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Abstract—This article presents a method to detect and classify volt-
age disturbances in electric power distribution systems using a mod-
ified Euclidean ARTMAP neural network with continuous training.
This decision-making tool accelerates the procedures to restore the
normal operation conditions providing security, reliability, and profits
to utilities. Furthermore, it allows the diagnosis system to adapt to
changes from the constant evolution of the electric system. The volt-
age signals features or signatures are extracted using discrete wavelet
transform, multiresolution analysis, and the energy concept. Results
show that the proposed methodology is robust and efficient, providing
a fast diagnosis process. The data set used to validate the proposal
is obtained by simulations in a real distribution system using ATP
software.

1. INTRODUCTION

Users have recently been demanding a best energy supply
with quality and reliability, reducing voltage abnormalities
and minimizing interruptions caused by disturbances [1, 2].
Among the most common disturbances, emphasis is on voltage
sag; caused by, e.g., short circuit, voltage swell; caused by, e.g.,
capacitor bank switching, and harmonics; caused by, e.g., the
presence of non-linear equipment connected to the electric
network.

The occurrence of these disturbances degrade the power
quality, leading to faulty operation of some equipment con-
nected to the network, conductor superheating, and malfunc-
tion of the protection system. Therefore, distribution compa-
nies invest in developing new techniques that are able to de-
tect and classify such disturbances quickly, with security and
in an efficient manner, contributing to the automation of the
distribution systems [3, 4]. Normally, detection of the distur-
bances is done through the visual inspection of voltage distur-
bances by the operators, who require some previous experience
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in analysis and decision making. Because of the dependence
on human operators, the diagnosis is susceptible to errors.
Thus, the automation of this practice is very important, where
techniques based on artificial intelligence assist the operator
to classify abnormalities.

The specialized literature contains several proposals aiming
to identify voltage disturbances automatically [5, 6, 7, 8].

In [9], a hybrid technique to characterize the power qual-
ity disturbances is presented. The hybrid technique uses the
Kalman filter with discrete wavelet transform (DWT) to ex-
tract the waveform characteristics. Then, based on fuzzy rules,
the fuzzy system provides as output the type of the disturbance.

A new approach to classify the power quality disturbances
employing the Markov model and wavelet transform (WT)
was proposed in [10]. By applying WT, it is possible to calcu-
late the energy distribution coefficients considering each de-
composition level of the analyzed disturbances. Therefore, the
extracted indexes initialize the training matrix of the Markov
model maximizing the precision of the classification. Further-
more, the Dempster–Shafer algorithm [10] is used to obtain
qualitative information about the result.

In [11], a classification system based on S-transform and a
probabilistic neural network was proposed. The power quality
disturbances are analyzed by S-transform; then the character-
istics of the time–frequency domain are extracted from the
S-matrix to compose the input vector of the neural system,
which provides the diagnosis.

In [12], a base rule was employed to classify the power qual-
ity disturbance. The disturbances are characterized by multi-
layer S-transform, which acts as a singularity extraction tool.
The pattern classification algorithm that identifies the distur-
bances uses linear and parabolic rules, where the decision
intervals are defined by heuristics.

In [13], a methodology was proposed to classify power
quality disturbances by an intelligent recognition system. The
characteristics representing the disturbances are extracted ap-
plying WT on the three-phase voltage signals. Also, a support
vector machine classifies the disturbance present on the power
system.

In [14], a decision-making system was presented for auto-
mated classification of power quality disturbances, where the
most common types of disturbances, including flickers, har-
monics, impulses, notches, outages, sags, swells, and switch-
ing transients, were studied. The signal-processing techniques
utilized to extract the waveforms features are Fourier and S-
transform, and a method based on the binary feature matrix
was designed to classify the disturbance type.

Considering the concept of the smart grid, where the dis-
tribution systems must be intelligent and with learning capac-

ity, the development of voltage disturbance diagnosis meth-
ods must present the above-described characteristics. Self-
adaptation is a fundamental characteristic that allows the sys-
tem to adapt to the changes coming from the expansion and
evolution of the electrical system, e.g., new kinds of distur-
bances, failures, and without the interference of human oper-
ators. Considering that several techniques based on artificial
intelligence are available, some characteristics in choosing one
or other must be observed. For example, none allows activating
an automatic learning system without the interference of hu-
man operators. Therefore, the ART family neural networks that
present characteristics of plasticity and stability can be used to
incorporate new information different from those previously
acquired, i.e., knowledge.

