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a b s t r a c t

Traditional machine learning algorithms very often assume statistically independent data

samples. However, this is clearly not the case in remote sensing image applications, in which

pixels present spatial and/or temporal dependencies. In this work, it has been presented an

approach to improve land cover image classification using a contextual approach based on

optimum-path forest (OPF) and the well-known Markov random fields (MRFs), hereinafter

called OPF–MRF. In addition, it is also introduced a framework to the optimization of the

amount of contextual information used by OPF–MRF. Experiments over high- and medium-

resolution satellite (CBERS-2B, Landsat 5 TM, Ikonos-2 MS and Geoeye) and radar (ALOS-

PALSAR) images covering the area of two Brazilian cities have shown the proposed approach

can overcome several shortcomings related to standard OPF classification. In some cases, the

proposed approach outperformed traditional OPF in about 9% of recognition rate, which is

crucial for land cover classification.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Pixel-based classification plays an important role in many remote sensing applications, such as land cover and target recogni-

tion, just to name a few. Remote sensing image classification is often performed by support vector machines—SVMs [3,19,21], ar-

tificial neural networks—ANNs [17,19], and optimum-path forest—OPF [28,35], but without taking into account the spatial and/or

temporal dependencies among pixels. However, these approaches can generate undesirable artefacts (e.g., salt-and-pepper ef-

fect) as reported in some works [8,38]. Contextual classifiers have been proposed to address the problem by exploiting the spatial

dependency of nearby pixels that are likely to belong to a same class [5].

Tarabalka et al. [40], for instance, proposed a contextual approach based on support vector machines and Markov random

fields (MRFs) for remote sensing image classification called SVM–MRF. Moser and Serpico [27] also proposed a version of the
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SVM–MRF approach using a single-step formulation, rather than the two-phase strategy presented in [40]. Kittler and Föglein

[20] combined a Bayesian classifier and a Gaussian MRF by using pixel spectral and spatial dependencies. Shekhar et al. [38]

employed a Bayesian classifier with different models to capture spatial context. They provided comparisons among spatial au-

toregression and two different Markov models. Another related work was proposed by Zhang et al. [44], which used SVMs with

an adaptive MRF-based approach (a-MRF) to avoid overcorrection on the boundary between classes. Other approaches for con-

textual classification of remote sensing images exploit hierarchical and multi-resolution feature description [7,9,41]. Additionally,

Frery et al. [12] performed multispectral image classification by means of Gaussian maximum likelihood and contextual iterated

conditional modes (ICM) algorithm.

In the context of land cover classification using contextual information, the reader can find some interesting works as well.

Laha et al. [23], for instance, applied evidence theory to incorporate contextual information for further image classification

using fuzzy rules. Ghimire et al. [15] applied random forests, and Stuckens et al. [39] employed a linkage-based clustering

algorithm for land cover classification using contextual information. Sarkar et al. [37] presented a hybrid approach among

MRF and Dempster–Shafer theory. It is also valuable to shed light over the seminal work of Wharton [42], which presented a

contextual land cover classification approach based on the local distribution of nearby labels, as well as the work of Guo et al.

[16], which proposed a contextual approach based on cascaded classifiers for remote sensing imagery classification. Recently,

a comprehensive review about contextual-based classifiers has been presented by Li et al. [24]. Finally, Mahmoudi et al. [26]

stated the contextual relations can overcome some challenges in urban areas recognition based on satellite imagery. Although

Aghighi et al. [1,2] have also presented an approach to estimate a smoothing parameter that controls the amount of interactions

between the spatial and contextual information based on dynamic blocks, SVM and class label co-occurrence matrices, their

works differ from this one, since here we employed meta-heuristic techniques to address the problem of contextual-based

classification concerning the OPF classifier.

In short, we propose a meta-heuristic-based optimization framework to find suitable values for the parameter that controls

the amount of contextual information used in the classification process. Additionally, we introduce a contextual classifier named

OPF–MRF based on MRF and optimum-path forest for supervised learning [32,33]. The traditional OPF classifier interprets train-

ing samples (feature vectors) as nodes of a complete graph, identifies key samples (prototypes) in all classes, and partitions the

graph into an optimum-path forest rooted at those prototypes. The classification of a new sample is quickly performed in an

incremental way by finding its most closely connected training sample and assigning its class to it. Such a strategy has demon-

strated to be similar/superior to SVMs and ANNs in several applications, being much faster for training, since this version of OPF

is parameter-independent.

In the OPF–MRF approach, the output of OPF classifier is interpreted as an MRF and improved by ICM algorithm [6] in order to

add contextual (sample labels) to the original feature vectors. A second OPF classifier, trained with the extended feature vectors,

outputs the final label map. As two independent and preliminary works, the OPF–MRF classifier was previously presented for

magnetic resonance image classification [29], and the proposed meta-heuristic-based framework was previously evaluated in

the same context as well [31]. In this paper, it is the first time we combine both approaches for contextual classification and

evaluate them for land cover classification. The work have shown one can improve vanilla OPF classification in the context of

land cover recognition using images obtained by four satellites with different spatial resolutions, as well as one radar image. This

is important to highlight the proposed approach can obtain better results than pixel-based OPF classification in distinct scenarios.

The remainder of this paper is organized as follows. Sections 2 and 3 describe the OPF theory background, as well as its con-

textual version, respectively. The experimental setup and experiments are presented in Sections 4 and 5, respectively. Section 6

states conclusions and future works.

2. Optimum-path forest classification

The OPF framework is a recent highlight to the development of pattern recognition techniques based on graph partitions. The

nodes are the data samples, which are represented by their corresponding feature vectors, and are connected according to some

predefined adjacency relation. Given some key nodes (prototypes), they will compete among themselves aiming at conquering

the remaining nodes. Thus, the algorithm outputs an optimum path forest, which is a collection of optimum-path trees (OPTs)

rooted at each prototype. This work employs the OPF classifier proposed by Papa et al. [32,33], which is explained in more details

as follows.

Let D = D1 ∪ D2 be a labeled dataset, such that D1 and D2 stands for the training and test sets, respectively. Let S ⊂ D1 be a

set of prototypes of all classes (i.e., key samples that best represent the classes). Let (D1, A) be a complete graph whose nodes are

the samples in D1, and any pair of samples defines an arc in A = D1 × D1 (Fig. 1a).1 Additionally, let π s be a path in (D1, A) with

terminus at sample s ∈ D1.

The OPF algorithm proposed by Papa et al. [32,33] employs the path-cost function fmax due to its theoretical properties for

estimating prototypes (Section 2.1 gives further details about this procedure):

fmax(〈s〉) =
{

0 if s ∈ S
+∞ otherwise,

fmax(πs · 〈s, t〉) = max{ fmax(πs), d(s, t)}, (1)
1 The arcs are weighted by the distance between their corresponding nodes.



