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Abstract Owing to the Kubo relation, the shear viscosities
of pionic and nucleonic components have been evaluated
from their corresponding retarded correlators of viscous
stress tensor in the static limit, which become non-divergent
only for the non-zero thermal widths of the constituent par-
ticles. In the real-time thermal field theory, the pion and
nucleon thermal widths have respectively been obtained
from the pion self-energy for different meson, baryon loops,
and the nucleon self-energy for different pion-baryon loops.
We have found non-monotonic momentum distributions of
pion and nucleon thermal widths, which have been inte-
grated out by their respective Bose-enhanced and Pauli-
blocked phase space factors during evaluation of their shear
viscosities. The viscosity to entropy density ratio for this
mixed gas of pion-nucleon system decreases and approaches
its lower bound as the temperature and baryon chemical
potential increase within the relevant domain of hadronic
matter.
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1 Introduction

A strongly interacting matter is expected to be produced,
instead of a weakly interacting gas, at RHIC and LHC
energies as the shear viscosity of the matter thus produced
is exposed to be very small. This was concluded by the
hydrodynamical simulations [1–6] as well as some transport
calculations [7–10] to explain the elliptic flow parameter
observed at RHIC and LHC. According to the investigations
conducted in Refs. [11–18], the shear viscosity to entropy
density ratio, η/s may reach a minimum in the vicinity
of a phase transition, which is also indicated by some lat-
tice QCD calculations[19–22]. The minimum value of η/s

may be very close to its quantum lower bound, commonly
known as the KSS bound [23]. Owing to these interesting
issues, a growing interest in the microscopic calculation of
shear viscosity for the QGP phase [24–29] and hadronic
phase [30–50] has been noticed in recent times, though the
transport coefficient calculations of nuclear matter started
somewhat earlier [51–57]. The importance of knowing the
explicit temperature dependence of the shear viscosity for
hadronic phase has been pointed out in a recent work by
Niemi et al. [4]. They have shown that the extracted trans-
verse momentum pT dependence of elliptic flow parameter,
v2(pT ), of RHIC data is highly sensitive to the temperature
dependent η/s in hadronic matter and almost independent
of the viscosity in the QGP phase.

Inspired by this, we have studied the shear viscosity of
the pionic medium [58] and then extended our study to the
pion-nucleon system [59]. To calculate shear viscosity of the
pionic component via Kubo relation [60, 61], the thermal
correlator of the viscous stress tensor for pionic constituents
has to be derived, where a finite thermal width of the pion
should be included to get a non-divergent value of the cor-
relator in the static limit [35, 43, 62]. In Ref. [58], the pion
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thermal width is estimated from the pion self-energy for
different mesonic loops, which are obtained in the formal-
ism of real-time thermal field theory (RTF). Similarly, the
thermal correlator of the viscous stress tensor for nucle-
onic constituents is obtained in Ref. [59] to calculate the
shear viscosity of nucleonic component, where different
pion-baryon loops are taken into account to determine the
nucleon thermal width. Now, in the two component nucleon-
pion system, pion propagation may also have some baryonic
fluctuations besides the mesonic fluctuations. This contri-
bution, which was absent in our previous studies [58, 59], is
considered in the present work to revisit our shear viscosity
calculation for the two component nucleon-pion system.

In the next section, the formalism of shear viscosity
for the pionic and the nucleonic components is briefly
described, where their corresponding thermal widths are
discussed in three different subsections. In Section 2.1, we
have elaborately deduced the pion thermal width in baryonic
medium by calculating the pion self-energy for different
baryonic loops in the formalism of RTF. In the next two sub-
sections, the relevant expressions of the pion thermal width
due to different mesonic loops and nucleon thermal width
from different pion-baryon loops are briefly addressed as
the detailed deduction of these expressions are already pro-
vided in previous studies [58, 59]. The numerical results
are discussed in Section 3, and in Section 4, we have
summarized and concluded this article.

2 Formalism

Owing to the famous Kubo formula [60, 61], the spectral
function of two point viscous-stress tensor, πμν can deter-
mine the shear viscosity in momentum space by the standard
relation [35]

η = 1

20
lim

q0,q→0

1

q0

∫
d4xeiq·x〈[πij (x), πij (0)]〉β , (1)

where 〈Ô〉β for any operator Ô denotes the equilibrium

ensemble average; 〈Ô〉β = Tr e−βH Ô
Tre−βH .

