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We report an atomistic simulation study at low concentration of lithium in scanning all the possible path-
ways for Li migration in TiO2 polymorphs. We are particularly interested in showing the effects of the
structural properties on the intercalation energies and on the energy barriers for ion diffusion. The most
favourable directions for Li+ transport are highlighted and we observe an anisotropic diffusion in rutile,
brookite and TiO2-B whereas the diffusion is isotropic in the case of anatase. The lowest energy barrier is
calculated in rutile but it is not a key factor to determine the efficiency of Li-battery materials.
Intercalation energies of stable and transition states are however important data to take into account
as well as the Li pathway in order to evaluate the potentiality of each polymorph for Li migration.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The migration of extrinsic and intrinsic defects plays a key role
in many industrial applications such as lithium-ion batteries and
fuel cells. However, understanding the mechanism of the intercala-
tion and diffusion at the atomic scale is often not well understood.

Recent reviews and theoretical work [1–6] have been devoted
to anode and cathode electrodes. Titanium oxides are very promis-
ing anode materials and particularly the TiO2-B phase. TiO2-B
shows a higher capacity [7–9] (up to 338 mA h/g on nanotubes
[8] and more recently up to 360 mA h/g on nanoribbons [10]) than
the other polymorphs. This phase is less dense than rutile, anatase
and brookite phases (respectively 3.73–3.75 g/cm3 [11,12], 4.26 g/
cm3 [13], 3.92 g/cm3 [13], 4.12 g/cm3 [14]) which can explain its
efficiency for Li-batteries. Also, there are numerous theoretical
and experimental studies on the intercalation of lithium in rutile
and anatase [15–33], there is an increasing number of studies on
TiO2-B [3–7,23,32,34–38], few studies on other phases of titania
[39–43], rarer on brookite [6,44–48] and scarce on amorphous
TiO2 [49,50]. Like the rutile, the brookite phase has shown no
attractiveness for Li-battery unless we reach the nanoparticle size.
Only small nanoparticles allow to intercalate a decent quantity of
lithium (up to 0.95 Li/Ti in brookite [44], up to 0.85 Li/Ti in rutile
[51]) and phase transformations are frequently observed in the
case of anatase and rutile [51–53]. The migration of Li is another
important point to understand. The ionic diffusion coefficients
are difficult to obtain experimentally and a wide range of values
has been reported due to the fact that the diffusion can be calcu-
lated microscopically or macroscopically. For example, on the ana-
tase phase, various values on the Li diffusion coefficient can be
found in the literature, from 10�12 to 10�17 cm2/s [26,54]. Other
phenomena influence the diffusion coefficient such as the temper-
ature (the coefficient increases as the temperature increases) and
the phase transformation (anatase transforms reversibly to an Li-
titanate phase around Li/Ti � 0.5 and the coefficient decreases
[26,30]). The highest Li diffusion coefficient has been experimen-
tally measured for the rutile phase [55] (anisotropic diffusion of
2.7 � 10�3 cm2/s along the c direction with an activation energy
of 0.3 eV) at the meantime, the main obstacle is to intercalate Li
in large particle sizes [51]. The activation energy in the case of
TiO2-B is about 0.48 eV [56].

We use empirical methods to give new insights on the Li migra-
tion through a systematic study. The specific purpose of this work
is to detail the diffusion pathways, intercalation sites and to
explain the potentiality of Li-battery materials through their ener-
getic and structural properties.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comptc.2015.09.002&domain=pdf
http://dx.doi.org/10.1016/j.comptc.2015.09.002
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2. Methods

The atomistic simulations are undertaken using METADISE [57]
(Minimum Energy Techniques Applied to Dislocation, Interface,
and Surface Energies) and GULP [58,59] (General Utility Lattice
Program). METADISE has been mainly used to scan the different
pathways in TiO2 polymorphs and GULP is used to refine the punc-
tual defect calculations.

