1)
0 a(1)

1 a(2)
0 a(2)

1

∣
∣
∣
2 = x2/4 as established previously in Eq. (6).

In order to justify the fourth step, we observe that a pseudoseparable state with
negative probabilities is not necessarily entangled. In fact, as a general result, we
demonstrate in Sect. 7 that any state ρ can be written in a pseudoseparable form.
To guarantee that the negative probabilities are a signature of entanglement, we have
to introduce the fourth step, where a balance of the inequalities derived in the third
step (made through the expansion coefficients {an}) ensures positive probabilities for
separable states. Therefore, the fourth step is an essential requirement to guarantee that
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any negative probability remaining after the balancing procedure is indeed a signature
of entanglement.

iv) Fourth step: Balancing the expansion coefficients of the states
∣
∣
∣ψ

(�)
k

〉
: the sep-

arability criterion. The final step is to adjust the coefficients a(1)
0 , a(1)

1 , a(2)
0 , a(2)

1
in order to reduce the number of inequalities and, consequently, to maximize the
range of values of the interpolator parameter x , which still ensures separability, i.e.,

pn ≥ 0 in Eq. (8). The parameter x becomes maximum for
∣
∣
∣a

(1)
1 a(2)

1

∣
∣
∣
2 =

∣
∣
∣a

(1)
0 a(2)

0

∣
∣
∣
2

which, together with condition
∣
∣
∣a

(1)
0 a(1)

1 a(2)
0 a(2)

1

∣
∣
∣
2 = x2/4, allows us to choose, for

simplicity, the solution
∣
∣
∣a

(1)
0

∣
∣
∣
2
κ =

∣
∣
∣a

(1)
1

∣
∣
∣
2
/κ ′ =

∣
∣
∣a

(2)
0

∣
∣
∣
2
/κ =

∣
∣
∣a

(2)
1

∣
∣
∣
2
κ ′ = √

x/2,

since 1/2 ≤ κκ ′ ≤ 2. It is worth noting that any other choice of these parameters
will produce different basis states (3), and consequently different representations for
the pseudoseparable state. Thence, the four inequalities in Eq. (9) reduce to two,
x ≤ 1/ (2ξ + 1), x ≤ 1/ (2ξ − 1), for the separability criterion, or more concisely,

0 ≤ x ≤ min

(
1

2ξ + 1
,

1

2ξ − 1

)

≤ 1, (10)

showing that the greater value of x is attained for ξ = 1, and therefore, j = 2, M = 4,
and x ≤ 1/3. Consequently, the range of x for the separability of Werner state is
the same as established by the Peres-Horodecki recipe, which is [0, 1/3]. Moreover,

M = 4 is the necessary number of states
∣
∣
∣ψ

(�)
k

〉
in the expansions (7a) and (7b) in

order to establish the range of x that makes ρ12 genuinely separable.

4 Separability algorithm applied to particular states

4.1 A particular bipartite 2× 3 state

Next, we use our method to treat the one-parameter particular bipartite 2 × 3 state,
being an extension of Werner state (1),

ρ12 = x

2
|χ12〉 〈χ12| + 1 − x

6
(|01, 02〉 〈01, 02| + |01, 12〉 〈01, 12| + |01, 22〉 〈01, 22|

+ |11, 02〉 〈11, 02| + |11, 12〉 〈11, 12| + |11, 22〉 〈11, 22|) , (11)

where |χ12〉 = (|1, 0〉 + |0, 2〉) /
√
2, the second particle has its Hilbert space extended

to three states |0〉, |1〉, and |2〉 . This choice permits to short-circuit extended calcula-
tions and to go directly to the heart of the algorithm as we observe that non-diagonal
terms, in the computational basis, are present only in |χ12〉 〈χ12|. Therefore, we can
jump to the step i i), as we already know that the interference terms of |χ12〉 〈χ12| may
be rewritten into the desired factorized form by means of four superposition states for
particle 1:
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∣
∣
∣�

(1)
k

〉
= N (1)

1∑

m=0

ei2πmk/3a(1)
m |m1〉 . (12)

Regarding particle 2, it is straightforward to verify that although we need at least five
superposition states to reach a diagonal form for the interference terms, we must use
eight superposition states (k = 0, . . . , 7)

∣
∣
∣�

(2)
k

〉
= N (2)