The simplest one-loop expressions of (1) for pion
and nucleon degrees of freedom are respectively given
below [62]

ηπ = βIπ

30π2

∫ ∞

0

dkk6

ωπ
k

2�π

nk(ω
π
k ){1 + nk(ω

π
k )} (2)

and

ηN = βIN

15π2

∫ ∞

0

dkk6

ωN
k

2
�N

[n+
k (ωN

k ){1 − n+
k (ωN

k )}

+n−
k (ωN

k ){1 − n−
k (ωN

k )}] . (3)

Their schematic diagrams are shown in Figs. 1a and 2a,
respectively. Hence, adding the pionic and nucleonic com-
ponents, we get the total shear viscosity

ηT = ηπ + ηN . (4)

In the above equations, nk(ω
π
k ) = 1/{eβωπ

k − 1} is Bose-
Einstein (BE) distribution of pion with energy ωπ

k = (k2 +
m2

π )1/2 whereas n±
k = 1/{eβ(ωπ

k ∓μN) + 1} are Fermi-Dirac
(FD) distributions of nucleon and anti-nucleon with energy
ωN

k = (k2 +m2
N)1/2. The corresponding thermal widths, �π

and �N , for pion and nucleon can be defined as

�π =
∑

B
�π(NB) +

∑
M

�π(πM)

= −
∑

B
Im�R

π(NB)(k0 = ωπ
k , k)/mπ

−
∑

M
Im�R

π(πM)(k0 = ωπ
k , k)/mπ (5)

and

�N =
∑
B

�N(πB) = −
∑
B

Im	R
N(πB)(k0 = ωN

k , k) (6)

respectively, where �R
π(NB)(k) is pion self-energy for dif-

ferent nucleon-baryon (NB) loops (shown in Fig. 1c, d),
�R

π(πM)(k) is pion self-energy for different pion-meson

(πM) loops (shown in Fig. 1b) and 	R
N(πB)(k) is nucleon

self-energy for different pion-baryon (πB) loops (shown in
Fig. 2b). The superscript R stands for retarded component
of self-energy and subscripts represent the external (outside
the bracket) and internal (inside the bracket) particles for the
corresponding self-energy graphs as shown in Fig. 1b, c, d
and Fig. 2b.

Adoption of finite thermal widths �π and �N in (2) and
(3), respectively, is a very well established technique [35,
43], which is generally used in Kubo approach to get a
non-divergent value of the shear viscosity coefficient. In
this respect, this treatment is equivalent to quasi-particle
approximation or relaxation time approximation. Again, this
one-loop expression of ηπ or ηN from Kubo approach [35,
43, 63] exactly coincides with the expression coming from
the relaxation-time approximation of the kinetic theory
approach [44, 51, 52, 63]. Hence, the thermal width of
medium constituent plays a vital role in determining the
numerical strength of shear viscosity of the medium.

Next, we discuss the calculations of thermal widths
from different one-loop self-energy graphs as shown in
Figs. 1 and 2.

2.1 Pion Thermal Width for Different Baryonic Loops

Let us first concentrate on the pion self-energy calculations
for different possible baryon loops, i.e, �R

π(NB). During
propagation in the medium, pion propagator can undergo
different intermediate NB loops, where B = 
(1232),
N∗(1440), N∗(1520), N∗(1535), 
∗(1600), 
∗(1620),
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Fig. 1 The diagram (a) is a
schematic one-loop
representation of viscous-stress
tensor for the medium with
pionic constituents. The double
dashed lines for the pion
propagators indicate that they
have some finite thermal width,
which can be derived from the
pion self-energy diagrams (b),
(c) and (d). The diagram (b)
represents pion self-energy for
mesonic (πM) loops. Direct and
cross diagrams of pion
self-energy for NB loops are
represented by (c) and (d),
respectively

(a) (b)

(c) (d)

N∗(1650), 
∗(1700), N∗(1700), N∗(1710), N∗(1720) are
accounted in this work. The masses of all the 4-star baryon
resonances (in MeV) are presented inside the brackets. The
direct and cross diagrams of pion self-energy for NB loops
have been represented in the diagrams 1(c) and (d).

In real-time formalism of thermal field theory (RTF),
self-energy becomes 2 × 2 matrix with 11, 12, 21, and 22
components. From any of the components, one can found
the retarded part of self-energy, which is directly related
with physical quantity—thermal width (inverse of thermal
relaxation time). Let us start with the 11-component of
in-medium pion self-energy for NB loop:

�11
π(NB)(k) = i

∑
a=−1,+1

∫
d4l

(2π)4
L(k, l)E11

N (l)E11
B (l − ak)

(7)

where E11
N (l) and E11

B (l−ak) are scalar parts of the nucleon
and baryon propagators, respectively, at finite temperature.
In RTF, this expression is as follows

E11
N (l) = −1

l2 − m2
N + iη

− 2πi{n+
l θ(l0)

+n−
l θ(−l0)}δ(l2 − m2

N) , (8)

where n±
l (ωN

l ) = 1/{eβ(ωN
l ∓μN) + 1} are the FD distribu-

tions of nucleon and anti-nucleon for energy ωN
l = (l2 +

m2
N)1/2 and μN is the chemical potential of nucleon which

is supposed to be equal with the chemical potentials of all
the baryons considered here. The two values of a in (7) cor-
respond to the direct and crossed diagrams, shown in Fig. 1c
and d, respectively, which can be obtained from one another
by changing the sign of external momentum k.