2.1. Interatomic potential methods

The simulations with METADISE and GULP are based on a Born
model of solid assuming that the ions interact via long-range elec-
trostatic forces (Coulombic interactions) and short-range forces
including both the repulsions and the van der Waals attractions
between neighbouring electron charge clouds [60]. In this study,
different potentials have been tested and we have opted for inter-
atomic potentials from Kerisit et al. [6] with a core–shell model
which was derived from Matsui and Akoagi (MA) potentials [61]
for TiO2. LiTiO2 potentials have been further tested and compared
to previous DFT calculations on TiO2-B [3,4] and experimental data
[36].

The potentials follow the relation:

Vrij ¼
X qiqj

rij
þ Aij expð�rij=qijÞ �

Cij

r6ij

With rij the separation between the ions i and j; qi and qj the charges
of each ion acting in the Coulombic term; and Aij, qij, Cij the ion–ion
parameters in the Buckingham relation.

2.2. Scan of Li pathways

One of the strengths of using interatomic potentialmodels is that
the total energy of the system can be evaluated rapidly. Thus we are
able to exploit this by performing a simple scan of the total interac-
tion energy as a function of the lithium position. This is achieved by
simply adjusting the position of the lithium ion in steps of 0.1 Å
within the unit cell, and then calculating the energy. As we use the
shell model, after each update of the lithium position we allow the
shells to relax and hence this mimics to a limited extent electronic
relaxation and provides an approximate representation of the polar-
isation of the crystal as the lithium ismoved through the lattice. The
energies are calculated using the METADISE [57] code and the
energy profile and the isosurfaces are plotted using VESTA [62].

2.3. Defect calculations

GULP uses the Mott–Littleton approach [63], which is also a
two-regions approach. The region I is around the defect (Li+
Table 1
Structural characteristics of experimental TiO2 polymorphs.

Rutile [64] An

Space group (number) P42/mnm (136) I 4
Crystal system Tetragonal Tet
a (Å) 4.60 3.7
b (Å) 4.60 3.7
c (Å) 2.96 9.5
Cell volume (Å3) 62.61 13
Density (g/cm3) 4.24 3.8
Number of TiO2 units, Z 2 4
Ti–O distance range 1.97 ⁄ 2 1.9

1.96 ⁄ 4 1.9
intercalation in our case) and is allowed to fully relax. The region
II surrounding the region I is fixed and represents the rest of the
crystal involving quasi-continuum methods. The sizes of the two
regions are 14 Å (region I) and 22 Å (region II).

We note that the defect calculation is referred to the intercala-
tion of the Li+ in the gas phase, therefore this value can be directly
compared to the voltage, or intercalation of Li metal. However, the
relative energies between defect calculations should follow the
same trend at low concentration if we consider that the energetic
process to transform Li metal in Li gas, to oxidise Li into Li+ and to
reduce the Ti network is the same for all the polymorphs.
3. Results

3.1. Bulk crystal structures of TiO2 polymorphs

The bulk crystal structures of rutile [64], anatase [65], brookite
[66] and TiO2-B [11] obtained from X-ray data are summarised in
Table 1. Most of TiO2 polymorphs have Ti species with a coordina-
tion number of 6 and O species with a coordination of 3. The excep-
tion is for TiO2-B which has O ions with different coordination
numbers of 2, 3 and 4.

The bulk crystal structure of the polymorphs has already been
calculated and well detailed by Kerisit et al. [6]. To better under-
stand the Li intercalation and diffusion, we summarise few key
energetic and structural characteristics in Table 2. The stability
order using minimisation techniques with Kerisit et al.’s potential
is as follows:

Rutile > Brookite > Anatase > TiO2-B

The density and the average of Ti–O distances follow the same
order, the rutile phase being the densest and getting the shortest
average Ti–O distances. The TiO2-B phase is interesting for Li-ion
batteries, being the less dense of those polymorphs and having a
higher experimental capacity. The range of distances is wider; this
phase gets the shortest and the longest Ti–O distances. The short-
est Ti–O distances are linked to the 2-fold oxygen (about 1.84 Å)
and a relatively wide infinite channel is between the 2-fold oxy-
gens. Another channel is visible along the c direction of TiO2-B.
In the case of the rutile phase, a channel can be observed along
the c direction but due to the denser structure, the channel is
thinner.
3.2. Pathways for Li migration

The energy profiles for each polymorph obtained with META-
DISE are shown in Fig. 1 and the most stable channels for the Li dif-
fusion are represented. The centre of the channels, where the
atase [65] Brookite [66] TiO2-B [11]

1/amd (141) Pbca (61) C2/m (12)
ragonal Orthorhombic Monoclinic
8 9.18 12.18
8 5.45 3.74
1 5.14 6.52
6.26 257.38 284.22
9 4.12 3.73

8 8
8 ⁄ 2 1.99 1.81–2.26
3 ⁄ 4 1.87

1.99
1.92
1.94
2.04



Table 2
Structural characteristics of calculated TiO2 polymorphs using Kerisit et al.’s potential.