2∑

m=0

eiπkm/4a(2)
m |m2〉 , (13)

in order to maximize the value of the interpolator parameter x , which ensures separa-

bility. Using the sets of states
{∣
∣
∣�

(1)
k

〉}
and

{∣
∣
∣�

(2)
k

〉}
, we obtain

|01〉 〈11| = 1

4a(1)
0

(
a(1)
1

)∗
3∑

k=0

(
N (1)

)−2
ei2πk/4

∣
∣
∣�

(1)
k

〉 〈
�

(1)
k

∣
∣
∣ , (14a)

|02〉 〈22| = 1

8a(2)
0

(
a(2)
2

)∗
7∑

k=0

(
N (2)

)−2
ei4πk/8

∣
∣
∣�

(2)
k

〉 〈
�

(2)
k

∣
∣
∣ , (14b)

under the constraint

a(1)
0

(
a(2)
0

)∗ (
a(1)
1

)∗
a(2)
2 = x

2
. (15)

Going to the third step, we use Eqs. (14) to rewrite the interference term

ρ
(ND)
12 = x

2
[|11〉 〈01| ⊗ |02〉 〈22| + |01〉 〈11| ⊗ |22〉 〈02|] (16)

in a diagonal form as a sum � + �, where

� = 1

16

1∑

�=0

2∑

�′=0

∣
∣
∣a

(1)
� a(2)

�′
∣
∣
∣
2 3∑

n=0

7∑

m=0(cos
[

π
2 (n−m)

]≥0)

∣
∣
∣cos

[π

2
(n − m)

]∣
∣
∣

×
∣
∣
∣�(1)

n

〉 〈
�(1)

n

∣
∣
∣⊗
∣
∣
∣�(2)

m

〉 〈
�(2)

m

∣
∣
∣ , (17)

� = − 1

16

1∑

�=0

2∑

�′=0

∣
∣
∣a

(1)
� a(2)

�′
∣
∣
∣
2 3∑

n=0

7∑

m=0(cos
[

π
2 (n−m)

]
<0)

∣
∣
∣cos

[π

2
(n − m)

]∣
∣
∣

∣
∣
∣�(1)

n

〉 〈
�(1)

n

∣
∣
∣⊗
∣
∣
∣�(2)

m

〉 〈
�(2)

m

∣
∣
∣ . (18)
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Again, following the same procedure of the previous section, we add and subtract �
to � and obtain

ρ12 =
1∑

�1=0

2∑

�2=0

[
1 − x

6
+ x

2

(
δ�1,1δ�2,0 + δ�1,0δ�2,2

)−
∣
∣
∣a

(1)
�1

a(2)
�2

∣
∣
∣
2
]

× |�1〉1 〈�1| ⊗ |�2〉2 〈�2| + 2�. (19)

In order to establish the range of values that x takes for separable states, pn ≥ 0, we
have to satisfy six inequalities,

1 − x ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

6
∣
∣
∣a(1)

0 a(2)
0

∣
∣
∣
2

6
∣
∣
∣a

(1)
0 a(2)

1

∣
∣
∣
2

6
∣
∣
∣a

(1)
1 a(2)

1

∣
∣
∣
2

6
∣
∣
∣a

(1)
1 a(2)

2

∣
∣
∣
2

, 1 + 2x ≥

⎧
⎪⎨

⎪⎩

6
∣
∣
∣a

(1)
0 a(2)

2

∣
∣
∣
2

6
∣
∣
∣a

(1)
1 a(2)

0

∣
∣
∣
2 (20)

plus the constraint (15). Finally, in the fourth step, we balance the coefficients a(1)
0 ,

a(1)
1 , a(2)

0 , a(2)
1 , a(2)

2 to maximize the value of the interpolator parameter x , by imposing

the equalities
∣
∣
∣a

(1)
0 a(2)

0

∣
∣
∣
2 =

∣
∣
∣a

(1)
1 a(2)

2

∣
∣
∣
2
and

∣
∣
∣a

(1)
0 a(2)

1

∣
∣
∣
2 =

∣
∣
∣a

(1)
1 a(2)

1

∣
∣
∣
2
which, together

with condition
∣
∣
∣a

(1)
0 a(2)

0 a(1)
1 a(2)

2

∣
∣
∣
2 = x2/4, leads to

∣
∣
∣a

(1)
0

∣
∣
∣
2 =

∣
∣
∣a

(2)
0

∣
∣
∣
2 =

∣
∣
∣a

(1)
1

∣
∣
∣
2

=
∣
∣
∣a

(2)
2

∣
∣
∣
2 = √

x/2 and a(2)
1 = 0. Under these conditions, the inequalities in Eq.