Let us first discuss diagram (d) for which a = +1.
Integrating (7) over l0 and using the relation,

Im�R
π(NB)(k) = tanh(βk0/2)Im�11

π(NB)(k) , (9)

the retarded component of the in-medium self energy (imag-
inary part) can be expressed as

Im�R
π(NB)(k) = πε(k0)

∫
d3l

(2π)3

1

4ωN
l ωB

u

L1[{1 − n+
l (ωN

l ) − n−
u (ωB

u )}δ(k0 − ωN
l − ωB

u )

+ {n+
l (ωN

l ) − n+
u (ωB

u )}δ(k0 − ωN
l + ωB

u )]
+ L2[{−n−

l (ωN
l ) + n−

u (ωB
u )}δ(k0 + ωN

l − ωB
u )

+{−1 + n−
l (ωN

l ) + n+
u (ωB

u )}δ(k0 + ωN
l + ωB

u ) ,(10)

where n±
u (ωB

u ) = 1/{eβ(ωB
u ∓μN) + 1} are also FD distribu-

tion functions for baryon and anti-baryon with ωB
u = {(l −

k)2 + m2
B}1/2 and L1,2 denote the values of L(l0, l, k) for

l0 = ωN
l and −ωN

l , respectively. The different δ functions in
(10) create the regions of different branch cuts in k0-axis viz.
−∞ to −{k2 + (mN + mB)2}1/2 for unitary cut in negative

Fig. 2 The diagram (a) is a
schematic one-loop
representation of viscous-stress
tensor for the medium with
nucleonic constituents and the
diagram (b) represents nucleon
self-energy for πB loops

(a) (b)
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k0-axis, −{k2 + (mB − mN)2}1/2 to {k2 + (mB − mN)2}1/2

for Landau cut and {k2 + (mN + mB)2}1/2 to ∞ for unitary
cut in positive k0-axis. In these different kinematic regions,
the imaginary part of the pion self-energy becomes non-
zero. Among the four terms in the right hand side of (10),
the third term contributes in pion thermal width for baryonic
loops, �π(NB) because the pion pole (k0 = ωπ

k , k) is situ-
ated within the Landau cut (0 to {k2 + (mB − mN)2}1/2 ) in
the positive k0-axis. From the (2), using the relation,

�π(NB) = −Im�R
π(NB)(k0 = ωπ

k , k)/mπ (11)

and adding the relevant Landau cut contributions of both
diagrams (c) and (d), the total thermal width of pion for any
NB loop is given by

�π(NB)(k, T , μN) = 1

16π |k|mπ

∫ ωN
l−

ωN
l+

dωN
l

×L
(
l0 = −ωN

l , l, k0 = ωπ
k , k

)
[{−n+

l (ωN
l )

+n+
u (ωB

u = ωπ
k + ωN

l )} + {−n−
l (ωN

l )

+n−
u (ωB

u = ωπ
k + ωN

l )}], (12)

where

ωN
l± = S2

π(NB)

2m2
π

(−ωπ
k ± |k| Wπ(NB)

)
, (13)

with

S2
π(NB) = m2

π − m2
B + m2

N (14)

and

Wπ(NB) =
(

1 − 4m2
πm2

N/S4
π(NB)

)1/2
. (15)

Lagrangian densities of spin JB = 1/2 and 3/2 baryons can
be written as

LBaryon =
∑
B

[
Lf ree

B(JB=1/2,3/2) + Lint
B(JB=1/2,3/2)

]
, (16)

where free parts of Lagrangian densities for baryonic fields
with spin JB = 1/2 and JB = 3/2 are

Lfree
B(JB=1/2) =

∑
B(JB=1/2)

ψB(iγ μ∂μ − mB)ψB ,

Lfree
B(JB=3/2) =

∑
B(JB=3/2)

−1

2
ψ

μ

B(εμναβγ α∂β − imBσαβ)ψν
B

with σαβ = i

2

[
γ α, γ β

]
(17)

and their interaction parts are [64],

Lint = f

mπ

ψBγ μ

{
iγ 5

11

}
ψN∂μπ + h.c. for JP

B = 1

2

±
,

Lint = f

mπ

ψ
μ

B

{
11
iγ 5

}
ψN∂μπ + h.c. for JP

B = 3

2

±
, (18)