This study presents an auto-adaptive methodology for volt-
age disturbance diagnosis in electrical distribution feeders. It
is simple, robust, and flexible, using the modified Euclidean
adaptive resonance theory mapping neural network, to clas-
sify and learn different disturbances [15]. The neural network
is based on a new conception where the performance is im-
proved as time goes by; i.e., as new knowledge is presented
to the network, it is not necessary to reinitialize the training
process. The reinforcement of this knowledge is on-line, auto-
matic and refines the previously acquired knowledge once the
network presents parameters that identify the presence of new
knowledge. This continuous training module does not require
additional computational effort when compared to other neural
network configurations, e.g., the backpropagation algorithm.

The continuous training uses data of the acquisition system
(supervisory control and data acquisition [SCADA]), data ob-
tained from simulations containing topology changes on the
electrical system, and other kinds of voltage disturbance, in-
cluding other abnormalities, e.g., low- and high-impedance
short circuits.

The extraction of the voltage waveform characteristics is
realized through the employment of DWT, multi-resolution
analysis (MRA), and the energy concept. These characteris-
tics correspond to the input vector of the MECT-ARTMAP
neural network. As output, the neural network provides a bi-
nary codification previously defined to represent the type of
disturbance present on the feeder.

This article is organized as follows. Section 2 shows the
structure of the method used. Sections 3 and 4 present the
DWT and the MRA, respectively. The voltage disturbance de-
tection module is described in Section 5. Section 6 emphasizes
the procedures to extract the voltage disturbance characteris-
tics. Section 7 shows the methodology to process and codify
the voltage disturbances. Section 8 presents the classification
module. Section 9 highlights the database configuration. The
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FIGURE 1. Structure of the voltage abnormality diagnosis
system.

results and discussions are presented in Section 10 and the
conclusion in Section 11.

2. STRUCTURE OF THE PROPOSED
METHODOLOGY

Figure 1 presents the modules of the developed system to
detect and classify voltage disturbances. This system can be
modified to attend the necessities of distribution companies
according to the electrical system constant evolution.

3. WT

In most applications, where it is necessary to extract charac-
teristics, the methods employed are based on Fourier trans-
form. Even being a powerful tool for disturbance diagnosis,
Fourier transform is inadequate to analyze non-stationary sig-
nals. Thus, WT is a concept that surpasses the limitations of
techniques based on Fourier transform once it provides the
temporal evolution of frequency transients [16].

WT is a linear transform that uses oscillation functions
with different frequencies as windowing functions. This base
function, called the mother wavelet, must have finite energy
and medium value equal to zero. The mother wavelet is defined
according to Eq. (1) [17]:

ψr,s (t) = 1√|r |ψ
(

t − s

r

)
, (1)

where s is a translation parameter and r the scale parameter.
To analyze oscillographs obtained by acquisition data

equipment, it is necessary to discretize the wavelet function.
Thus, DWT of a sample signal f (k) is defined as follows [17]:

DW T f = 〈
f, ψm,n

〉 =
∑

k

f [k]ψ∗
m.n [k], (2)

where

ψ∗
m,n [k] = 1√

rm
0

ψ∗
[

k − ns0rm
0

rm
0

]
.

4. MRA

MRA consists of calculating coefficients cam and cdm deter-
mined by Eqs. (3) and (4), respectively. To calculate coef-
ficients cam + 1 and cdm + 1, it is necessary to perform the
discrete convolution of the signal cam with a low-pass filter
(h; i.e., discrete scale function) and a high-pass filter (g; i.e.,
discrete wavelet function). At the output of each one of the
filters, the decomposed signal is subsampled by a factor of 2
[18]:

cam+1 [p] =
∑

n

h [n − 2p] cam [n], (3)

cdm+1 [p] =
∑

n

g [n − 2p] cam [n]. (4)

The coefficients obtained at the output of the low-pass
filter cam + 1 are characterized as being the high-scale and
low-frequency components of the signal, called approxima-
tion coefficients. The coefficients obtained at the output of the
high-pass filter cdm + 1 are the components of low-scale and
high-frequency components, called detail coefficients.