(9) reduce to two inequalities, (1 − 4x) /6 ≥ 0, (1 − x) /6 ≥ 0, from which we
establish that the separability of state (11) occurs whenever x ∈ [0, 1/4].

4.2 A particular tripartite 2× 2× 2 state

Let us now consider the particular tripartite state

ρ123 = |�〉M 〈�| , (21)

where we have defined the matrices

|�〉 = ( |0, 0, 0〉 |0, 0, 1〉 |0, 1, 0〉 |1, 0, 0〉 |0, 1, 1〉 |1, 0, 1〉 |1, 1, 0〉 |1, 1, 1〉 ) ,
(22)
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M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ11 ρ12 0 0 0 0 ρ17 ρ18
ρ∗
12 ρ22 0 0 0 0 ρ27 0
0 0 ρ33 ρ34 0 0 0 0
0 0 ρ∗

34 ρ44 0 0 0 0
0 0 0 0 ρ55 0 0 0
0 0 0 0 0 ρ66 0 0

ρ∗
17 ρ∗

27 0 0 0 0 ρ77 0
ρ∗
18 0 0 0 0 0 0 ρ88

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (23)

Following the steps of the proposed algorithm and under the condition ρ88
= χ2ρ66ρ55/ξ

2σ , we are able to derive analytically the inequality

max {|ρ18| , |ρ27|} ≤ min
{√

χρ88,
√

χσ,
√

ξρ66,
√

ξρ55

}
, (24)

for the separability condition, where

λ = max {|ρ17| , |ρ34|} (25a)

μ = ρ11 + ρ2

2
−
√
(

ρ11 − ρ2

2

)2

+ |ρ12|2 (25b)

σ = ρ22 + ρ11

2
−
√
(

ρ22 − ρ11

2

)2

+ |ρ12|2, (25c)

χ = σ + ρ77

2
− λ

√
(

σ − ρ77

2λ

)2

+ μ

ρ77
, (25d)

ξ = ρ33 + ρ44

2
− λ

√
(

ρ33 − ρ44

2λ

)2

+ ρ33

ρ44
. (25e)

Any violation of the inequality (24) implies that (21) is an entangled state. The inequal-
ity (24) demands an extremization procedure which may become an increasingly
laborius task for states of higher dimensionality. We stress that we were able to deduce
the optimal inequality (24) because of the condition ρ88 = χ2ρ66ρ55/ξ

2σ ; otherwise,
we would have to search for a numerical solution to the problem. The increase in the
number of parties composing the state and/or their dimensions implies the increase in

the difficulty for balancing the coefficients of the expansion of states
∣
∣
∣ψ

(�)
k

〉
.

4.3 A particular multipartite
⊗N2 state

We analyze the case of the single-parameter multipartite
⊗N2 state

ρ1...N = x |�1...N 〉 〈�1...N | + 1 − x

2N

⎛

⎝
1∑

m1=0

· · ·
1∑

mN=0

|m1, . . . ,mN 〉 〈m1, . . . ,mN |
⎞

⎠ ,

(26)
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where |�1...N 〉 = (|01, . . . , 0N 〉 + |11, . . . , 1N 〉) /
√
2, here again, the non-diagonal

(in the computational basis) components are in the state |�1...N 〉. Following the steps
outlined in Sects. 2 and 3, we go directly to the third step of the algorithm, displaying
the factorized form of state (26),

ρ12 =
1∑

m1,m2,...,mN=0

[
1 − x

2N
+ x

2

(
N∏

�=0
δm�,0+

N∏

�=0
δm�,1

)

−
∣
∣
∣
∣

N∏

�=0
a(�)
m�

∣
∣
∣
∣

2] N⊗

�=1
|m�〉 〈m�|

+ 4

(
N∏

n=1

(N (n)
)−2

4

)
N⊗

�=1

∑′ 3
m�=0

∣
∣
∣�(�)

m�

〉 〈
�(�)

m�

∣
∣
∣ , (27)

where j ∈ N, such that 4 j ≤ 3N , and the prime on the sum symbol stands for the
constraint

∑N
�=1m� = 4 j . The determination of the range of values of x for the state

ρ1...N be separable demands that the coefficients of the expansion be nonnegative. So
2N inequalities are necessary,

1 − x

2N
≥
{∣
∣
∣
∣
∣

(
M∏

m=1
a(�m)
1

)
N∏

�′=1
a(�′)
0

∣
∣
∣
∣
∣

2

,
1 − x

2N
+ x

2
≥
{∣
∣
∣
∣

N∏

�=1
a(�)
0

∣
∣
∣
∣

2

,

∣
∣
∣
∣

N∏

�=1
a(�)
1

∣
∣
∣
∣

2

(28)

for �′ �= �1 �= �2 · · · �= �N−1 = 1, . . . , N and M = 1, . . . , N − 1. By balancing the
expansion coefficients, we obtain the relation