Here, P stands for parity quantum numbers of the baryons.
The coupling constants πNB interactions are fixed from
the experimental decay widths of B → Nπ channels [65].
They are f/mπ = 15.7, 2.5, 11.6, 1.14, 3.4, 1.22, 1.14,
9.5, 2.8, 0.35, and 1.18 for 
(1232), N∗(1440), N∗(1520),
N∗(1535), 
∗(1600), 
∗(1620), N∗(1650), 
∗(1700),
N∗(1700), N∗(1710), N∗(1720). Using (18), we have
found the vertex factors [65]:

L(k, l) = −4

(
f

mπ

)2

[2(k · l)2 − a(k · l)k2

−k2(l2 + mNmB)], for JP
B = 1

2

±
,

= − 8

3m2
B

(
f

mπ

)2

[mNmB + l2

−a(k · l)][(l · k − ak2)2 − k2m2
B ],

forJP
B = 3

2

±
. (19)

2.2 Pion Thermal Width for Different Mesonic Loops

To calculate the mesonic loop contribution of pionic ther-
mal width �π(πM), we have evaluated pion self-energy for
πM loops, where M stands for σ and ρ mesons. This con-
tribution estimated in our previous work [58] elaborately.
Following that [58], the expression of pion thermal width
from the mesonic loops is given below

�π(πM)(k, T ) = 1

16π |k|mπ

∫ ωπ
l−

ωπ
l+

dωπ
l L(l0 = −ωπ

l , l, k0

= ωπ
k , k){nl(ω

π
l )

−nu(ω
M
u = ωπ

k + ωπ
l )} , (20)

where nl , nu are BE distribution functions of π , M mesons,
respectively, and the limits of integration are

ωπ
l± = S2

π(πM)

2m2
π

(−ωπ
k ± |k| Wπ(πM)

)
, (21)

with

S2
π(πM) = 2m2

π − m2
M (22)

and

Wπ(πM) =
(

1 − 4m4
π/S4

π(πM)

)1/2
. (23)

Lagrangian density of pion, sigma, and rho mesons can be
written as

L = Lfree
π + Lfree

σ + Lfree
ρ + Lint

ππρ + Lint
ππσ , (24)
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where free parts of Lagrangian densities for pseudo-scalar
π , scalar σ , and vector ρμ fields are

Lfree
π = 1

2
{(∂μπ) · (∂μπ) − m2

ππ2}

Lfree
σ = 1

2
{(∂σ )2 − m2

σ σ 2}

Lfree
ρ = 1

2
{(ρμνρ

μν) − m2
ρ(ρμρμ)}, ρμν = (∂μρν − ∂νρμ)

(25)

and their interaction parts are [44, 58, 66]

Lint
ππρ = gρ ρμ · π × ∂μπ

Lint
ππσ = gσ

2
mσ π · π σ . (26)

The coupling constant gρ = 6 and gσ = 5.82 are fixed
from experimental decay width [58] and physical masses of
pion, sigma, and rho mesons are taken as mπ = 0.140 GeV,
mσ = 0.390 GeV, and mρ = 0.770 GeV. Using (26), we
have obtained the vertex factors:

L(k, l) = −g2
σ m2

σ

4
, for M = σ ,

= − g2
ρ

m2
ρ

[k2
(
k2 − m2

ρ

)
+ l2

(
l2 − m2

ρ

)

− 2{(k · l) m2
ρ + k2 l2}], for M = ρ .

(27)

2.3 Nucleon Thermal Width

In order to calculate the nucleonic thermal width �N(πB),
we have evaluated nucleon self-energy for different possi-
ble πB loops, where B stands for all the baryons as taken
in pion self-energy for baryonic loops. This contribution is
rigorously addressed in our previous work [59]. Hence, tak-
ing the relevant expression of nucleon thermal width for any
πB loop from the Ref. [59], we have

�N(πB)(k, T , μN) = 1

16π |k|mπ

∫ ωπ
l−

ωπ
l+

dωπ
l L

(
l0 = −ωπ

l , l, k0

= ωN
k , k

)
{nl(ω

π
l )

+nu(ω
B
u = ωN

k + ωπ
l )} , (28)

where nl and nu are BE and FD distribution functions for π

and B, respectively. The relevant limits of integration in (28)
are:

ωN
l± = S2

N(πB)

2m2
N

(
−ωN

k ± |k| WN(πB)

)
, (29)

with

S2
N(πB) = m2

N − m2
B + m2

π (30)

and

WN(πB) =
(

1 − 4m2
Nm2

π/S4
N(πB)

)1/2
. (31)

The vertex factors [59]:

L(k, l) = −
(

f

mπ

)2 {(
R2

2
− m2

π

)
l0 − Pm2

πmB

}
for JP

B = 1

2

±
,

L(k, l) = −
(

f

mπ

)2 2

3m2
B

{(
R2

2
− m2

π

)2

− m2
πm2

B

}
(32)

(k0 − l0 + PmB) for JP
B = 3

2

±

can be deduced by using the πNB interaction Lagrangian
densities from (18).