62 D. Osaku et al. / Information Sciences 324 (2015) 60–87

0.3

0.7

1.7

1.9

2.10.5

0.4

2.7

2.1

1.9
0.7

0.5

     3

0.0

0.0

(a) (b) (c)

0.0

0.0

0.7

1.7

1.8

0.6

0.3 0.0

0.0

0.6

(d) (e)
Fig. 1. (a) Training set modeled as a complete graph, (b) a minimum spanning tree computation over the training set (prototypes are highlighted), (c) optimum-

path forest over the training set, (d) classification process of a “green” sample, and (e) test sample is finally classified. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
where d(s, t) stands for a distance between nodes s and t, such that s, t ∈ D1. Therefore, fmax(πs) computes the maximum distance

between adjacent samples in π s, when π s is not a trivial path. In short, the OPF algorithm tries to minimize fmax(πt), ∀t ∈ D1.

2.1. Training

We say that S∗ is an optimum set of prototypes when Algorithm 1 minimizes the classification errors for every s ∈ D1. We have

that S∗ can be found by exploiting the theoretical relation between the minimum-spanning tree and the optimum-path tree for

fmax [4]. The training essentially consists of finding S∗ and an OPF classifier rooted at S∗. By computing a minimum spanning tree

(MST) in the complete graph (D1, A) (Fig. 1b), one obtain a connected acyclic graph whose nodes are all samples of D1 and the

arcs are undirected and weighted by the distances d between adjacent samples. In the MST, every pair of samples is connected

by a single path, which is optimum according to fmax. Hence, the minimum-spanning tree contains one optimum-path tree for

any selected root node.

The optimum prototypes are the closest elements of the MST with different labels in D1 (i.e., elements that fall in the frontier

of the classes, as highlighted in Fig. 1b). By removing the arcs between different classes, their adjacent samples become proto-

types in S∗, and Algorithm 1 can define an optimum-path forest with minimum classification errors in D1 (Fig. 1c). Algorithm 1

implements the above procedure for OPF training phase.

Lines 1–4 initialize maps and insert prototypes in Q (the function λ(·) in Line 4 assigns the true label to each training sample).2

The main loop computes an optimum path from S to every sample s in a non-decreasing order of cost (Lines 5–13). At each
2 The cost map C stores the optimum-cost of each training sample.
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Algorithm 1 OPF training algorithm.

Input: A labeled training set D1.
Output: Optimum-path forest P, cost map C, label map L, and ordered set D′

1.
Auxiliary: Priority queue Q , set S of prototypes, and cost variable cst .

1. Set D′
1 ← ∅ and compute the prototype set by MST S ⊂ D1.

2. For each s ∈ D1\S , set C(s) ← +∞.
3. For each s ∈ S , do
4. C(s) ← 0, P(s) ← nil, L(s) ← λ(s), and insert s in Q .
5. While Q is not empty, do
6. Remove from Q a sample s such that C(s) is minimum.
7. Insert s in D′

1.
8. For each t ∈ D1 such that C(t) > C(s), do
9. Compute cst ← max{C(s), d(s, t)}.
10. If cst < C(t), then
11. If C(t) = +∞, then remove t from Q .
12. P(t) ← s, L(t) ← L(s), C(t) ← cst .
13. Insert t in Q .
14. Return a classifier [P,C, L, D′

1].

C

iteration, a path of minimum cost C(s) is obtained in P when we remove its last node s from Q (Line 6). Ties are broken in Q

using first-in-first-out policy. That is, when two optimum paths reach an ambiguous sample s with the same minimum cost, s is

assigned to the first path that reached it. Note that C(t) > C(s) in Line 8 is false when t has been removed from Q and, therefore,

(t) = +∞ in Line 11 is true only when t ∈ Q. Lines 10–13 evaluate whether the path that reaches an adjacent node t through s is

cheaper than the current path with terminus t, and update the position of t in Q, C(t), L(t) and P(t) accordingly. The complexity for

training OPF is done by θ(|D1|2), due to the main (Lines 5–13) and inner loops (Lines 8–13) in Algorithm 1, which run θ(|D1|)
times each.

2.2. Classification

For any sample t ∈ D2, we consider all arcs connecting t with samples s ∈ D1, as though t were part of the training graph

(Fig. 1d). Considering all possible paths from S∗ to t, we find the optimum path P∗(t) from S∗ and label t with the class λ(R(t)) of

its most strongly connected prototype R(t) ∈ S∗ (Fig. 1e). This path can be identified incrementally, by evaluating the optimum

cost C(t) as follows:

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ D1. (2)

Let the node s∗ ∈ D1 be the one that satisfies Eq. (2) (i.e., the predecessor P(t) in the optimum path P∗(t)). Given that L(s∗) =
λ(R(t)), the classification simply assigns L(s∗) as the class of t. An error occurs when L(s∗) = λ(t). Algorithm 2 implements this

idea.

In Algorithm 2, the main loop (Lines 1–9) performs the classification of all nodes in D2. The inner loop (Lines 4–9) visits each

node ki+1 ∈ D′
1, i = 1, 2, . . . , |Z′

1| − 1 until an optimum path πki+1
· 〈ki+1, t〉 is found. In the worst case, the algorithm visits all
Algorithm 2 OPF classification algorithm.

Input: Classifier [P,C, L, D′
1] and test set D2.

Output: Label Lo and predecessor Po maps defined for D2.
Auxiliary: Cost variables tmp and mincost .

1. For each t ∈ D2, do
2. i ← 1, mincost ← max{C(ki), d(ki, t)}.
3. Lo(t) ← L(ki) and Po(t) ← ki.
4. While i < |D′

1| and mincost > C(ki+1), do
5. Compute tmp ← max{C(ki+1), d(ki+1, t)}.
6. If tmp < mincost , then
7. mincost ← tmp.
8. Lo(t) ← L(ki+1) and Po(t) ← ki+1.
9. i ← i + 1.
10. Return [Lo, Po].
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Fig. 2. OPF–MRF workflow with β provided by the user. (For interpretation of the references to colour in the text, the reader is referred to the web version of

this article.)
nodes in D′
1
. Line 5 evaluates fmax(πki+1

· 〈ki+1, t〉) and Lines 7–8 update the cost, label and predecessor of t whenever πki+1
·

〈ki+1, t〉 is better than the current path π t (Line 6). Although the reader can note the complexity of the OPF classification phase is

given by θ(|D1||D2|) (for each classification node we have to visit all training samples), Papa et al. [32] showed that, in practice,

the complexity is given by O(p|D2|), in which p ∈ O(|D1|).

Another interesting point to be considered concerns with the relation between OPF and the nearest neighbor classifier (NN).

Although OPF uses the distance between samples to compose the cost to be offered to them, the path-cost function encodes the

power of connectivity of the samples that fall in the same path, being much more powerful than the sole distance. Therefore,

this means OPF is not a distance-based classifier. Additionally, Papa et al. [33] showed that OPF is quite different than NN, being

those techniques exactly the same only when all training samples become prototypes.

3. OPF–MRF: contextual classification using Markov random fields and optimum-path forest

Markov random fields are probabilistic models often be used to integrate both spatial and contextual information in image

classification problems. Such models are based on the idea that a pixel has a high probability to belong to the same class of its

neighbors.

The reader can face several Markov models that consider contextual information in the literature, being such models very

appropriate to represent a prior knowledge by means of probability distributions. One of the most widely used is the well-

known Potts model–Potts–Strauss model [14], which arose from the statistical physics to generalize the Ising model for multiple

discrete energies [36,43]. In the context of image processing and pattern recognition, such model has been widely employed as

a priori knowledge to hold the smoothness assumption, since the pixels that fall in the same neighborhood are likely to have the

same label.