Rutile Anatase Brookite TiO2-B

Lattice energy (eV) �39.807 �39.521 �39.642 �39.345
aa (Å) 4.499 3.782 9.138 12.273
ab (Å) 4.499 3.782 5.399 3.761
ac (Å) 3.002 9.470 5.131 6.463
bV (Åc) 60.751 135.494 253.141 286.202
cd (g/cmc) 4.367 3.916 4.192 3.708
dD(Ti–O) (Å) (2) 1.921 (4) 1.926 1.916 1.836

(4) 1.960 (2) 2.002 1.922 1.900
1.930 (2) 1.952
1.953 2.003
1.982 2.141
1.999

eR(Ti–O) (Å) 0.038 0.076 0.082 0.305
fD (Ti–O) (Å) 1.947 1.952 1.950 1.964

a Crystalline parameters.
b Unit cell volume.
c Density.
d Ti–O distances.
e Ti–O distance range.
f Ti–O average distances.
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colours tend to the red, is the most stable region. We define the C
site being a stable site, usually at the intersection of pathways.

3.2.1. Rutile
In Fig. 1a, we can observe that the wider channel is along the

[001] direction. The Li diffusion is predicted to be more favourable
and linear, in 1 dimension. Another direction of diffusion is visible,
along the plane (a, b). The path at height c = 0 is in zigzag along the
[110] direction and the path at height c = 0.5 is along the [�110]
direction. Therefore, we consider the second pathway in 2D.
(a) (c)

(b)

Ti
O

C

(d) 

C 

Li

Fig. 1. Pathways of Li migration in (a) rutile; (b) anatase; (c) brookite; (d) TiO2-B (Regio
interpretation of the references to colour in this figure legend, the reader is referred to
The C centre is then at the intersection of the channels [001]
and [110]. From the geometrical point of view, we can define the
C site being with a symmetry D4h.

3.2.2. Anatase
The pathway for Li diffusion is in zigzag within the 3 directions

in the space (see Fig. 1b). The symmetry of the C site is Td (Tetra-
hedral). The Li can diffuse along a combination of [201] directions
and their equivalent (i.e. [201] = [021] = [�201] = [0 �21]).

3.2.3. Brookite
In the case of the brookite phase, the pathway is more complex,

in zigzag and more diffuse. We can observe pairs of channels along
the c direction. A pair of channels is linked by a segment in a direc-
tion quasi-perpendicular. Therefore, the diffusion is expected to be
along the c-direction, along each pair of channels. The C-site has a
C1 symmetry.

We note that the second route along (a, b) direction, which
should connect pair of channels, is not favourable. Then we con-
sider that the unique possible way if Li diffusion within the bulk
will be along the c direction.

3.2.4. TiO2-B
This polymorph gets the widest diffusion profiles and a wide

stable region around the C site. The most favourable pathway is
along the [010] direction. Another route is visible along the c
direction. It appears from the energy profile that this second path-
way is in zigzag.

If we consider the C site (at the fractional coordinates 0.0 0.5
0.0), it is surrounded by 8 oxygen atoms and its symmetry is D2h.
The C site is not the most stable site but the Li ion relaxes in an
off-centre position. We will detail more explicitly about this stable
site in Section 3.3.4.
C

C 

ns in red correspond to the Li+ diffusion with the lowest intercalation energy). (For
the web version of this article.)
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3.2.5. Amorphous TiO2

There are various methods to synthetize high-density/low den-
sity amorphous TiO2 [49,67–72] and pressure-induced amorphiza-
tion method enables to obtain low density amorphous phase [71].
The choice of our density is based on experimental data in order to
get it in the same range of anatase and TiO2-B.