5. DISTURBANCE DETECTION MODULE

The voltage disturbance detection module is designed con-
sidering the constant evolution of technologies employed at
the substations and the natural dynamism of the electric power
systems, such as loading, disturbance insertion angle, location,
and noise presence in oscillographs, and is aimed to obtain a
robust, flexible, and efficient methodology.



Barros et al.: Detection and Classification of Voltage Disturbances in Electrical Power Systems 2181

The disturbance detection is done by analyzing the voltage
oscillographs acquired at the principal substation output. In
this step, the signal windowing is defined to be two cycles and
the step under analysis to be one cycle. Thus, MRA is applied
to decompose the signal of the phase in two resolution levels.
Subsequently, calculations of the arithmetic average of the
absolute value of the detail coefficients (previously defined
in Eq. (4)) of each one of the decomposition level of the
oscillograph under analysis are made [16]:

di j =
∑N j

k=1

∣∣∣cdk
i j

∣∣∣
N j

, (5)

where

i is the oscillograph under analysis, i.e., Va, Vb and Vc;
j is the decomposition level, i.e., 1 and 2;
Nj is the quantity of the detail coefficients of level j;
k is the kth detail coefficient of level j referred to oscillograph

i; and
di j is the arithmetic average of the detail coefficients of level

j referred to oscillograph i.

Further, the variation in relation to the arithmetic average
obtained for each detail coefficient using Eq. (6) is calculated
[16]:

vark
i j = ∣∣∣∣cdk

i j

∣∣ − di j

∣∣ , (6)

where vark
i j is the variation of the kth detail coefficient in

relation to the arithmetic average of these coefficients for level
j referred to oscillograph i.

At the same time, the standard deviation of the absolute
value of the detail coefficients under evaluation is obtained
[16]:

σi j =

√√√√√
∑N j

k=1

(∣∣∣cdk
i j

∣∣∣ − di j

)2

N j − 1
, (7)

where σ ij is the standard deviation of the detail coefficients of
level j referred to oscillograph i.

The voltage disturbance detection process is based on the
two sets of rules presented in Eqs. (8) and (9), where each rule
is divided into two parts: macro-analysis and micro-analysis.
The general behavior of the signal is known by the macro-
analysis, i.e., comparing the maximal variation of the detail
coefficients with a percentage of the standard deviation, which
provides major immunity to noise presence in oscillographs
under analysis and minimizes the effect of changes in the power
distribution system. The micro-analysis allows a point-to-point
analysis of the major detail coefficient with a predefined limit

(set by the operator) [16]:

if max[var i j ] > 1.25σi j max[cd i j ] >μ j , then τi j= 1 (8)

shows the existence of abnormalities on the system

if max[var i j ] ≤ 1.25σi j or max[cd i j ] ≤ μ j , then τi j= 0 (9)

shows the normal operation of the system,
where μj is the parameter to be specified based on the protec-
tion philosophy of the system and the operator experience, and
τ ij is the index of the operation state of the system.

The rate 1.25 is defined after the analyzing the values from
Eqs. (6) and (7) and also considering the signals representing
the normal operation from the voltage disturbances. Thus, the
detection module presented in Figure 1 assures the presence of
abnormalities if the rule of Eq. (9) is satisfied, and the normal
operation if the rule of Eq. (8) is satisfied.

6. FEATURE EXTRACTION MODULE

Once any abnormality on the system is detected, the classifi-
cation step is activated. The extraction of the disturbance char-
acteristic indices is realized by DWT, MRA, and the energy
concept. These behavioral indices compose the input vector of
the MECT-ARTMAP, which classifies the disturbance.

6.1. Energy

The energy concept corresponds to a data fusion tool that
can be used to aggregate information extracted from a sig-
nal through signal processing techniques. In particular, this
concept is used often to aggregate the coefficients extracted
using DWT. If the diagnosis procedure considers these fea-
tures as input, the process can become inefficient once high
computational effort is required. Therefore, the application of
the energy concept reduces the dimension of the input vec-
tor; i.e., the coefficients are aggregated in scalars, leading the
procedure to be faster and reliable [19].