Given a pixel located at (i, j) position and its neighborhood system ηij, it is possible to define the local conditional probability

of Potts model as follows:

p(xi j = mi j|ηi j, β) = exp{β Ui j(mi j)}∑K
k=1 exp{β Ui j(k)} , (3)

in which xi j ∈ X is a realization of the Markov label field X , Ui j(k) stands for the number of pixels in ηij that are from label

k, K denotes the number of labels, β is a parameter that models the spatial dependence among neighboring pixels, and mi j ∈
{1, 2, . . . , K} means the observed label at central pixel (i, j). It is important to shed light over that high values of β lead to a high

spatial dependence among pixels, and β = 0 means we have no spatial dependence, i.e., we have a traditional classification.

The idea behind OPF–MRF is to exploit the contextual information by means of a lattice-based neighborhood model, being

inspired by the work of Tarabalka et al. [40]. The proposed contextual-based OPF learning algorithm can be divided in three

phases: (i) a pixel-wise classification is performed by traditional OPF to generate the initial label map (classified image), (ii)

further, the local probability given by Eq. (3) is maximized over the previous label map using the well-known iterated conditional

modes algorithm [6], and thus generating a new label map, which is finally (iii) classified using standard OPF once again to

generate an updated label map. The process is iterated from step (ii) to (iii) until a convergence criterion is met. Basically, the

idea of OPF–MRF is to iteratively maximize a local probability density function followed by the minimization of the path-cost

function fmax( · ) for all dataset samples. Fig. 2 depicts the OPF–MRF workflow.

The reader can realize the first step of OPF–MRF follows a traditional classification pipeline, i.e., we have training and test

sets, being the latter used to generate the label map (classified image) that will be an input for the contextual classification.
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Algorithm 3 OPF–MRF algorithm.

Input: A labeled training D1 and test set D2, number of OPF–MRF iterations T , and the spatial depen-
dency parameter β .

Output: A labeled map L

1. Define a Markov random field model M (e.g. Potts model).
2. [P,C, L,D′

1] → Algorithm 1(D1).
3. [L, Po] → Algorithm 2(D1,D2).
4. Create new instances D′

1 and D′
2 by extending D1 and D2

5. with the frequency of the neighborhood labels given by L.
6. i ← 1, � ← +∞.
7. While i ≤ T and � > 0.01%, do
8. [D∗

1,D∗
2] ← ICM(M, D′

1, D′
2, β , L).

9. [P,C, L,D′
1] → Algorithm 1(D∗

1).
10. [L′, Po] → Algorithm 2(D∗

1,D∗
2).

11. Compute � using L and L′.
12. L ← L′, D′

1 ← D∗
1, D′

2 ← D∗
2 and i ← i + 1.

13. Return the label map L.
Algorithm 3 implements the aforementioned approach. Line 1 defines a Markov random field model based on the Potts model

(Eq. (3)). Basically, such model considers the frequency of each label in a given pixel (i, j) neighborhood, defined by ηij. Further, a

standard OPF training step is performed over D1 (Section 2.1) (Line 2), followed by the classification of the test set D2 (Section 2.2)

in order to generate an initial label map L (Line 3).

Lines 4 − 5 are responsible for extending the feature vectors of samples from D1 and D2. The feature vector extension is per-

formed as follows: for each s ∈ D1 ∪ D2, we consider the brightness of its eight-neighborhood (RGB channels), as well as its (x, y)

position in the image. Therefore, the extended feature vector sample is composed by 26 + K features, being 24(3 × 8) from the

brightness of the eight-neighborhood pixels for each channel, plus two features that come from the (x, y) sample’s position, and

the probability of that sample to belong to class i given by Potts model (Eq. (3)), i = 1, 2, . . . , K. Note the original feature vector of

each sample s (Lines 2–3) is composed by three features, that stand for the pixel’s brightness for each RGB channel.

The loop in Lines 7–12 (“red” modules in Fig. 2) is responsible for refining the initial solution given by traditional OPF. This

step maximizes the local probability function given by Potts model (Eq. (3)) using the ICM algorithm in Line 8. The reader can

observe that ICM algorithm has five inputs: the Markov random field model M (Potts model in this paper), extended training

(D′
1
) and test sets (D′

2
), spatial dependency parameter β , and the label map L generated by standard OPF. After that, the outputs

of ICM are the new training (D∗
1) and test sets (D∗

2), in which their samples’ labels have been updated by ICM. In Lines 9–10,

OPF is trained over D∗
1

for further classification of D∗
2
, which generates the updated label map L′. Finally, Line 12 updates the

variables for the next OPF–MRF iteration. The reader can observe that Line 7 has two stopping criteria: the maximum number of

iterations T, and the number of testing samples whose labels are different from the previous iteration and the current one. That

is, the variable � can be seen as the amount of changing in the label map between iterations. In this work, we have used T = 10

and � = 0.01% (empirically set).

Additionally, one can observe OPF–MRF has two parameters: number of iterations T and the spatial dependency parameter β .

Another main contribution of this paper is to introduce a meta-heuristic-based optimization framework for finding β automati-

cally, being a suitable additional tool to provide an user-friendly version of OPF–MRF.

3.1. Spatial-content dependence estimation through meta-heuristics learning

As aforementioned, the parameter β is responsible for constraining the amount of spatial dependency used by OPF–MRF (if

β = 0 in Eq. (3), we have no contextual information considered in the classification process). Although this parameter can be

provided by the user, we proposed an evolutionary-based framework for the optimization of β , which makes use of a validation

set to find out suitable β values that maximize the OPF recognition rate at that set. Since β ∈ [0, βmax], in which βmax = ln (1 +√
K) [43] (critical value), there are infinity values for β ∈ � on that range, which turns the problem of finding reasonable values

for β using a near-exhaustive search impractical for large (high-resolution) images. It is also interesting to highlight the βmax

value is dependent on the number of classes K. Fig. 3 illustrates the OPF–MRF pipeline considering the β optimization.

Now, assume the dataset D can be partitioned in D = D1 ∪ Dv ∪ D2, which stand for the training, validating and test sets,

respectively. The idea is to use both D1 and Dv to guide the meta-heuristic optimization algorithms to maximize the recognition

rate over Dv. Each evolutionary agent has a position in the search space defined by a β ∈ [0, βmax] randomly initialized. After

that, Algorithm 3 is executed every time an agent changes its position until the convergence criterion is met. Such procedure is

encoded by the “green” module from Fig. 3. Further, after finding a suitable β value, i.e., the one which maximizes the recognition

rate over Dv, the usual refinement step is performed by the “red” modules (Fig. 3).



66 D. Osaku et al. / Information Sciences 324 (2015) 60–87

Fig. 3. OPF–MRF workflow with β estimated by meta-heuristic optimization. (For interpretation of the references to colour in the text, the reader is referred to

the web version of this article.)

Algorithm 4 Meta-heuristic-based β optimization algorithm.

Input: A labeled training D1, validating Dv and test set D2, the number of the optimization algorithm
iterations Topt , and the number of OPF–MRF iterations T .

Output: The β parameter that maximizes the accuracy over Dv.