An amorphous phase of 60 TiO2 units in the periodic cell with a
density of 3.8 g/cm3 has been generated with a stochastic quench-
ing procedure and firstly optimised using the same ab initio meth-
ods as described in Lizárraga et al.’s article [73]. Density Functional
Theory (DFT) calculations have been done using VASP code [74],
with GGA-PW91 [75] functional and PAW method [76]. The con-
vergence on electronic and geometric (using a conjugate gradient
algorithm) criterions are respectively 0.1 meV and 1 meV, a cutoff
on the kinetic energy is of 250 eV and a k-point grid is at the
gamma point. The optimised DFT structure is re-optimised with
METADISE and some further analysis has been undertaken in order
to verify the validity of our model, using the same procedure as in
Lizárraga et al.’s study [73] for the radial distribution function
(RDF), bond lengths and coordination number calculations (with
a cutoff on Ti–O bond distances of 2.6 Å).

The structure analysis shows reasonable agreement with previ-
ous experimental [68,72] and theoretical studies [77–82] and some
small differences can come from the density of the models as it has
been demonstrated in similar comparative studies [73,82]. From
the total pair-radial distribution function g(r), the first peak corre-
sponding to Ti–O distances is 1.93 Å and the second peak O–O is at
2.59 Å for our model with a density of 3.8 g/cm3. The average on Ti
coordination number is 5.6 with mainly fivefold Ti and 6-fold Ti,
some 4-fold Ti are observed with the cutoff of 2.6 Å on the distance
criterion. If a cutoff of 3.0 Å is considered, the 4-fold species are not
observed anymore.

The results on amorphous phase are not detailed in the present
paper but it supports the utility and consistency of using META-
DISE as a preliminary study which can be further extended.
3.3. Li intercalation sites

From the energy profile, the most stable and transition sites
have been optimised at constant pressure using GULP and as well
Table 3
Intercalation sites (in bold, lowest intercalation energy for each polymorph).

Polymorph Fractional coordinates Wyckoff notation

Rutile (C)a 0.5 0.0 0.5 4c
T[001]c 0.5 0.0 0.25 4d
T[110]c 0.7 0.3 0.0 4g

Anatase (off-C)b 0.5 0.5 0.0364 16f
(C)a 0.5 0.5 0.0 4b
(T[0 �2 1])c 0.5 0.25 0.125 8d

Brookite (C)a 0.59 0.61 0.54 8c
(T[001])c 0.59 0.67 0.87 8c
(M) 0.5 0.5 0.5 4b

TiO2-B (off-C)b 0.0 0.4 0.0 4g
(C)a 0.0 0.5 0.0 2b
A1 0.062 0.5 0.341 4i
A2 0.12 0.5 0.0 4i
T[100] 0.25 0.25 0.0 4e
T[010] 0.0 0.0 0.0 2a
T[001] 0.0 0.5 0.5 2d

a Stable C site.
b Off-centre C site.
c T: Transition site.
d Deformed.
e Including second-order O ions.
some intermediary sites between the minima and maxima. Table 3
resumes the energetic and structural properties of the main sites.
The C site, defined previously, is in fact the most stable site. We
report the hopping distance between C sites and the activation
energy is the energy difference between the most stable site (C
site) and the transition site T[hkl] for each [hkl] possible direction.
Lithium site characteristics for each polymorph are detailed as fol-
lows and the impact of the geometry on the intercalation sites and
then on energy barriers are discussed in Section 4.
3.3.1. Rutile
From the energy profile, we have identified two paths from the

C site, being the most stable site with an intercalation energy of
�1.60 eV (Fig. 2a). The first path is along the c direction, the barrier
is denoted by T[001] with an intercalation energy of �1.56 eV. The
barrier is a tetrahedral site, Td, with average Li–O distances of
1.83 Å. Outside the tetrahedron, we report a second Td site (second
neighbours) with longer Li–O distances, at 2.71 Å. The second path
is along the [110] direction, the site at the barrier (Eint = +0.31 eV)
is a deformed Td with two Li–O distances at 1.82 Å and two Li–O
distances at 1.72 Å. The average of Li–O distances is 1.77 Å, shorter
distances compared to T[001] site. The 2nd neighbours get also
slightly shortest distances at 2.67 Å. A fast diffusion is therefore
expected along the c direction whereas the diffusion is unfavour-
able along the [110] direction.
3.3.2. Anatase
The C site in anatase is in an octahedral environment, Oh. The