3 Results and Discussion

The detailed Landau cut contributions of pion self-energy
for mesonic loops and nucleon self-energy for different
πB loops are investigated in the earlier Refs. [58] and
[59], where their corresponding contributions in the shear
viscosity are also addressed. Now, in the two component
pion-nucleon system, another contribution to pion thermal
width can arise from the pion self-energy with baryonic
loops, which was not considered in our previous studies of
the shear viscosity [58, 59]. The main purpose of the present
work is to include these baryonic loop contributions in the
pion thermal width and to revisit the shear viscosity results.

Let us first zoom in our attention on the �π(NB). Figure 3
represents the Landau cut contributions of different NB
loops on the invariant mass axis Mk , which can be numer-
ically generated by replacing ωπ

k = (k2 + M2
k )1/2 in (12).

For a fixed set of parameters k, T and μN , the �π(NB)(Mk)

for baryons B = 
(1232), 
∗(1650), N∗(1440), N∗(1700)

in the upper panel, B = N∗(1520), 
∗(1620), N∗(1535),

∗(1600) in the middle panel and B = N∗(1720),

∗(1700) in the lower panel are individually presented in
the Fig. 3. The Landau cut regions, where �π(NB)(Mk) for
different NB loops have attained their non-zero values, are
clearly observed in the invariant mass axis. As an exam-
ple, for N
 loop, the Landau region is from M = 0 to
(m
 − mN) = 0.292 GeV. The straight dotted line denotes
position of pion pole (i.e., Mk = mπ ), which indicates the
on-shell contribution of �π(NB) for different baryonic loops.
Here, we identify N
 loop as a leading candidate to con-
tribute in the pion thermal width among all the baryonic
loops.

Adding the on-shell contribution of all NB loops, we get
the total thermal width of pion for baryonic loops, which
is plotted against temperature by dashed line in the upper
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Fig. 3 �π(NB)(Mk) for
different NB loops in their
Landau regions, which contain
the pion pole Mk = mπ ,
denoted by straight dotted line

0
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k=0.3 GeV

panel of Fig. 4. Using (20) and (28), we have also gener-
ated the numerical values of total �π(πM)(T ) (dotted line)
and �N(πB)(T ) (dashed line) by adding their corresponding
loop contributions for a same set of input parameters (k =
0.3 GeV, μN = 0). Following (2), the solid line represents
the T dependence of total thermal width of pion, �π(T )

after adding the mesonic and baryonic loop contributions.
All of the �s are monotonically increasing function but with
different rate of increment. The corresponding results of
mean free path, defined by λ = k/(ωk�), are presented in
the lower panel of the Fig. 4. Being inversely proportional to
the thermal width, the mean free paths for all of the compo-
nents monotonically decrease with T and exhibit divergent
nature at low T. Along the μN axis, λ’s (�’s) for all of the

components also decrease (increase) with different rates as
shown in the lower (upper) panel of Fig. 5. Here, we see
that independent nature of pion thermal width (�π(πM)) or
mean free path (λπ(πM)) for mesonic loops is transformed to
an increasing or decreasing nature when the baryonic loop
contribution is added. Moreover, the divergence problem of
λπ(NB)(μN) at low μN is also cured in the total mean free
path for pionic component λπ(μN). A mild μN dependence
of the nucleonic component is observed.

At fixed values of T and μN , the momentum distribu-
tion of thermal widths (upper panel) and mean free paths
(lower panel) for all of the components have been displayed
in Fig. 6. Being equivalent to the momentum distribution for
the imaginary part of optical potential (see, e.g., [65, 67]),

Fig. 4 The on-shell thermal
widths (upper panel) and mean
free paths (lower panel) of pion
for πM loops, NB loops and
their total are represented by
dotted, dashed, and solid lines,
respectively, while dash-dotted
line denotes the same results for
nucleon component with all
possible πB loops
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Fig. 5 Same as Fig. (4) along
the μN axis
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thermal width of pion for any mesonic or baryonic loop
exhibits a non-monotonic distribution with a peak structure
along the k axis. The mathematical reason can roughly be
understood from the relevant (20) and (12) as described in
Ref. [65]. After adding the different NB loop contributions,
each of which has similar kind of momentum distribu-
tion with different numerical strength, we get a multi-peak
complex structure of �π(NB)(k). When we add it with the
�π(πM)(k), which contains a dominating profile with one
peak (due to πρ loop mainly), then a well behaving momen-
tum distribution with less complex structures (solid line)
is obtained. The �N(k) (dash-dotted line) approximately
appears constant with a mild reduction with k. Though we
notice a divergent nature of λπ(NB)(k) out side the range of

k = 0.1 − 1 GeV but the total λπ in the entire momentum
range remains non-divergent or finite with an well-behaved
distribution.