1. For each agent i from 1 to W , do.
2. posi ← [0, βmax].
3. f iti ← −∞.
4. global ← −∞.

5. For each iteration t from 1 to Topt , do.
6. For each agent i from 1 to W , do.
7. L ←Algorithm 3(D1,Dv, T, posi).
8. tmp ← accuracy over Dv using L.
9. If tmp > f iti, then.
10. f iti ← tmp.
11. Update the position of agent i.
12. global ← the best fitness value among all agents.
13. pos∗ ← the position of the best agent.
14. β ← pos∗.
15. Return β .
Although any other optimization technique can be employed to find β , in this paper we proposed a meta-heuristic approach

for such purpose, since such sort of techniques present an elegant and user-friendly framework for optimization-oriented ap-

plications. We have used two meta-heuristic techniques: particle swarm optimization (PSO) [18] and harmony search (HS) [13].

While the former approach is based on the social dynamics of a group of individuals and the interaction among them aiming at

finding a source of food, HS models the optimization problem as being a task of finding a music with the best harmony as possi-

ble. In this case, each decision variable is modeled as a musical instrument, which can come from the harmony memory (artist

memory) or even from the improvisation process of the artist. Therefore, while PSO has been widely used in several applications,

HS has been one of the fastest meta-heuristic optimization techniques, which make them interesting to the context of this paper.

Algorithm 4 implements the basic steps of the proposed framework (“green” module in Fig. 3), which can be adapted to be used

with any other meta-heuristic optimization approach, as well as any other pattern recognition technique.

Lines 1–4 are responsible for the initialization of each agent (particles for PSO and harmonies for HS). While Line 2 initializes

the position of each agent with a random value within the range [0, βmax], its fitness value is set in Line 3. In addition, the global

fitness, i.e., the best fitness in swarm, is set up in Line 4. In this paper, we used W = 5, i.e., five particles/harmonies (W has been

empirically chosen). In regard to the number of iterations Topt, we set Topt = 10 for PSO and Topt = 50 for HS. Once again, such

values have been empirically chosen. Higher values for Topt tend to be inefficient, since the improvements in the classified images
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Fig. 4. Satellite images used in the experiments: covering the area of Itatinga, SP, Brazil by (a) CBERS-2B CCD (20 m) sensor (R2G3B4) and (b) Landsat 5 TM (30 m)

sensor (R4G3B5), and covering the area of Duque de Caxias, RJ, Brazil by (c) Ikonos-2 MS sensor (R4G3B2), and (d) Geoeye sensor (R5G4B3), and (e) ALOS-PALSAR

image (HH polarization). The CBERS-2B and Landsat 5 TM images have 526 × 492 pixels, and Ikonos-2 MS and Geoeye images have 258 × 250 and 268 × 250

pixels, respectively. Note that Ikonos-2 MS and Geoeye images were obtained through a fusion process between the corresponding images from MS (4 m) and

PAN (1 m) sensors using the pan-sharpening method. The final image has a spatial resolution of 1 m.
are no longer clear enough to require more iterations. The reason for a different number of iterations for HS is due to its slow

convergence process, since just one agent changes its position per iteration. In regard to PSO, all agents update their positions in

the same iteration.

The main loop in Lines 5–13 is the core of the proposed framework for β optimization. The quality of each agent (parti-

cle/harmony) is assessed in the inner loop (Lines 6–11), being its current position (solution) evaluated through the Lines 7–8: in

Line 7, a call to Algorithm 3 outputs the classified image (label map L), which is used to compute the OPF accuracy (Line 8). After

that, the agent’s fitness value is updated whether its value is better than the current one (Lines 9–11). Lines 12 and 13 retrieve

the best fitness value in the swarm and its position, respectively. Finally, the position (solution) of the best agent corresponds to

the algorithm’s output (Lines 14–15).

4. Experimental setup

In this section, it is described the methodology employed to validate the proposed OPF–MRF against with traditional OPF and

SVM, as well as we have implemented an SVM–MRF classifier based on the idea of this work. In regard to the experiments, we

used images obtained from CBERS-2B and Landsat 5 TM satellites covering the area of Itatinga, SP, Brazil, and images are obtained
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Fig. 5. Labeled images used in the experiments: (a) and (b) refer to the images displayed in Fig. 4a and b, respectively, (c) and (d) stand for images displayed in

Fig. 4c and d, respectively, and (e) refers to the image displayed in Fig. 4e.
from Ikonos-2 MS and Geoeye satellites covering the area of Duque de Caxias, RJ, Brazil. Additionally, a dual-polarized (HH and

HV) image obtained from ALOS-PALSAR radar covering the area of Duque de Caxias, RJ, Brazil is also employed. Fig. 4 displays

these images, being their respective ground truth versions illustrated in Fig. 5. Table 1 displays the color associated with each

land cover class considering the images used in this work.

In regard to OPF and SVM implementations, we employed the LibOPF [34] and LibSVM [10] packages, respectively. As afore-

mentioned, the standard SVM has been modified to handle SVM–MRF similarly to OPF–MRF, but the basis of the algorithm still

relies on LibSVM. In addition, we have used the radial basis function (RBF) kernel for both SVM and SVM–MRF classifiers. Note

that the parameters of RBF kernel and SVM-based classifiers have been optimized through a cross-validation procedure.

The experiments have been conducted as follows: for each image we employed 5% of the samples (pixels) to compose the

training set D1, 15% to be part of the validating set Dv, and the remaining 80% samples to compose the test set D2. Note such

percentages have been empirically set. As aforementioned in Section 3, we have executed OPF–MRF and SVM–MRF with T = 10

iterations, being the mean accuracy for each iteration computed over a cross-validation procedure with five runnings. In addition,

for each technique, i.e., OPF–MRF and SVM–MRF, we estimated the β parameter using PSO, HS, improved harmony search (IHS)

[25], global-best harmony search (GHS) [30] and a near-exhaustive search (BF—Brute Force) within the range [0, βmax] with steps

of 0.1. This latter approach has been employed to simulate an “optimal” reference (baseline) for the recognition rate using differ-

ent β values. Table 2 presents the values of the parameters considering each meta-heuristic optimization technique employed in

this work. It follows, below, a brief explanation about each parameter:
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Table 1

Colors associated with each land cover class.

Sensor Color Land cover classes

CBERS-2B and Landsat 5 Grass lands

Bushes

Cultures

Reforesting

Dams

Roads

Ikonos-2 MS Shadows

Grass lands

Bare soil clear

Covering of average tonality

Covering of dark tonality

Bare soil moist

Covering of tree

Covering of clear tonality

Roads

Geoeye Covering of average tonality

Bare soil moist

Roads

Shadows

Grass lands

Covering of clear tonality

Covering of tree

Covering of dark tonality

Bare soil clear

ALOS-PALSAR plan areas with bare soil and dry areas

grass lands with few moist level

grass lands with average moist level

swampy and vegetation with very moist levels
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Table 2

Parameters used for PSO, HS, IHS and GHS: such values have

been empirically set.