basal plan is not planar and the symmetry of the site is then C2v.
The C site, with average Li–O bond distances of 2.16 Å and with
an intercalation energy of �2.20 eV, is not the most stable one.
The Li is displaced up or down along the C2 rotation axis and its
coordination number changes from 6-fold to 5-fold with an aver-
age shortening of the distances, at 1.99 Å. The off-centre site is a
distorted Oh site, stabilizing slightly the energy, Eint = �2.21 eV
(Fig. 2b).

From the C site, the lithium can move to four equivalent [201]
directions. The T[201] site is in an Oh environment with a planar
basal plan. The average of Li–O distances is 2.06 Å and the symme-
Eint. (eV) Li coordination Li symmetry D Li–O (Å)

�1.60 6 D4h 1.99
�1.56 4 Td 1.83
0.31 4 Tdd 1.77

�2.21 5 C2v 1.99
�2.20 6 C2v 2.16
�1.79 6 D4h 2.06

�2.13 6 Ohd 2.07
�1.06 4 Tdd 1.82
�1.94 6 Ohd 2.02

�2.60 4 (6)e C2v 2.35 (2.51)e

�2.59 4 D4h 2.30
�1.96 5 rv (C2v

d) 2.04
�2.39 5 rv (C2v

d) 2.07
�1.51 6 Oh 2.13
�2.07 4 D2h 2.00
�1.63 6 Oh 2.05



(a) C (b) off-C

(c) C (d) off-C 

Fig. 2. Li environment for each most stable site in (a) rutile; (b) anatase; (c) brookite; (d) TiO2-B (Li–O distances in Angströms).

C. Arrouvel et al. / Computational and Theoretical Chemistry 1072 (2015) 43–51 47
try is D4h. The site is particularly stable, with an intercalation
energy of �1.79 eV.

3.3.3. Brookite
We saw previously that the path is along the c direction with a

possible cross between two channels. The C site (Fig. 2c) is the
most stable site in a pseudo-octahedral environment, with Li–O
distances of 2.07 Å and its symmetry is C1. Its intercalation energy
is about �2.13 eV. The site in the middle of two juxtaposed
channels is called M site. The M site is also stable, �1.94 eV with
an average Li–O distance of 1.82 Å, being as well a distorted Oh
site. The transition site T[001] is however in a distorted tetrahe-
dral environment, with Li–O distances of 1.82 Å and Eint of
�1.06 eV.

3.3.4. TiO2-B
For TiO2-B, due to its more complex structure, several stable

sites and three possible directions for the Li diffusion are reported.
The C site (Eint = �2.59 eV) is in the square-planar of D4h symmetry
if we consider only the four shortest Li–O distances at 2.30 Å. The
volume of this site is the widest but the off-centre C-site is
favoured (with Eint = �2.60 eV). The Li is shifted along the b direc-
tion, becoming the C2 rotation axis. The symmetry of this site is
then C2v (Fig. 2d). The coordination is 4-fold with an average Li–
O distance of 2.35 Å when we consider that the oxygen atoms
out-of-plane are second range neighbours. The differentiation
between the first-order and the second-order neighbours is not
obvious and the relaxed site can also be considered in a pseudo-
octahedral environment if we include the second-order O ions with
longer Li–O distances of 2.75 Å. In the latter case, the average of
distances is 2.51 Å and the site is considered 6-fold. Those large
distances can explain why the energy profile on the Li diffusion
around the C site is so wide. At the proximity of the C site, the
intercalation energy is also low which can result in the difficulty
to experimentally measure the position of the C site by XRD. The
second most stable site is the A2 site (Eint = �2.39 eV), which is
in agreement with previous DFT studies [4]. The site is 5-fold with
Li–O distances of 2.07 Å. The third stable site is the A1 site, also
5-fold with an intercalation energy of �1.96 eV. In this case, we
did fix the position of Li at the fractional coordinates 0.0624
0.5000 0.3414 to avoid the spontaneous relaxation towards the C
site (as the c component of A1 site decreases, the intercalation
energy increases). The average Li–O distance is 2.04 Å.