Using the total thermal width for pionic compo-
nent, �π(k, T , μN) in (2) and for nucleonic component,
�N(k, T , μN) in (3), we have obtained shear viscosities
ηπ(T , μN) and ηN(T , μN). They are plotted by dotted and
dashed lines, respectively, as functions of T and μN in the
upper panels of Figs. 7 and 8. After exhibiting a soft peak
structure in the low T (< 0.1 GeV), ηπ(T ) monotonically
increases with a very mild rate in the high T (> 0.1 GeV)
domain. When a monotonically increasing function ηN(T )

is added with this pionic component, the total shear viscos-
ity ηT in high T domain enhances with slightly larger rate of

Fig. 6 Same as Fig. (4) along
the k axis
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Fig. 7 Temperature dependence
of shear viscosities (upper
panel) and entropy densities
(middle panel) for pionic (dotted
line), nucleonic (dashed line)
components and their total at
two different nucleon chemical
potentials: μN = 0 (solid line)
and μN = 0.5 GeV (dash-dotted
line). In the lower panel, the
ratios of total viscosity to
entropy density are represented
as a function of T at same set of
μN ’s, taken in the upper and
middle panels
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increment, which can be noticed by solid line in the upper
panel of Fig. 7. Another curve of ηT (T ) at μN = 0.5 GeV
is shown by dash-dotted line, which faces a rapid increment
after T = 0.06 GeV. The reason of this drastic enhance-
ment can be well understood from the μN dependence of the
two components ηπ(μN) and ηN(μN). The upper panel of
Fig. 8 exposes a rapidly increasing function ηN(μN) and a
soft decreasing function ηπ(μN). Remembering the Fig. 5,
we can understand that the origin of soft decreasing nature
of ηπ(μN) is coming from the baryonic loop contribution of
pion as its mesonic loop contribution is independent of μN .
Right panel of Fig. 9 is zooming this fact more distinctly,
where we see how inclusion of NB loops in pion self-energy
makes ηπ deviate from its independent (dashed line) to

dependent (dotted line) nature with μN . This is the main
and dramatically important contributions of the present arti-
cle as an extension of earlier works [58, 59]. After including
it, providing a complete picture of shear viscosity calcula-
tion for pion-nucleon system is the main aim of this present
investigation.

The dotted lines in the left and right panels of Fig. 9
are exactly the same as dotted lines in the upper panels of
Figs. 7 and 8, respectively. Still those curves are repeated for
elaborating the effect of baryonic fluctuations in pion self-
energy. As the phase space factor of (2) does not depend on
the μN , so only thermal width �π(μN) controls on the μN

dependence of ηπ . Now, between two components �π(πM)

and �π(NB) of �π , the latter one has only the dependency of

Fig. 8 The μN dependence of
same quantities as Fig. (7) at
two different temperatures:
T = 0.12 GeV (solid line) and
T = 0.15 GeV (dash-dotted)
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Fig. 9 Dashed and dotted lines
show ηπ without and with
baryonic fluctuations in pion
propagation respectively

0.04 0.08 0.12 0.16
T (GeV)

0

0.0002

0.0004

0.0006

(G
eV

3 )

ηπ without NB loops

ηπ with NB loops

0 0.1 0.2 0.3 0.4 0.5
μN (GeV)

μN=0 T=0.120 GeV

μN as exposed in Fig. 5. The decreasing nature of ηπ(μN)

is solely governed by the increasing (decreasing) nature of
function �π(μN) (λπ(μN)). Whereas, in case of (3), nucle-
onic phase space factor depend on μN so strongly that it
makes ηN(μN) be an increasing function after dominat-
ing over the opposite action of �N(μN) or λN(μN) on the
ηN(μN).

Middle panels of Figs. 7 and 8 represent the T and μN

dependence of entropy densities for pionic and nucleonic
components by following their ideal expressions:

sπ = 3β

∫
d3k

(2π)3

(
ωπ

k + k2

3ωπ
k

)
nk(ω

π
k ) (33)

and

sN = 4β

∫
d3k

(2π)3

(
ωN

k + k2

3ωN
k

− μN

)
n+

k (ωN
k ) . (34)

Using these numerical results of entropy densities (mid-
dle panel) as well as for shear viscosities (upper panel) for
pionic, nucleonic components, and their total , we have pre-
sented their corresponding ratios in the lower panels of the
graphs, where straight horizontal (red) lines stand for KSS
bound of the ratio. The decreasing nature of ratio is sus-
tained for both μN = 0 (solid line) and μN = 0.5 GeV
(dash-dotted line) in the entire T axis. The former is dom-
inating over the later in magnitude for T ≤ 0.12 GeV and
then an opposite trend is followed beyond T = 0.12 GeV.
Therefore, the ratio in the μN axis at T = 0.15 GeV (dash-
dotted line) and T = 0.12 GeV (solid line) are exhibiting a
nature opposite to each other (up to μN ≈ 0.4 GeV), which
can be observed in the lower panel of Fig. 8. Nevertheless,
both of them increase in high μN domain (μN > 0.4 GeV).
Most of the earlier work [36, 48, 49] showed a reducing
nature of ratio along the μN axis, which is also found in the

present work up to T ≈ 0.12 GeV but beyond T = 0.120
it is not found. It indicates that our approach has some
deficiency with respect to the earlier work [36, 48, 49].
This deficiency may be the mixing effect of two compo-
nent system [36], which have been taken care in our further
investigations and discussed in next paragraph.