∣
∣
∣a

(�′)
0

∣
∣
∣
2

=
∣
∣
∣a

(�′)
1

∣
∣
∣
2

=
( x

2

)1/N
, (29)

enabling us to reduce all the above inequalities in Eq. (28) to two simple ones,

(1 − x) /2N ≥ x/2 and (1 − x) /2N ≥ 0, leading to the range x ∈
[
0,
(
1 + 2N−1

)−1
]

for the separability of the multipartite state. For N = 2, we recover the range of x
values for the separability of the two-qubit Werner state and with the increase in
the number of qubits N that interval diminish rapidly. If we assume the dynami-
cal evolution map x = exp (−γ t) , γ being a coherence decay rate, we note that

as x ∈
((
1 + 2N−1

)−1
, 1
]
, then for a greater number N , the multipartite state will

remain entangled for most part of the time of its evolution, thus making the state
resisting its separability.

5 An arbitrary bipartite 2× 2 state

Here, we apply the algorithm presented in Sect. 2 to an arbitrary bipartite 2× 2 state

ρ12 =
4∑

m,n=1
pmn |φm〉 〈φn| , (30)
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where |φ1〉 = |0102〉, |φ2〉 = |0112〉, |φ3〉 = |1102〉, |φ4〉 = |1112〉, and pmn are the
coefficients of the expansion on which separability condition will impose constraints.
Following the steps established by the algorithm, the separability condition demands
the inequality

max {|p14| , |p23|} ≤ min
{√

ab̃,
√
ãb
}

, (31)

where we have defined

a = p11 + σ−
21

(
1 − δp12,0

)+
(

χ1 −
√

χ2
1 + |p13|2

)
(
1 − δp13,0

)
, (32a)

b = p22 − σ−
21

(
1 − δp12,0

)+
(

χ2 −
√

χ2
2 + |p24|2

)
(
1 − δp24,0

)
, (32b)

ã = p33 + σ−
43

(
1 − δp34,0

)−
(

χ1 +
√

χ2
1 + |p13|2

)
(
1 − δp13,0

)
, (32c)

b̃ = p44 − σ+
43

(
1 − δp34,0

)−
(

χ2 +
√

χ2
2 + |p24|2

)
(
1 − δp24,0

)
, (32d)

with

σ±
1 = p22 − p11

2
±
√
(
p22 − p11

2

)2

+ |p12|2, (33a)

σ±
2 = p44 − p33

2
±
√
(
p44 − p33

2

)2

+ |p34|2, (33b)

χ1 = p33 − p11 + σ−
2

(
1 − δp34,0

)− σ−
1

(
1 − δp12,0

)

2
, (33c)

χ2 = p44 − p22 − σ+
2

(
1 − δp34,0

)+ σ+
1

(
1 − δp12,0

)

2
. (33d)

We note that by assigning numerical values to the coefficients pmn , the inequal-
ity (31) can be numerically confirmed by the partial transposition criterion of Peres
and Horodecki. For the particular case where p12 = p13 = p24 = p34 = 0, that
characterizes an X-type density matrix, the separability conditions (31) simplify with√
ab̃ = p11 p44 and

√
ãb = p22 p33, confirmed by the partial transposition criterion.

6 Any arbitrary state ρ can be written in a pseudoseparable form

An arbitrary multipartite state made of r subsystems, each having dimension Di ,
i = 1, . . . , r , can be written as

ρ1...r =
D1∑

m1,n1=1

· · ·
Dr∑

mr ,nr=1

Cm1,...,mr ;n1,...,nr |m1, . . . ,mr 〉 〈n1, . . . , nr | . (34)
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Each operator
∣
∣m j
〉 〈
n j
∣
∣ of subsystem j can bewritten as aweighted sumof elementary

projectors

∣
∣m j
〉 〈
n j
∣
∣ ≡ ∣∣m j

〉 〈
m j + φ j

∣
∣ = (Nmj

)2
Dj∑

�=1

ei2π(�+1)φ j /Dj

∣
∣
∣�

(�)
j

〉 〈
�

(�)
j

∣
∣
∣ , (35)

where we define the arbitrary vector as

∣
∣
∣�

(�)
j

〉
= (Nm j

)−1
ei2π(�+1)m j /Dj

(
a(m j)
j

∣
∣m j
〉+ ei2π(�+1)φ j /Dj a(m j+φ j)

j

∣
∣m j + φ j

〉)
,

(36)

with

(
Nm j

)2 =
∣
∣
∣a

(m j)
j

∣
∣
∣
2
+
∣
∣
∣a

(m j+φ j)
j

∣
∣
∣
2
. (37)