Technique Parameters

HS HMCR = 0.9, PAR = 0.5

IHS HMCR = 0.9, PARmin = 0.1, PARmax = 0.9

BWmin = 0.1, BWmax = 0.9

GHS HMCR = 0.9, PAR = 0.5

PSO c1 = c2 = 2, w = 0.5

Fig. 6. Mean accuracy curve for OPF–MRF with β estimated through PSO, HS, IHS, GHS and BF regarding CBERS-2B image.
• PSO: it has three main parameters, being them the inertia weight w, which controls the amount of “pace” during the particle’s

movement; and c1 and c2 parameters, which can control the amount of “imitation” of one particle with respect to its best

position, as well as the best position of the whole swarm, respectively;
• HS: it has three main parameters, being them the “harmony memory considering rate” (HMCR), which defines the proba-

bility of taking a value from the harmony memory to compose the new harmony; and the “pitch adjusting rate” (PAR) and

“bandwidth” (BW), which control the amount of noise added to a possible solution to avoid traps from local optima;
• IHS: it differs from traditional HS by updating the PAR ∈ [PARmin,PARmax] and BW ∈ [BWmin,BWmax] values dynamically; and
• GHS: it employs the same modification proposed by IHS with respect to dynamic PAR values. However, it does not employ

the concept of bandwidth, being the values of the new harmony based on the ones from the best harmony.

It is important to highlight the above parameters are important, but they are not game-changing when compared to the num-

ber of OPF–MRF iterations T. Since OPF–MRF takes the improvement step over some few iterations, all optimization techniques

tend to converge to similar solutions, independent of their initial configuration. Note a special attention has been given to BW

parameter considering HS technique. Instead of using a fixed value for that, which may cause slow convergence, we developed

the following rule:

BW = e−x, (4)

such that

x =
{

2.3 + (t − 1) ∗ 0.092 if 1 ≤ t ≤ 25
4.6 otherwise,

(5)

in which t stands for the iteration number, such that 1 ≤ t ≤ Topt = 50 (main loop in Lines 5–13 from Algorithm 4). The value for

Topt has been described in Section 3.

The reason behind Eqs. (4) and (5) is due to the following: the idea is to start with high values for BW (BW = e−2.3 = 0.1 for

iteration 1) until the algorithm reaches the half of its “life time”, i.e. t = 25 for a total of 50 iterations. Therefore, while x increases

in steps of 0.092, e−x decreases until t = 25. After that, i.e., for 26 ≤ t ≤ 50, we limited BW as being a static parameter with value

BW = e−4.6 = 0.01. Thus, the main idea is to allow a faster convergence in the beginning of HS execution, and then to decrease
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Fig. 7. Mean accuracy curve for SVM–MRF with β estimated through PSO, HS, IHS, GHS and BF regarding CBERS-2B image.

Table 3

Mean execution times for learning β .

Technique CBERS-2B Landsat 5 Geoeye Ikonos-2 ALOS-PALSAR

OPF–MRF HS 5:18:19 4:48:30 0:17:30 0:15:57 0:21:35

PSO 6:36:06 5:49:47 0:26:21 0:22:46 0:29:54

BF 7:42:56 8:07:27 0:31:45 0:29:35 0:30:43

IHS 4:50:15 4:37:56 0:20:24 0:19:00 0:22:52

GHS 2:01:38 01:52:04 0:07:14 0:07:23 0:09:15

SVM–MRF HS 12:19:53 10:52:49 0:44:43 0:51:50 0:11:29

PSO 13:09:12 11:41:29 0:51:49 0:54:00 0:13:37

BF 12:45:35 11:15:26 0:53:02 1:01:40 0:15:46

IHS 12:22:13 11:10:33 0:45:23 0:52:50 0:11:26

GHS 10:46:13 9:43:24 0:37:24 0:42:52 0:04:37
such behavior in order to avoid traps from local optima around the global solution. The specific values in Eq. (5) were chosen to

restrict BW ∈ [0.1, 0.01].

In regard to the recognition rate, we used an accuracy measure proposed by Papa et al. [33], which is similar to the Kappa

index [11], but being more restrictive. If there are two classes, for example, with very different sizes and a classifier always

assigns the label of the largest class, its accuracy will fall drastically due to the high error rate on the smallest class. The accuracy

is measured by taking into account the classes may have different sizes in D2 (similar definition is applied for Dv). Let us define:

ei,1 = FPi

|D2| −
∣∣Di

2

∣∣ (6)

and

ei,2 = FNi∣∣Di
2

∣∣ , i = 1, 2, . . . , K, (7)

where K stands for the number of classes,
∣∣Di

2

∣∣ concerns with the number of samples in D2 that come from class i, and FPi and

FNi stand for the false positives and false negatives for class i, respectively. That is, FPi is the number of samples from other

classes that were classified as being from the class i in D2, and FNi is the number of samples from the class i that were incorrectly

classified as being from other classes in D2. The error terms ei, 1 and ei, 2 are then used to define the total error from class i:

Ei = ei,1 + ei,2. (8)

Finally, the accuracy Acc is then defined as follows:

Acc = 1 −
∑K

i=1 Ei
. (9)
2K
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Fig. 8. CBERS-2B classified images: (a) traditional OPF, (b) OPF–MRF with β estimated by PSO, (c) OPF–MRF with β estimated by HS, (d) OPF–MRF with β

estimated by IHS and (e) OPF–MRF with β estimated by GHS.

Table 4

Statistical analysis regarding OPF-based classifiers over CBERS-2B image. Similar techniques are in

bold.

X 2 OPF HS IHS GHS PSO BF

OPF – 5055.2609 5018.7463 5079.8849 4901.2751 5014.5422

HS 5055.2609 – 47.9359 0.0396 83.3416 10.49462

IHS 5018.7463 47.9359 – 50.8094 11.2752 19.1954

GHS 5079.8849 0.0396 50.8094 – 88.1695 11.7650

PSO 4901.2751 83.3416 11.27524 88.1695 – 47.5805

BF 5014.5422 10.4946 19.1954 11.7650 47.5805 –
In order to perform statistical analysis, we compare all possible pairwise combination of classifiers using McNemar test [22],

which is described by Eq. (10):

X 2 = (|N01 − N10| − 1)2

N01 + N10

, (10)

where N01 represents the number of times that first classifier misclassifies and the second one gives a correct classification, and

N stands for the number of times the first classifier assigns the correct label to a given sample, and the second one misclassifies.
10
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Fig. 9. CBERS-2B classified images: (a) traditional SVM, (b) SVM–MRF with β estimated by PSO, (c) SVM–MRF with β estimated by HS, (d) SVM–MRF with β

estimated by IHS and (e) SVM–MRF with β estimated by GHS.

Table 5

Statistical analysis regarding SVM-based classifiers over CBERS-2B image. Similar techniques are

in bold.

X 2 SVM HS IHS GHS PSO BF

SVM – 2426.4230 2541.7600 2541.7600 2336.4964 2381.6485

HS 2426.4230 – 3.7832 3.7832 4.0742 1.4819

IHS 2541.7600 3.7832 – 0.0000 13.0907 7.9324

GHS 2541.7600 3.7832 0.0000 – 13.0907 7.9324

PSO 2336.4964 4.0742 13.0907 13.0907 – 0.9674

BF 2381.6485 1.4819 7.9324 7.9324 0.9674 –
As the null hypothesis, we assume that both classifiers have similar performance. If the value of X 2 is greater than 10.83 (p =
0.001), it is possible to reject the null hypothesis and the classifiers have distinct performance.3
3 Note that all experiments have been conducted on a PC equipped with an Intel CPU i3® 540 3.07 GHZ, 4 GB RAM, and Ubuntu 10.04 LTS as the operational

system.
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Fig. 10. Mean accuracy curve for OPF–MRF with β estimated through PSO, HS, IHS, GHS and BF regarding Landsat 5 TM image.