If we look at the diffusion from the C site, there are three
inequivalent path directions along a, b, c axis corresponding
respectively to the barrier sites T[100], T[010] and T[001]. The
path along the a direction is in zigzag and it is the less favourable
path, the T[100] site having an intercalation energy of �1.51 eV,
corresponding to an energy barrier of 1.09 eV. The Li is in an octa-
hedral environment, with an average Li–O distance of 2.13 Å. The
path along the b direction is the most favourable, in a straight line.
The barrier site is rather stable, with an intercalation of �2.07 eV.
The energy barrier is 0.53 eV. We consider this site being in a plane
of four oxygen atoms, with an average Li–O distance of 2.00 Å. And
the last path along the [001] direction is with an energy barrier of
0.97 eV. The intercalation site T[001] is in an octahedral environ-
ment with Li–O distances of 2.05 Å in average.

3.3.5. Amorphous TiO2

The energy profile for Li diffusion is visualised in Fig. 3. The
same potentials have been successfully used by Yildirim et al.
[81] with Molecular Dynamic calculations. The diffusion is aniso-
tropic and leads to some confined regions, which is in agreement
with their studies. A detailed analysis of atomistic results will be
compared to DFT in another paper.

4. Discussion

The LiTiO2 interatomic potentials that we use for this study,
from Kerisit et al. [6], show a good transferability among the titania



Fig. 3. Pathway for Li-diffusion in amorphous TiO2 with a density of 3.8 g/cm3.
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polymorphs. We did assume that the reduction process on Ti net-
work and electron hopping is the same within the polymorphs
which allow to only take into account the intercalation of Li+.
The energy profile and structural properties for Li migration are
consistent with available ab initio methods, force-field methods
and experimental data as it is shown below.

The most favourable path for each polymorph is along the wider
channel. A linear diffusion is expected for rutile along the [001]
direction and TiO2-B along the [010] direction. In brookite, the
most favourable path is along the [001] direction. In the latter
case, the channels are interconnected by pairs and then the diffu-
sion can occur quasi linearly or in zigzag between the two chan-
nels. In the case of TiO2-B, another channel, thinner, is observed
along the [001] direction and it is the second possible path. In ana-
tase, the path for diffusion is in zigzag with equal probability in the
three directions of the space. The Li diffusion at low concentration
is then anisotropic in the case of rutile, brookite and TiO2-B
whereas it is isotropic in the case of anatase. Those results com-
pletely agree with experiments and DFT calculations. Effectively,
Johnson [55] did show experimentally an anisotropic diffusion
along the c direction in rutile, verified with DFT calculations [22]
and our channels of diffusion are similar to those obtained from
classical MD calculations [83,84]. In the case of anatase, our results
also agree with DFT calculations done by Tielens et al. [24] and
Koudriachova et al. [15]. We also conclude that Li stays located
in octahedral sites with the most stable site being an off-centre site
with a long distance Li–O at 3.05 Å which can be neglected in the Li
coordination number count (Li being 5-fold). The diffusion
between the stable Li site and intermediate site is a zigzag path,
as it has been shown by Olson et al. [16] using interatomic poten-
tials with GULP software. Our results are consistent with their
observations, we can confirm that the diffusion path is effectively
in zigzag but also isotropic along the three directions of the space.

In brookite, Lee et al. [85] did suggest that the diffusion should
be along the c direction and that is also in agreement with our find-
ing. The lithiated brookite phase seems more difficult to be exper-
imentally characterised due to possible different sites [86] and that
can be explained by the fact that the energy profile is wide
between two C juxtaposed sites belonging to a different channel.
The Li–O distances are between 1.85 and 2.63 Å in the most stable
pseudo-octahedral sites.

For TiO2-B, it was believed by Zukalová et al. [7] that the diffu-
sion occurs along the b axis, Arrouvel et al. [4] have later demon-
strated using DFT that the most favourable path in TiO2-B is
effectively along the b direction and is linear. The second favour-
able path is along the [001] direction [4]. Those DFT results agree
with the present work.