The energy can be calculated using the following equation:

E =
Z∑

n p=1

∣∣x [
n p

]∣∣2
, (10)

where x[np] is the npth sample of signal x, Z is the quantity of
points of the analyzed signal, and E is the energy of the signal.

6.2. Characteristic Extraction

The classification model selects two pre-disturbance and two
disturbance cycles of the voltage oscillographs. These cycles
are decomposed by the MRA into four resolution levels. It
is emphasized that DWT is applied again once the cycles are
analyzed at this juncture. It is to be noted that these two pre-
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disturbance cycles and two cycles with disturbance are differ-
ent from those used on the detection process.

The characteristics of the system’s operation state are based
on the detail coefficients of the third and fourth level, and
the approximation coefficients of the fourth level [20]. Then
the energy of the detail and approximation coefficients of the
pre-disturbance cycles, considering each one of the phases, is
calculated according to Eqs. (11) and (12):

Eca f,pd
j =

N j∑
n=1

∣∣∣ca f,pd
j [n]

∣∣∣2
, (11)

Ecd f,pd
j =

N j∑
n=1

∣∣∣cd f,pd
j [n]

∣∣∣2
, (12)

where

pd is the pre-disturbance;
j is the decomposition level, i.e., third and fourth detail level,

and fourth approximation level;
f is the phase of the analyzed oscillograph, i.e., Va, Vb, and

Vc;
Nj is the coefficients’ quantity of level j;
capd[n] is the value of the nth approximation coefficient of the

pre-disturbance cycles; and
cdpd[n] is the value of the nth detail coefficient of the pre-

disturbance cycles.

The same procedure is applied for the coefficients of the
disturbance cycles:

Eca f
j =

N j∑
n=1

∣∣∣ca f
j [n]

∣∣∣2
, (13)

Ecd f
j =

N j∑
n=1

∣∣∣cd f
j [n]

∣∣∣2
, (14)

where:

f is the phase of the analyzed oscillograph, i.e., Va, Vb, and
Vc;

j is the decomposition level, i.e., third and fourth detail level,
and fourth approximation level;

Nj is the coefficients’ quantity of level j;
ca[n] is the value of the nth approximation coefficient of the

cycles with disturbance; and
cd[n] is the value of the nth detail coefficient of the cycles with

disturbance.

Thus, the characteristic vectors for the pre and with distur-
bance cycles are defined.

Apre-disturbance =
[

E V a,pd
cd3 E V a,pd

cd4 E V a,pd
ca4 E V b,pd

cd3 E V b,pd
cd4

E V b,pd
ca4 E V c,pd

cd3 E V c,pd
cd4 E V c,pd

ca4

]
, (15)

Adisturbance = [
E V a

cd3 E V a
cd4 E V a

ca4 E V b
cd3 E V b

cd4 E V b
ca4 E V c

cd3 E V c
cd4 E V c

ca4

]
,

(16)
Subsequently, the pre-disturbance characteristic vector is

subtracted from the characteristic vector under disturbance.
This is necessary to obtain a complete analysis of the type
of disturbance, incorporating into the methodology system’s
reference operation, i.e., normal operation [20]:

�=Adisturbance−Apre−disturbance. (17)

After analyzing the type of disturbance, vector� is normal-
ized and codified to obtain more generalization of the project
and maintaining the signal information (positive and negative)
[20].

7. PROCESSING AND CODIFICATION MODULE

The input vector of the MECT-ARTMAP neural network (a)
is defined by [20]

a = [��], (18)

where

Ψ = [�1�2 . . . �9],

with

�i = |�i |
�max

,

|�max| = max { |�i | } , i = 1, ... , 9.

The components of vector φ are defined according to

{
�i > 0 → �i = 1
�i ≤ 0 → �i = 0

, i = 1, ..., 9, (19)

where ψ is the vector of the normalized characteristics, and φ
is the signal of each normalized characteristic.

This process corresponds to the normalization step pre-
sented in Figure 1. This procedure must be executed for each
vector to be analyzed to provide a correct distinction among
the different disturbances analyzed by the modified Euclidean
ARTMAP (ME-ARTMAP) neural network.