We have adopted a rough mixing effect [59], which can
generally be expected between two components of a mixed
gas [36, 68]. From the (2) and (3), one can clearly notice that
the phase space factors of ηπ and ηN do not face any mixing

effect of pion density, ρπ = 3
∫

d3k

(2π)3 nk(ω
π
k ) and nucleon

density, ρN = 4
∫

d3k

(2π)3 n+
k (ωN

k ). Although their thermal
widths �π and �N contain some part of mixing effect as
they depend on thermal distribution functions of both, pion
and nucleon. Following the approximated relation [36, 59,
68]

ηmix
tot = ηmix

π + ηmix
N , (35)

with

ηmix
π = ηπ

1 +
(

ρN

ρπ

) (
σπN

σππ

) √
1+mπ/mN

2

(36)

and

ηmix
N = ηN

1 +
(

ρπ

ρN

) (
σπN

σNN

) √
1+mN/mπ

2

, (37)

where the cross sections of all kind of scattering are simply
taken as constant with same order of magnitude (i.e., σππ ≈
σπN ≈ σNN ). In the presence of this mixing scenario, the
T dependence of ηmix

π (dotted line), ηmix
N (dashed line) and

their total ηmix
tot at μN = 0 (solid line), μN = 0.3 GeV (dash-

dotted line) and μN = 0.5 GeV are shown in the upper panel
of Fig. 10. The corresponding results along the μN axis for
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Fig. 10 Upper panel shows the
temperature dependence of shear
viscosities of pionic (dotted
line), nucleonic (dashed line)
components and their total (at
three different values of μN ) in
presence of mixing effect. Lower
panel shows the ratios of total
viscosity to entropy density vs. T
at μN = 0 (solid line), 0.3 GeV
(dash-double-dotted line) and
0.5 GeV (dash-dotted line)
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two different temperatures are presented in the upper panel
of Fig. 11. Lower panels of Fig. 10 and middle panel of
Fig. 11 are displaying the viscosity to entropy density ratios
as a function of T (at three different values of μN ) and μN

(at two different values of T). One should comparatively
notice the dash-dotted line in the lower panel of Fig. 8 and
the middle panel of Fig. 11, which are exhibiting an opposite
nature in the low μN region. Hence, the approximated T-
μN range, where viscosity to entropy density ratio reduces,
is transformed from (T = 0−0.12 GeV, μN = 0−0.5 GeV)
to (T = 0 − 0.15 GeV, μN = 0 − 0.5 GeV) due to the
mixing effect. Being closer to the earlier results [36, 48,
49], specially the result of Itakura et al. [36], the mixing
effect appears to be very important. Though the ratios in

both cases, without and with mixing effect increase beyond
the μN ≈ 0.5 GeV but the conclusion of our results, based
on the effective hadronic Lagrangian, should be concen-
trated within regions of 0.100 GeV < T < 0.160 GeV and
0 < μN < 0.500 GeV.

The results of η/s have always been presented with
respect to the KSS bound (quantum lower bound, which can
be obtained from the basic fact [69]—mean free paths of
medium constituents can’t be shorter than their de-Broglie
wavelengths.) [23], which may (may not [70]) be consid-
ered as lower limit of η/s for any fluid in nature. As RHIC
data seems to indicate that η/s of the medium is very close
to the KSS bound [1–4], therefore, this bound has been
used as a phenomenological reference of our microscopic

Fig. 11 Upper and middle
panels show the μN dependence
of same quantities as in Fig. (10)
at two different temperatures:
T = 0.12 GeV (solid line) and
T = 0.15 GeV (dash-dotted).
Lower panel shows the different
points of (T, μN ), where ηmix/s

is approximately equal to the
KSS bound
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estimation. From the lower panel of Fig. 10, we see that