Fig. 11. Mean accuracy curve for SVM–MRF with β estimated through PSO, HS, IHS, GHS and BF regarding Landsat 5 TM image.
5. Experiments

In this section, the experimental results using the methodology described in Section 4 are discussed. As aforementioned,

OPF–MRF is compared against with standard OPF and SVM classifiers, as well as SVM–MRF. In order to make the results clear,

experimental section is divided according to each image employed in this work. It is worth noting to clarify the procedure

used for all images: first of all, for each iteration of Algorithm 3, a cross-validation with five runnings has been used for mean

accuracy computation. In addition, for each cross-validation running, β is estimated using BF, as well as using PSO and HS-based

techniques through Algorithm 4 (the same number of iterations has been used for Algorithms 3 and 4, i.e., T = 10, as well as the

same training, validating and test sets were used for all techniques).
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Fig. 12. Landsat 5 TM classified images: (a) traditional OPF, (b) OPF–MRF with β estimated by PSO, (c) OPF–MRF with β estimated by HS, (d) OPF–MRF with β

estimated by IHS and (e) OPF–MRF with β estimated by GHS.

Table 6

Statistical analysis regarding OPF-based classifiers over Landsat 5 image. Similar techniques are in

bold.

X 2 OPF HS IHS HS PSO BF

OPF – 3392.9098 3406.9396 3355.1024 3418.9078 3576.0901

HS 3392.9098 – 0.6946 1.0466 4.085106 0.0780

IHS 3406.9396 0.6946 – 3.1515 0.1307 0.6277

GHS 3355.1024 1.0466 3.1515 – 2.0459 0.1898

PSO 3418.9078 4.0851 0.1307 2.0459 – 0.3243

BF 3576.0901 0.0780 0.6277 0.1898 0.3243 –
5.1. CBERS-2B image

This section presents the results obtained over the CBERS-2B image (Fig. 4a). Fig. 6 displays the mean accuracy curve over the

iterations for OPF–MRF with β estimated using PSO, HS, IHS, GHS and BF. Note that the accuracy stated in iteration 0 stands for

the original OPF classification, i.e., the one that does not consider the contextual information.

The reader can extract five important information from Fig. 6: (i) OPF–MRF clearly improves standard OPF classification in

the first iteration, (ii) the OPF–MRF accuracy during the iterations usually increases until its convergence (iteration 10), (iii) both
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Fig. 13. Landsat 5 TM classified images: (a) traditional SVM, (b) SVM–MRF with β estimated by PSO, (c) SVM–MRF with β estimated by HS, (d) SVM–MRF with

β estimated by IHS and (e) SVM–MRF with β estimated by GHS.

Table 7

Statistical analysis regarding SVM-based classifiers over Landsat 5 image. Similar techniques are

in bold.

X 2 SVM HS IHS GHS PSO BF

SVM – 1842.3732 1774.2948 1675.0094 1634.8654 1828.2435

HS 1842.3732 – 3.5124 18.6501 25.0703 0.0274

IHS 1774.2948 3.5124 – 9.2691 13.9426 2.9302

GHS 1675.0094 18.6501 9.2691 – 1.1287 17.4896

PSO 1634.8654 25.0703 13.9426 1.1287 – 23.6006

BF 1828.2435 0.0274 2.9302 17.4896 23.6006 –
PSO and HS-based approaches are able to find out similar values to the ones (“optimal”) obtained by BF (baseline), (iv) the mean

accuracies obtained by HS are slightly better than the ones obtained by PSO, and finally (v) HS with the proposed schema to

compute BW dynamically (Eqs. (4) and (5)) achieved slightly better results than IHS and GHS. Additionally, Fig. 7 displays the

SVM–MRF accuracies over the number of iterations. Once again, the β values found by HS and PSO have been quite similar to

the ones obtained by BF technique. From this figure, three important information can be highlighted: (i) OPF–MRF results are
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Fig. 14. Mean accuracy curve for OPF–MRF with β estimated through PSO, HS, IHS, GHS and BF regarding Ikonos-2 image.

Fig. 15. Mean accuracy curve for SVM–MRF with β estimated through PSO, HS, IHS, GHS and BF regarding Ikonos-2 image.
slightly better than SVM–MRF, (ii) SVM–MRF slightly improved standard SVM results,4 and (iii) PSO obtained better results than

HS. Therefore, it is possible to draw two important aspects points: (i) the proposed contextual version of OPF has improved its

standard version, (ii) as well as the proposed framework for spatial-content optimization worked well for both OPF and SVM

classifiers, evidencing the second main contribution of this work.

Table 3 displays the mean execution times considering OPF–MRF and SVM–MRF for learning β in the following format: h:m:s,

in which h and m stand for hours and minutes, respectively, and s denotes the number of seconds. It turns out, for all images,

both PSO and HS-based approaches have been faster than BF considering OPF–MRF, which make them interesting approaches to

avoid overload on empirical evaluations of β . Although HS-based techniques have a lower complexity than PSO, they need more

iterations to converge, since just one agent (harmony) is changed at each iteration, while PSO changes all of them (particles). In

addition, it is possible to observe SVM–MRF has been slower than OPF–MRF, since we are considering the computational load for
4 Note Algorithm 3 can be also applied to build the SVM–MRF classifier: the idea is just to change OPF by SVM in Lines 2–3 and 9–10.
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Fig. 16. Ikonos-2 classified images: (a) traditional OPF, (b) OPF–MRF with β estimated by PSO, (c) OPF–MRF with β estimated by HS, (d) OPF–MRF with β

estimated by IHS and (e) OPF–MRF with β estimated by GHS.
optimizing SVM parameters. The only situation that meta-heuristic-based optimization needed more computational load than

BF concerns with SVM–MRF optimized by PSO.

Figs. 8 and 9 display the CBERS-2B classified images using OPF and SVM classifiers, respectively, as well as their contextual

versions (OPF–MRF and SVM–MRF) with β estimated by PSO and HS-based techniques. A good recognition result for “grasslands”

and “reforesting” classes can be observed. However, it was noticed a confusion with respect to “bushes” and “cultures” to “grass-

lands”, and “bushes” and “roads” classes. In regard to SVM image classification, it can be verified some few errors: a confusion

from “culture” to “roads” and “bushes”. The “reforesting” and “grasslands” classes showed better recognition rates. Similar re-

sults were noticed for OPF–MRF with β estimated by HS, but with a confusion from “culture” to other classes. SVM–MRF showed

a mixture between “culture” and “reforesting” with “bushes”, “grasslands” and “roads”; “roads” were not recognized. Similar

results were observed for OPF–MRF with β estimated by PSO and OPF–MRF with β estimated by HS.