The output of the neural network, defined by vector (b),
provides the type of voltage disturbance present on the system.
This output is codified as shown on Table 1.
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Voltage disturbance Output codification

Swell [0 0 0 1]
Sag [0 0 1 0]
Interruption [0 0 1 1]
Harmonics [0 1 0 0]
Swell with harmonics [0 1 0 1]
Sag with harmonics [0 1 1 0]
Oscillatory transient [0 1 1 1]

TABLE 1. Output codification

8. DISTURBANCE CLASSIFICATION MODULE
USING MECT-ARTMAP

The classification of the voltage disturbances is realized by
the MECT-ARTMAP, which had been previously training in
the off-line mode to improve the acquired knowledge in the
on-line mode, i.e., during the diagnosis.

8.1. ME-ARTMAP Neural Network

The ME-ARTMAP is a self-organized system composed of
two Euclidean adaptive resonance theory (ART) modules,
ARTa and ARTb, interconnected by an associate memory mod-
ule called inter-ART. This neural network uses the Euclidean
distance in the calculus, allowing the neural system responses
to binary or analogic input patterns, pertaining to the set R+

([0, +∞]).
The inter-ART module has a self-regulatory mechanism,

called match-tracking, that uses the fuzzy operator AND (∧)
to verify if the matching with the input and output of the neural
network happens or not, as well as that at ARTMAP-fuzzy [21].
If there is no matching, then the reset occurs. At the reset, a new
category of the ARTa module is chosen to be introduced at the
resonance process. Furthermore, a decrease occurs at the pa-
rameter ρa. The inter-ART vigilance criterion is only activated
when no category is created either in ARTa or in ARTb. It is ini-
tialized with one active neuron, i.e., the first pattern presented
to the network (Wa

1,i = a1,i and W b
1, j = b1, j ). The weights of

the inter-ART module are defined as follows: W ab
1,1 = 1 and

W ab
1,n = 0, where n = 2, 3, ..., N . The other weights Wab are

set in 1 [22]. The input and output vectors are represented by
a and b, respectively, and defined according to Eqs. (20) and
(21):

a= [a1,a2, . . . ,aMa], (20)

b= [b1,b2, . . . ,bMb], (21)

where

ai ∈ [0, 1] , i = 1, 2, ...,Ma,

b j ∈ [0, 1] , j = 1, 2, ...,Mb,

where Ma is the dimension of vector a (input), Mb is the
dimension of vector b (output), and N is the quantity of input
and output patterns.

The training depends basically on choosing the vigilance
parameters (ρa, ρb, and ρab), the training rate (β), and the
increasing parameter (ε).

The ME-ARTMAP neural network is a conception that pro-
vides solutions with quality, precision, and speed. One advan-
tage of this neural network is that the complementary normal-
ization and codification of the input patterns are not required,
which consequently doubles the dimension of the input vector.
Furthermore, as it uses a quadratic geometry, the formation
of classes is more precise when compared to the conventional
formulation of the fuzzy ARTMAP (rectangular geometry).
Figure 2 presents the flowchart of the ME-ARTMAP neural
network.

8.2. MECT-ARTMAP Neural Network

The continuous training to be incorporated at the
ME-ARTMAP neural network is presented as follows. With
the training in a continuous form, if new patterns are available,
e.g., simulations or oscillographs provided by the data acquisi-
tion system, the training step does not need to be reinitialized,
which is different when compared to other neural network ap-
proaches already known in the literature. The incorporation of
continuous training, as in the ME-ARTMAP and other ART
family neural networks, is possible because of the stability
and plasticity characteristic, consisting of an improved neural
system when compared to the multi-layer perceptron with the
backpropagation algorithm [15, 22, 23].

Continuous training allows inclusion of new patterns to
the memory permanently. Thus, the training and analysis
(diagnosis) are faster and more efficient procedures. Some
new elements were added to the training algorithm of the
ME-ARTMAP neural network for a correct run of this mech-
anism.

The first modification is the inclusion of temporary and
definitive weights at the ARTa module. This is necessary to
avoid the presence of categories similar to the network mem-
ory. Therefore, there are temporary and definitive categories
during the process of choosing categories. Further, two choice
functions are defined, one for the temporary categories

(
T t
v

)
,

and other for the definitive categories
(
T d

i

)
[22].