Diffusion paths in all the polymorphs and the main intercala-
tion sites corresponding to stable sites and transition sites (sites
at the barrier) refined using GULP are therefore in total agreement
with previous experimental and theoretical work. The activation
energies have also been calculated for each possible direction
and that gives us a direct order on the diffusion coefficients in
using the Arrhenius relation.

D ¼ D0e�ðEa=kBTÞ

D0 is the pre-exponential factor, Ea the activation energy, kB the
Boltzmann constant and T the temperature.

Different values have been reported in the literature to deduce
the diffusion coefficients or hopping rates from ab initio calcula-
tions (i.e. a vibrational frequency of 1012/s by Koudriachova et al.
[87] and of 1013/s by Tielens et al. [24]).

Considering the lack of data allowing distinguishing the exact
frequency within the different polymorphs, we will consider that
the D0 factor or the frequency is the same at low Li concentration
and we just report an order of magnitude of the exponential part at
300 and 400 K (see Table 4). We already know from experiments
that the diffusion coefficient in rutile can be at least 109 faster than
in anatase (anatase: D � 10�12�10�17 cm2/s [26,54], rutile [55]:
D = 2.7 � 10�3 cm2/s along the c direction). At 300 K, we calculate
a ratio of 2.4 � 106 and this ratio increases as the temperature
decreases.

Following the Arrhenius relation, we can see that the tempera-
ture influences the diffusion coefficient/hopping rate. We can also
evaluate the temperature needed to obtain the same mobility for a
direction of diffusion in a polymorph. For example, if we want to
increase the mobility along the [001] direction of TiO2-B in order
to get the same performance of the [010] direction at 300 K, we
solve:

Ea1

T1
¼ Ea2

T2

So for T1 = 300 K, Ea1 = 0.53 eV and Ea2 = 0.97 eV, that induces a tem-
perature T2 of 549 K.

The temperature will have therefore a strong influence on
experimental measurement and on the mobility of the lithium.
We also note that the hopping distance in rutile is the shortest
(at 1.50 Å along c direction) while in TiO2-B, the hopping distance



Table 4
Hopping distances, activation energies and exponential factor in Arrhenius relation at 300 K and 400 K for the main directions along TiO2 polymorphs.

Polymorph Direction Hopping distance (Å) Eact
a (eV) Eact

b (eV) Eact
c (eV) e�ðEa=kBTÞ at T = 300 Ka e�ðEa=kBTÞ at T = 400 Ka

Rutile [001] 1.50 0.04 0.04 [87] 0.3 [55] 0.2128 0.3133
[110] 3.26 1.91 0.8 [87] 8.2 � 10�33 8.6 � 10�25

Anatase [201] 3.03 0.42 0.6 [16]; 1.3 [24] 0.5 [26] 8.8 � 10�08 5.11 � 10�06

Brookite [001] 2.95 1.07 – – 1.1 � 10�18 3.3 � 10�14

TiO2-B [100] 6.72 1.09 0.9 [4] 4.9 � 10�19 1.8 � 10�14

[010] 3.76 0.53 0.3 [4] 0.4 [56] 1.2 � 10�09 2.1 � 10�07

[001] 7.14 0.97 0.5 [4] 5.1 � 10�17 6.0 � 10�13

Activation energy.
a Our work (in bold, lowest activation energy).
b Other theoretical work.
c Experimental work.
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is the longest (3.76 Å along b direction). The frequency to jump
from one site to the other is therefore higher on rutile.

In general, the calculated order for the diffusion coefficient at a
given temperature and in neglecting any concentration and
hopping distance effects is:
rutile ½001� > anatase ½201� > TiO2-B ½010� > TiO2-B ½001�
> TiO2-B ½100� � brookite ½001� > rutile ½110�

We can then demonstrate that the temperature has a clear
effect on the coefficient diffusion and on direction of diffusion
which is in agreement with experimental data. In the case of the
anatase, it has been experimentally shown that with the increase
of the temperature (at 250 K), the diffusion increases as well
[26]. At low temperature, the most favourable direction for the dif-
fusion should be with the lowest energy profile and an increase of
the temperature will facilitate the diffusion along the other aniso-
tropic directions. This is in agreement with the observations made
by Koudriachova et al. [87] who did interpret the change of direc-
tion in rutile from lower temperatures along the c direction to
higher temperatures along the a–b plane.