Tables 4 and 5 present the McNemar statistical test for CBERS-2B image classification results regarding OPF-based and SVM-

based techniques, respectively. From Table 4, it is possible to observe two main information: (i) OPF–MRF has improved standard

OPF using PSO, HS and BF approaches (the values of X 2 are greater than 10.83, as previously stated in Section 4), and (ii) the pairs

of techniques that seemed to have similar performance were that of (BF, HS) and (HS, GHS) (bolded).

In regard to SVM-based results, from Table 5 it is possible to observe that SVM–MRF has outperformed standard SVM, as

well as both HS-based and PSO techniques were able to find out reasonable values for β , since such techniques were considered

statistically similar to that of BF.
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Fig. 17. Ikonos-2 classified images: (a) traditional SVM, (b) SVM–MRF with β estimated by PSO, (c) SVM–MRF with β estimated by HS, (d) SVM–MRF with β

estimated by IHS and (e) SVM–MRF with β estimated by GHS.

Table 8

Statistical analysis regarding OPF-based classifiers over Ikonos-2 image. Similar techniques are in bold.

X 2 OPF HS IHS GHS PSO BF

OPF – 2899.7008 3273.1485 2900.9332 2727.6816 4025.6730

HS 2899.7008 – 34.3607 0.2874 11.5361 262.8288

IHS 3273.1485 34.3607 – 30.5201 73.0151 147.5630

GHS 2900.9332 0.2874 30.5201 – 13.7118 260.9796

PSO 2727.6816 11.5361 73.0151 13.7118 – 321.392031

BF 4025.6730 262.828804 147.5630 260.9796 321.3920 –
5.2. Landsat 5 TM image

In this section, the experimental validation over Landsat image (Fig. 4b) is presented. Fig. 10 displays the mean accuracy

curve over the iterations for OPF–MRF with β estimated using PSO, HS, IHS, GHS and BF. Clearly, BF has outperformed the meta-

heuristic techniques, being PSO slightly better than HS-based techniques. However, such improvement regarding PSO may not

be suitable, since it has a higher computational burden, as shown in Table 3. The reason is that HS-based approaches execute the
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Table 9

Statistical analysis regarding SVM-based classifiers over Ikonos-2 image. Similar techniques are

in bold.

X 2 SVM HS IHS GHS PSO BF

SVM – 1251.1060 1288.0363 1288.0363 1319.2329 1396.8101

HS 1251.1060 – 2.1485 2.1485 4.8520 22.9165

IHS 1288.0363 2.1485 – 0.0000 0.6677 13.7734

GHS 1288.0363 2.1485 0.0000 – 0.6677 13.7734

PSO 1319.2329 4.8520 0.6677 0.6677 – 10.3854

BF 1396.8101 22.9165 13.7734 13.7734 10.3854 –

Fig. 18. Mean accuracy curve for OPF–MRF with β estimated through PSO, HS, IHS, GHS and BF regarding Geoeye image.

Table 10

Statistical analysis regarding OPF-based classifiers over Geoeye image. Similar techniques are in

bold.

X 2 OPF HS IHS GHS PSO BF

OPF – 1751.3133 1780.2405 1798.6286 1825.1182 1788.4409

HS 1751.3133 – 0.0216 0.0079 0.7689 0.0005

IHS 1780.2405 0.02166 – 0.0964 1.3823 0.0152

GHS 1798.6286 0.0079 0.0964 – 0.8444 0.0257

PSO 1825.1182 0.7689 1.3823 0.8444 – 2.4362

BF 1788.4409 0.0005 0.0152 0.0257 2.4362 –

Fig. 19. Mean accuracy curve for SVM–MRF with β estimated through PSO, HS, IHS, GHS and BF regarding Geoeye image.
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Table 11

Statistical analysis regarding SVM-based classifiers over Geoeye image. Similar techniques

are in bold.

X 2 SVM HS IHS GHS PSO BF

SVM – 886.6530 858.3420 858.3420 882.1317 872.5408

HS 886.6530 – 2.5739 2.5739 0.0671 0.4419

IHS 858.3420 2.5739 – 0.0000 1.9760 0.3081

GHS 858.3420 2.5739 0.0000 – 1.9760 0.3081

PSO 882.1317 0.0671 1.9760 1.9760 – 0.2853

BF 872.5408 0.4419 0.3081 0.3081 0.2853 –

Fig. 20. Geoeye classified images: (a) traditional OPF, (b) OPF–MRF with β estimated by PSO, (c) OPF–MRF with β estimated by HS, (d) OPF–MRF with β

estimated by IHS and (e) OPF–MRF with β estimated by GHS.
fitness function (OPF–MRF procedure) only once at each iteration, while PSO executes the fitness function as many particles it

contains. Although it may converge faster, it usually requires more computational load.

Fig. 11 displays the mean accuracy curve considering SVM–MRF with β estimated using PSO, HS, IHS, GHS and BF. Basically,

the upper results are bounded by BF, which obtained the highest accuracy rates, and the lower results are bounded by PSO, that

achieved the lowest recognition rates. However, the results do not differ a lot from each other.

Figs. 12 and 13 display the classified images with β estimated by meta-heuristic and BF techniques considering OPF- and

SVM–MRF classifiers, respectively. Once again, OPF- and SVM–MRF obtained better results than their vanilla versions, as well as
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Fig. 21. Geoeye classified images: (a) traditional SVM, (b) SVM–MRF with β estimated by PSO, (c) SVM–MRF with β estimated by HS, (d) SVM–MRF with β

estimated by IHS and (e) SVM–MRF with β estimated by GHS.

Table 12

Statistical analysis regarding OPF-based classifiers over ALOS-PALSAR image. Similar techniques

are in bold.

X 2 OPF HS IHS GHS PSO BF

OPF – 2724.9776 2641.7124 2734.4859 2592.8110 2853.7568

HS 2724.9775 – 2.6495 0.0033 6.7906 6.9341

IHS 2641.7124 2.6495 – 2.6675 1.3819 16.1200

GHS 2734.4859 0.0033 2.6675 – 6.5583 6.6103

PSO 2592.8110 6.7906 1.3819 6.5583 – 23.2619

BF 2853.7568 6.9341 16.1200 6.6103 23.2619 –
the images classified with β optimized by GHS presented a better visual quality, mainly with respect to the bottom-right portion

of the images (Tables 6 and 7).

Considering the statistical results with OPF–MRF, the contextual version outperformed standard OPF, being all meta-heuristic

techniques considered similar to each other. In regard to SVM–MRF, a similarity between the pairs (HS, BF), (HS, IHS), (IHS, GHS),

(GHS, PSO), (BF, HS) and (BF, IHS) can be observed. Therefore, BF, HS and IHS have been the most accurate approaches, thus being

HS and IHS a good choice considering the trade-off between effectiveness and efficiency (Table 3).
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Fig. 22. Mean accuracy curve for OPF–MRF with β estimated through PSO, HS, IHS, GHS and BF regarding ALOS-PALSAR image.