The temporary category is initialized with only one ac-
tive neuron, i.e., the first pattern presented to the network(
Wat

1 = a1
)
, and the weights of the temporary inter-ART mod-

ule Wabt are set in 1. Definitive weights W ad, W bd, and W abd
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FIGURE 2. Flowchart of the ME-ARTMAP neural network.

of ARTa, ARTb, and inter-ART are equal to weights W a, W b,
and W ab of ME-ARTMAP trained off-line, respectively.

The second modification is the inclusion of two new pat-
terns: NMIN and η. The parameter NMIN (NMIN ∈ �, with
NMIN > 1) refers to the quantity of patterns necessary for
a temporary weight to become a definitive one. During the
training, similar temporary patterns are counted and filed on
vector ContT , and when the value attains NMIN , it becomes
definitive. The parameter η (η > 0) verifies if it is necessary
to update the winner of the definitive category of weights;
i.e., the redundant information are undervalued. Thus, classes
and similar patterns do not need to be allocated in different

categories, and, moreover, the unnecessary overloading of the
memory is avoided [22]. Figure 3 presents the flowchart of the
MECT-ARTMAP neural network.

9. TEST SYSTEM

Generally, research centers and distribution companies do not
have a consistent data set representing the operation system
under disturbance. Considering the lack of these registers, it
is necessary to use test systems to simulate the disturbances,
leading to the extraction of adequate information and validat-
ing the disturbance diagnosis methodology.
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FIGURE 3. Flowchart of the MECT-ARTMAP neural network.

9.1. Model of the Simulated Feeder

Therefore, the proposed voltage abnormality diagnosis scheme
was tested in a real 13.8-kV distribution system, obtained from
[24]. This feeder (test system) was modeled using the software
Alternative Transients Program (ATP) [25].

Simulations of the voltage disturbances were executed with
one of the routines of the ATP containing the sources of the

disturbances approached in this study. Each simulation used a
sample frequency of 15.36 kHz, corresponding to 256 samples
per cycle.

The different signal acquisition devices generally use this
sampling frequency. It is emphasized that the neural network
accuracy rate will increase along with the number of samples
employed in disturbances analysis, i.e., better distinction.
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Decomposition level

Parameter First Second

μ 0.005 0.07

TABLE 2. Parameter for voltage disturbance detection

10. RESULTS AND DISCUSSIONS

The methodology developed for voltage disturbance diagnosis
in electrical distribution feeders is robust, efficient, and able
to learn as time goes by.

The Daubechies mother wavelet [18] is used for detect-
ing the disturbances with a fourth-order filter (db4). Table 2
presents the values of the limit parameters used by the operator
to verify the operative state of the system. This module presents
100% accuracy in identifying abnormal situations with high
computational performance.

Two cycles under disturbance and two cycles at predis-
turbance are selected once any abnormal operation on the
distribution system is detected and after identifying the in-
stant when the disturbance begins. Subsequently, they are an-
alyzed in four resolution levels by MRA and aggregated by
the energy concept. At this step, the mother wavelet is also
the Daubechies with the fourth-order filter (db4). The input
vector of the ME-ARTMAP module (off-line training) uses as
reference the normal operation of the energy, referred to as the
wavelet coefficients of the pre-disturbance cycles; this energy
is subtracted from the energy of the detail and approximation
coefficients of the cycles under disturbance.

At the classification step, there are 3024 voltage distur-
bance vectors of which 524 were selected for training the
ME-ARTMAP module and 2500 for test. It is emphasized that
this selection was done pseudo-randomly (with a predefined
seed). Additionally, 432 disturbances from the harmonic class
were included on the test pattern set. Thus, it was possible
to visualize the capacity of the continuous training module in
acquiring new knowledge, showing the improvement of the

Voltage disturbance Pattern test Accuracy (%)

Swell 346 83.51
Sag 338 54.73
Interruption 338 81.95
Harmonics 432 0
Swell with harmonics 359 93.31
Sag with harmonics 346 54.33
Oscillatory transient 341 99.70

TABLE 3. Accuracy rate without the continuous training module

FIGURE 4. Evolution of the neural network with continuous
training.

results as time passed. Table 3 shows the accuracy rate in the
ME-ARTMAP module.