Substituting Eq. (35) in Eq. (34) for each subsystem, the arbitrary state ρ can now be
written in the following pseudoseparable form

ρ =
D1∑

�1=1

· · ·
Dr∑

�r=1

C̃�1,...,�r

r∏

j=1

∣
∣
∣�

(� j)
j

〉 〈
�

(� j)
j

∣
∣
∣ , (38)

where

C̃�1,...,�r =
D1∑

m1,n1=1

· · ·
Dr∑

mr ,nr=1

Cm1,...,mr ;n1,...,nr
r∏

j=1

(
Nm j

)2
ei2π(� j+1)φ j /Dj . (39)

We therefore conclude that for finite-dimensional systems, there is a finite-time
algorithm that allows one to write every state of N qudits in the pseudoseparable
form. Essentially, we cannot guarantee that an arbitrary state is not entangled if one
or more of its coefficients C̃�1,...,�r are negative. Only after the implementation of the

fourth step of the algorithm, that establishes the values of the parameters a(m j)
j , one

can guarantee that if at least one of the coefficients C̃�1,...,�r is negative, then ρ is an
entangled state.

Regarding the scalability of the algorithm, for an arbitrary multipartite state of

r subsystems of Dr = 2, the number of free parameters a(m j)
j increases with r

as 2r−1 (3r − 1) and so the difficulty to determine them. It would be worthwhile
to analyze how costly is our algorithm in comparison with the complex methods
mentioned in the Introduction where a formal separability criterion is derived (for
bipartite systems of limited dimensions). In fact, the algorithms for the complete
criteria detection have worst-case complexity, as discussed in [34].
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7 A proposal for quantifying the degree of entanglement through the
negative probabilities

Our algorithm for separability also enables us to propose a measure for the degree of
entanglement. As far as we have derived the inequality following from our fourth step,
given by the general expression

max {Ai } ≤ min {Bi } , (40)

(where the sets {Ai } and {Bi } stand for functions of the coefficients of the density
matrix), we may compute the degree of entanglement through the relation

E = max {max {Ai } − min {Bi } , 0} , (41)

which is clearly a monotonic function of the interpolator parameter max {Ai }. As an
example, we consider the particular multipartite

⊗N2 state (26) where the measure
(41), apart from a normalization factor, becomes

E = max

{

x −
(
1 + 2N−1

)−1
, 0

}

. (42)

For the case of a bipartite Werner state, this measure gives E = max {x − 1/3, 0}, and
as already known, the higher the value of x , the more entangled is the state.

8 Summary and conclusions

We have presented an algorithm for writing any arbitrary density matrix in the so-
called separable form ρ1···N =∑i piρ

(1)
i ⊗ · · · ⊗ ρ

(N )
i where the coefficients pi are

nonnegative
(
and

∑
i pi = 1

)
only for separable states, whereas for entangled states,

some pi assume negative values, while others are greater than 1, i.e., we cannot recog-
nize these weights as probabilities. We proposed and developed a four-step algorithm
applying it to the emblematic case of the two-qubit Werner state, establishing the
interval of values the parameter x takes for truly separable states. Themodus operandi
of our method, which we demonstrated to be applicable to any density matrix, gener-
alizes the Peres-Horodecki separability recipe, proved to be valid for bipartite states
of dimensions 2 × 2 and 2 × 3.

After presenting our method, we then prove its usefulness by applying it for a
variety of states: a bipartite state of higher dimensions (2 × 3), a particular tripartite
2 × 2 × 2 state, a particular multipartite

⊗N2 state, and an arbitrary bipartite 2 × 2
state. We verified that for a Werner-like multipartite state evolving in time, the greater
the number of qubits N , the more time it will remain entangled during its evolution,
thus making the state more resistant to separability.

From the derivation of the negative probabilities that allowed us to characterize
entanglement, we also proposed a measure to quantify the degree of entanglement
of arbitrary multipartite states. We finally stress that our algorithm, that demands an
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extremization procedure, may become an increasingly laborious task for states of
higher dimensionality, characterizing the complexity associated with the separability
problem in Hilbert space.
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