Fig. 23. Mean accuracy curve for SVM–MRF with β estimated through PSO, HS, IHS, GHS and BF regarding ALOS-PALSAR image.
5.3. Ikonos-2 image

This section presents the results obtained over Ikonos-2 image (Fig. 4c). Fig. 14 displays the mean accuracy curve over the

iterations for OPF–MRF with β estimated using PSO, HS, IHS, GHS and BF. A similar behavior can be observed for all meta-

heuristic techniques, being the results obtained by BF slightly better. The gain in the classification accuracy was higher than

the previous experiments, showing the proposed OPF–MRF is suitable for learning with contextual information. Once again,

the proposed meta-heuristic-based framework was able to find out similar β values regarding BF technique. From Table 3, it is

possible to observe all meta-heuristic techniques have been faster than BF considering both OPF- and SVM–MRF.

Fig. 15 depicts the SVM–MRF results over Ikonos-2 image. In this case, SVM–MRF has improved standard SVM, being the

recognition rates of PSO and HS-based techniques under BF technique (except for iteration 4). Another interesting point can be

highlighted here: it seems OPF adapted better to the proposed approach than SVM, since the OPF accuracy at iteration 0 was very

close to 79%, while SVM accuracy at the very same iteration was close to 82%. However, the OPF accuracy at the last iteration was

slightly higher than SVM recognition rate.

Figs. 16 and 17 display the Ikonos-2 classified images using OPF and SVM classifiers, respectively, as well as their contextual

versions (OPF–MRF and SVM–MRF) with β estimated by PSO and HS-based techniques. A confusion in the great majority of

classes can be observed, with exception for “covering of trees” and “grasslands” with traditional OPF. OPF–MRF with β estimated
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Table 13

Statistical analysis regarding SVM-based classifiers over ALOS-PALSAR image. Similar tech-

niques are in bold.

X 2 SVM HS IHS GHS PSO BF

SVM – 1062.3209 1062.3209 994.7229 648.8286 1048.5504

HS 1062.3209 – 0.0000 6.9963 138.7408 0.9298

IHS 1062.3209 0.0000 – 6.9963 138.7408 0.9298

GHS 994.7229 6.9963 6.9963 – 104.1773 7.3518

PSO 648.8286 138.7408 138.7408 104.1773 – 191.3284

BF 1048.5504 0.9298 0.9298 7.3518 191.3284 –

Fig. 24. ALOS-PALSAR classified images: (a) traditional OPF, (b) OPF–MRF with β estimated by PSO, (c) OPF–MRF with β estimated by HS, (d) OPF–MRF with β

estimated by IHS and (e) OPF–MRF with β estimated by GHS.
by PSO showed good recognition rates for the majority of classes, with exception for “roads”. It was also observed a confusion

from “roads” to other classes, and from “bare soil moist” and “grasslands” to “roads”, with similar results for OPF–MRF with β
estimated by HS. In regard to SVM classifier, a mixture between “covering of dark tonality” and “covering of trees”, “bare soil

clear” and “covering of clear tonality” has been observed. Similar results for SVM–MRF with β estimated by both PSO and HS can

also be noticed.

Tables 8 and 9 present the McNemar statistical test for Ikonos-2 image classification results regarding OPF-based and SVM-

based techniques, respectively. From Table 8, the reader can observe OPF–MRF has outperformed standard OPF for β estimation
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Fig. 25. ALOS-PALSAR classified images: (a) traditional SVM, (b) SVM–MRF with β estimated by PSO, (c) SVM–MRF with β estimated by HS, (d) SVM–MRF with

β estimated by IHS and (e) SVM–MRF with β estimated by GHS.
using BF, PSO and HS-based techniques, being only HS and GHS considered similar to each other. In regard to SVM results, the

reader can also observe (Table 9) that SVM–MRF with BF and HS have outperformed standard SVM. Considering such classifier,

all HS-based techniques and PSO can be considered similar to each other.

5.4. Geoeye image

This section presents the results over the Geoeye satellite image (Fig. 4d). Fig. 18 displays the OPF–MRF accuracy curve with

β estimated through BF, PSO and HS-based techniques. Considering this experiment, it is possible to observe all techniques have

underlined a similar behavior, which can be noticed in the statistical validation displayed in Table 10 (all pairs of meta-heuristic

techniques are in bold).

Fig. 19 displays the mean accuracy curve considering SVM–MRF optimized with BF, PSO and HS-based techniques. A sim-

ilar behavior considering Fig. 18 can be observed, but with closer recognition rates considering all techniques. Once again, all

techniques can be considered similar to each other (Table 11). Figs. 20 and 21 display the images classified through OPF- and

SVM–MRF, respectively.

5.5. ALOS-PALSAR image

This section presents the results over ALOS-PALSAR radar image. Fig. 22 displays the accuracy curves regarding OPF–MRF

classification with β estimated through the optimization process. A similar behavior among all techniques can be observed,
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except for BF, which seemed to oscillate from iterations 4 to 10. The statistical analysis showed in Table 12 evidenced OPF–MRF

outperformed standard OPF, being HS similar to all compared techniques.

Fig. 23 depicts the accuracy curve considering SVM–MRF. Once again, the proposed approach outperformed standard clas-

sification (iteration 0), but with an oscillating behavior for all techniques. In this case, BF results have been much better than

the ones obtained by HS, leading us to conclude the optimization landscape for SVM–MRF fine-tuning is more complex than

OPF–MRF one. The statistical analysis presented in Table 13 showed HS and BF obtained similar recognition rates, which may be

due to the high standard deviation obtained by HS during the optimization process. In regard to the computational load, if one

considers Table 3, GHS has been the fastest technique once again, with PSO computational burden very close to BF.

Figs. 24 and 25 display the ALOS-PALSAR images classified by OPF- and SVM–MRF. Although the images classified by SVM

seemed to be more accurate than OPF ones, such data were obtained from a single iteration only, and did not reflect the averaged

results displayed in Figs. 22 and 23.

6. Conclusions

In this work, it has been presented a contextual version of the OPF classifier called OPF–MRF, which maximizes a Potts model-

like energy function together with the path-cost minimization provided by standard OPF classifier. The proposed approach has

been evaluated in the context of land cover image classification in four images provided by CBERS-2B, Landsat 5 TM, Ikonos-

2 and Geoeye satellites, plus one more image obtained by ALOS-PALSAR radar, being OPF–MRF results more accurate than

the ones obtained by standard OPF. In addition, it has been proposed a meta-heuristic-based optimization framework to find

out suitable values for the Potts model β parameter, which controls the amount of contextual information to be used during

the learning process. For such purpose, the well-known particle swarm optimization and three variants of the harmony search

were employed, and compared to a baseline provided by a near-exhaustive search over a reasonable range of β values. It is pos-

sible to conclude the proposed approach can find out similar values to the “near-optimal” ones computed by the near-exhaustive

search, which can still improve OPF–MRF recognition rates. Additionally, the proposed approach was evaluated considering SVM

classifier, showing it might work with any pattern recognition technique as well.

Among all optimization techniques, we consider GHS might be most suitable one, since it obtained one of the top results

with the lowest computational burden. Additionally, it has less parameters than IHS and PSO, being much faster than the last

one. Although PSO obtained better or similar results compared to BF, their computational load is quite similar, since PSO updates

all possible solutions at each iteration, thus requiring the execution of OPF–MRF whenever a particle changes its position in

the search space. In regard to future works, we aim at addressing other meta-heuristic techniques to optimize β , as well as to

combine OPF with conditional random fields and to employ different MRF models.
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