It is observed that by analyzing the accuracy percentage
for each one of the disturbances, this percentage is zero for
the voltage disturbance defined as harmonic. This occurrence
is because of the lack of patterns representing the harmonic
disturbance during the training of the neural network; i.e.,
there is no harmonic disturbance on the off-line training of
the neural network. Thus, the neural network is unable to learn
such a disturbance, and when they are presented at the test step,
the neural network classifies wrongly; therefore, the accuracy
rate for this disturbance is zero.

Furthermore, the accuracy rate of the disturbances sag and
sag with harmonic was very low. The errors in classifying
these disturbances are because of the characteristic index, once
the disturbances sag, outage, and sag with harmonic present
the same behavior in amplitude. Therefore, the disturbances
sag and sag with harmonic are classified as outage by the
classification module.

Finally, at the off-line training step, the continuous training
module is activated. Each one of the test pattern used at the
ME-ARTMAP is presented separately, i.e., one by one, for
the MECT-ARTMAP. The MECT-ARTMAP provides a new
diagnosis even as new patterns are presented to the network.
Then, considering every test pattern, the network provides
2500 different diagnoses. Figure 4 presents the evolution of
the accuracy rate after including each one of the test patterns
on the continuous training. Table 4 shows the final result after
including the 2500 patterns on the continuous training.

Comparing Tables 3 and 4, it is observed that there is an
improvement in the classification step; i.e., the neural net-
work with continuous training is able to classify correctly dis-
turbances that were wrongly classified previously. It is also
observed that the accuracy of the disturbance harmonic is im-
proved from 0 to 99.53. The increase of this accuracy rate is a
consequence of the neural network incorporating new patterns
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Voltage disturbance Pattern test Accuracy (%)

Swell 346 100
Sag 338 72.18
Interruption 338 97.33
Harmonics 432 99.53
Swell with harmonics 359 98.32
Sag with harmonics 346 71.38
Oscillatory transient 341 99.70
Total 250 91.20

TABLE 4. Accuracy rate with the continuous training module

into the data base, i.e., disturbances that were previously un-
known are now correctly identified at the test step. This case
exemplifies what occurs if an unknown disturbance were pre-
sented to the ARTMAP-EMTC; i.e., first, it cannot identify
correctly, but after verifying the need to learn this unknown
data, the neural network includes this pattern automatically to
the memory and is able to correctly identify a posteriori.

The MECT-ARTMAP presented efficiency and robustness
to the dynamism of the electrical power systems; i.e., distur-
bances were detected and classified at different loading levels
and locations (bus) of the distribution system. This improve-
ment process is observed even as the neural network executes
the diagnosis simultaneously with the continuous training. The
parameters used at the training and test phases are training rate
β = 1; vigilance parameters ρa = 0.15, ρb = 0, and ρab =
0.95; incremental vigilance parameter ε = 0.01; novelty index
η = 2; and similarity pattern NMIN = 2.

11. CONCLUSION

This study consists of a neural structure with continuous train-
ing applied to classify voltage disturbances in electrical distri-
bution systems. This decision-making tool aids the substation
automation process to restore normal operation in a faster,
flexible, and robust manner. The voltage disturbance diagno-
sis module is projected to attend the needs of the distribution
companies, considering the current economic situation of the
electrical sector, and can be easily implemented with reduced
costs, as it is only necessary to acquire equipment for signal
acquisition and a data processing module.

By the combined use of signal processing techniques and
methodologies based on artificial intelligence, the diagnosis
system presents high generalization capacity, flexibility, and
efficiency—important characteristics in aiding the decision
making at substations. The detection process is able to iden-
tify every abnormal operational situation. Thus, once the pres-
ence of a voltage disturbance is identified, the voltage oscil-

lographies are analyzed by the MRA and the energy concept,
generating characteristic indices that represent the detected
disturbances. Therefore, these indices are presented to the
MECT-ARTMAP neural network providing the operator the
type of voltage disturbance. Furthermore, using a new dif-
ferent training concept, the neural module at each diagnosis
improves or acquires new knowledge.

Therefore, the advantage of the MECT-ARTMAP neural
network in relation to other conventional neural networks avail-
able on the literature is that it allows continuous improvement
of the existent categories with the learning being continuously
realized without the need to reinitialize the training. This im-
portant characteristic allows the application of the neural net-
work in modern electrical energy systems, i.e., smart grids,
once it has the capacity to learn in real time.
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