η/s ≈ 3
(

1
4π

)
to

(
1

4π

)
at T = 0.120 GeV to 0.175 GeV

for μN = 0, which indicates that as the temperature of
hadronic matter approaches towards transition temperature
Tc ≈ 0.175 GeV, the η/s of the medium moves towards
its lower bound. Qualitative as well as quantitative tempera-
ture dependence of our η/s are in well agreement with some
earlier results [37, 38] and approximately similar kind of
η/s(T ) in hadronic temperature domain has been taken as
input parameter by Niemi et al. [4] to explain the elliptic
flow of RHIC data. At non-zero μN , the transition temper-
ature is expected to be lower than 0.175 GeV, and it will
be decreases with increasing of μN . It is generally rep-
resented by T − μN line in phase diagram which makes
boundary between quark and hadron phases. A qualitative
mapping of phase boundary can be linked by the T-μN

points, shown in the lower panel of Fig. 11, where our
estimated η/s are approximately equal to the KSS bound.
Outside the T-μN points, η/s crosses its lower bound.
It can be treated as marginal boundary around which the
effective hadronic model may not be enough for hadronic
interactions at finite temperature and density. Hadrons
may be influenced by their constituent quarks around this
marginal boundary, where quark-hadron interaction may
be more relevant than hadron-hadron interaction (e.g.,
Ref. [71]).

At last, being critical to this simplified one-loop estima-
tion of shear viscosity, we should accept that quantitative
reliability of this approach may be limited because higher
order extension of one-loop diagrams for shear viscosity
(i.e., Fig. 1a and 2a) as well as thermal width (i.e., Fig. 1b–d
and 2b) may provide better version of correction in our
present results. However, this one-loop results may be con-
sidered as leading estimation, based on the investigation of
Ref. [62], where it is shown that two and higher loop esti-
mation is gradually suppressed. One should keep in mind
that this approximation holds good for a particular interac-
tion where comparatively lower mass medium constituents
(here pion and nucleon) interact with higher mass reso-
nances (M’s or B’s). By accepting these limitations, the
qualitative visualization of shear viscosity as a function of
temperature and chemical potential for the two components
pion-nucleon system should be considered as main focus-
ing part of the present investigation, which shows that total
shear viscosity of this pion-nucleon system increases with
temperature and decreases with nucleon chemical potential
within the approximated T-μN range (0.100 GeV < T <

0.160 GeV and 0 < μN < 0.500 GeV) of hadronic mat-
ter. Most important point of this present investigation is that
decreasing of shear viscosity with μN is solely because of
the baryonic fluctuations of pion, which is the main contri-
bution part of present manuscript as extension of previous
works [58, 59].

4 Summary and Conclusion

The present work is an extension of our previous studies [58,
59] of the shear viscosity for pionic [58] and nucleonic [59]
components, where the pion thermal width due to different
mesonic fluctuations and the nucleon thermal width due to
different pion-baryon fluctuations are respectively consid-
ered. However, in the two component pion-nucleon system,
the pion thermal width may also be originated from differ-
ent baryonic loops, which were not taken into account in our
previous investigations [58, 59]. Considering this baryonic
loop contribution, we have addressed a complete picture of
pion and nucleon propagation via all possible meson and
baryon quantum fluctuations at finite temperature and den-
sity, from where their corresponding contributions to the
shear viscosities have been found.

Following the traditional technique of Kubo relation [35,
43, 62, 63], the shear viscosities of the pion and the nucleon
components can be deduced from their corresponding cor-
relators of the viscous stress tensor in the static limit, which
will be non-divergent when a finite thermal width is intro-
duced in their free propagators. These finite values of the
pion and the nucleon thermal widths have been estimated
from the RTF calculations of the pion self-energy for differ-
ent mesonic and baryonic loops and the nucleon self-energy
for different pion-baryon loops. The thermal width and its
inverse quantity, the mean free path for each component are
numerically generated as a function of the momentum k of
the constituent and the medium parameters, T and μN . They
show very non-trivial momentum distributions, which have
been integrated out by the Bose-enhanced and Pauli-blocked
phase space factors of pion and nucleon, respectively, to cal-
culate their corresponding shear viscosities. We have plotted
the shear viscosity of each component and their total as a
function of T and μN , where one can observe a distinct
and important effect of pion thermal width for baryonic
loops, which is the main finding of the present investiga-
tion to demonstrate a complete picture of shear viscosity
calculation for the pion-nucleon system. Actually the μN

dependence is entering in the shear viscosity of the pio-
nic component via this baryon loop contribution of pion
thermal width. This additional contribution makes the shear
viscosity of the pionic component decrease with μN and
increase with T. By adopting a rough mixing effect of pion
and nucleon densities between two components, we have
tried to present a numerical estimation of the total shear
viscosity for a mixed gas of pion-nucleon constituents. Nor-
malizing by the ideal expressions of entropy densities for
pion and nucleon gas, we have obtained the viscosity to
entropy density ratios for each component and their total. In
the relevant T-μN region of hadronic domain, this ratio for
the pion-nucleon gas mixture decreases and approaches its
KSS bound as T or μN increases.
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