However, one of the key factors to insert Li within the bulk is to
give to the systemenough energy to cross the energy barriers for the
ion diffusion, and then the intercalation energy of the transition site
will be an important factor. The influence of the geometry of the
transition sites is significant on the intercalation energy. We can
generalise some concepts which have already been mentioned by
different authors [24], the Oh sites are energetically more stable
than the Td sites, as the distances are longer in an Oh environment.
Also, the transition sites are not visible experimentally; NMR stud-
ies can deduce the coordination number of the stable sites and eval-
uate the activation energy of the Li diffusion. It was often reported
that Li is located in an octahedral site in anatase [25,26,28] and it
is 4-fold, while it was believed that Li is in the squared pyramid
and is 5-fold [36,88] in TiO2-B. At low Li concentration, we find that
the Li is 5-fold in an Oh sitewhile the stable off-C site is 4 or 6-fold in
TiO2-B. Our study agrees with previous theoretical work at low con-
centration [4,15,24] and it has also been shown that the Li concen-
tration has an effect on the Li position [3,6,89].

Based on a wide range of theoretical and experimental studies
on the insertion of Li on TiO2 polymorphs and amorphous phases
[27,29,32,39,40,49,55,81,90–92], our simulations help to rationa-
lise the geometry of the intercalation sites and the energetic gov-
erning the mobility of Li in the bulk.

This method including a 3D scan for Li diffusion will be there-
fore worthwhile to further extend in generalising to the diffusion
of intrinsic and extrinsic defects to a wide range of other materials
from crystalline to amorphous phases.
5. Conclusion

Through a 3D scan of the Li migration and energy defect
calculations, energy minimisation techniques can give a clear
description of paths for ion diffusion in oxides. The existence of
channels has already been evidenced using other techniques, such
as classical Molecular Dynamics in the rutile phase [83] and we
have generalised the work to the other polymorphs. Our results
also agree with previous experimental and theoretical data on acti-
vation energies and directions of diffusion in rutile and TiO2-B,
having both a clear anisotropic behaviour. We can show that the
anatase has, at the opposite, an isotropic diffusion at low Li
concentration. The brookite phase, being less known, shows an ani-
sotropic diffusion along the c-axis with unfavourable energy barri-
ers. Pairs of channels are linked by a small canal with different
intercalation sites. The diffuse energy profile and low symmetry
of Li sites explain why the Li-brookite phase is more difficult to
characterise experimentally with XDR techniques, the intercalation
being more difficult and more localised in the segment linking the
channels.

The activation energy order of each polymorph predicts the
order of the diffusion coefficients. The order is as follows:

rutile ½001� > anatase ½201� > TiO2-B ½010� > TiO2-B ½001�
> TiO2-B ½100� � brookite ½001� > rutile ½110�

The highest diffusion coefficient is observed in rutile but it does
not reflect the potentiality of the material. In fact, it should be com-
bined with the intercalation energy of each sites, the number of
neighbour sites and the hopping distances. We have shown that
the intercalation energy depends on the environment of each site.
An octahedral site is more favourable than a tetrahedral site which
can simply be explained by distance criterions (Oh site having
longer Li–O distances compared to Td site). The environment of
each calculated site can be compared to available NMR and XRD
experimental data and that agrees with previous studies.

The anatase has the advantage to have an isotropic diffusion
between octahedral sites and can compete with TiO2-B. To improve
the potentiality of an anisotropic material such as TiO2-B, we sug-
gest that the shape of nanoparticles should be a crucial factor. In
that sense, the TiO2-B particle should better have an open access
to the infinite channel along the b-axis, which can be possible with
the existence of exposed (010) and (110) surfaces.

A simple approach based on scanning the Li positions with
interatomic potentials gives a reliable description of the pathways
for Lithium diffusion and represents a powerful complementary
approach for studying the migration of ions in the bulk and at
the interfaces of oxides.
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Future work will consider electronic properties of the selected
intercalated sites, particularly in the brookite and amorphous
phases.
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