
Annals of Physics 364 (2016) 53–67

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

A model with two inert scalar doublets
A.C.B. Machado ∗, V. Pleitez
Instituto de Física Teórica–Universidade Estadual Paulista, R. Dr. Bento Teobaldo Ferraz 271, Barra Funda,
São Paulo - SP, 01140-070, Brazil

a r t i c l e i n f o

Article history:
Received 16 June 2015
Accepted 23 October 2015
Available online 31 October 2015

Keywords:
Inert-doublets model
Dark-matter

a b s t r a c t

We consider an extension of the standard model (SM) with three
SU(2) scalar doublets and discrete S3 ⊗ Z2 symmetries. The
irreducible representation of S3 has a singlet and a doublet, and
here we show that the singlet corresponds to the SM-like Higgs
and the two additional SU(2) doublets forming a S3 doublet are
inert. In general, in a three scalar doublet model, with or without
S3 symmetry, the diagonalization of the mass matrices implies
arbitrary unitary matrices. However, we show that in our model
these matrices are of the tri-bimaximal type. We also analyzed
the scalar mass spectra and the conditions for the scalar potential
is bounded from below at the tree level. We also discuss some
phenomenological consequences of the model.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In 2012 itwas discovery at the LHC aneutral spin-0 resonancewith properties (mass and couplings)
that are compatible, within the experimental error, with those of the scalar SM-Higgs boson [1,2].
However, on the one hand, there is no experimental evidence confirming that only one of such sort
of scalars does exist. On the other hand, there are experimental evidence, e.g. the existence of Dark
Matter (DM) and neutrinos masses and mixing, that strongly suggest that the SM is not the ultimate
theory of nature. In this context, wemay need to add new scalars, to play the role of the DM candidate
or in order to justify the difference between the mass scale of the neutrinos and the charged leptons.
The question is, if there are more scalar doublets, howmany of them? The simplest case is to add one
more doublet. This is well motivated because it allows spontaneous CP violation if at the same time
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flavor changing neutral currents (FCNC) are allowed [3,4]. The latter processes strongly constrain the
masses and the mixing angles in the scalar sectors. For a recent review of the phenomenology of the
two Higgs doublet models (2HDM) see Ref. [5]. The next simple situation is having three doublets
in which it is possible to have spontaneous and hard CP violation [6] and at the same time to avoid
FCNC if some extra symmetries are introduced. Next, we can introduce more Higgs scalar doublets,
for instance, it may be motivated by the implementation of the Peccei–Quinn symmetry and the
unification of the three interactions, see Ref. [7] and references therein.

Among all these possibilities the case of three doublets with the same quantum number is
interesting if we assume that the replica of three generations occurs not only in the fermion sector
but also in the scalar sector. However, a general three doublet model (3HDM) has a very complicated
scalar potential with six parameterswith dimension ofmass (µ2s), andmany dimensionless ones (λs).
Notwithstanding in physics, when the degrees of freedom augment it motivates the introduction of
new symmetries. In fact, to reduce the number of parameters in the scalar sector usually symmetries,
like Z2 [8], are introduced. In some cases one of the scalar doublets is inert. However, the Z2 symmetry
still allows four µ2s and 23 dimensionless real parameters. The possibility of an S3 symmetry is also
explored in [9,10]. In the case of the 3HDMwith S3 symmetry has only twoparameterswith dimension
of mass and eight dimensionless ones i.e., in terms of the number of parameters the scalar potential
in the 3HDM plus a S3 symmetry has almost the same as the general 2HDM. The problem with this
model is that in general several possibilities are allowed, and some of them are not physical because
they imply the existence ofmassless physical neutral scalar. Another difficulty is the existence of FCNC
effects [11]. Usually also the neutral scalar with mass of 125 GeV is obtained only in the decoupling
limit [10]. All these effects arise mainly because, (i) the mass matrices mix all the scalars in each
charge sector and, because of this, the unitary matrices that diagonalize the respective mass matrices
are general ones in each case; (ii) an arbitrary vacuum alignment is assumed with all the vacuum
expectation values (VEVS) being different.

Here we will consider a 3HDM with an S3 symmetry in which the SM-like scalar is automatically
identified without requiring a decoupling limit. This is a consequence of a particular vacuum
alignment and the absence of FCNC at tree level is a consequence of this vacuum alignment plus the
condition of fermions transforming trivially under the symmetry S3. Another important consequence
of this vacuum alignment is that the scalars in the S3 doublet are inert [12,13]. It means that they do
not contribute to the spontaneous symmetry breaking and do not couple to fermions. They interact
only with the vector and the other scalar bosons.

The SM extensions with one inert doublet model (IDM) as a candidate to dark matter have been
already considered in Refs. [14–22]. However having two inert doublets allows to have a multi-
component dark matter scenario [23–25], because not only the real scalar and pseudoscalar may be
DM as in the IDM, but now we have two real scalar fields and two pseudoscalar ones, each of them
may contribute to the DM density.

The outline of this paper is as follows. In Section 2we give themost general scalar potential involv-
ing three Higgs doublets which is invariant under the gauge and S3 symmetries. We also consider in
that section the mass spectra in the scalar sector when all VEVs satisfy the alignment v1 = v2 = v3 =

v = vSM/
√
3 and the singlet (S) and the doublet (D) of S3 are originated from a triplet i.e., in the re-

ducible representation. In this situation there aremass degenerate states in each scalar sector because
a residual S2 symmetry remains. However the mass degeneracy may be lifted by introducing terms
that break the S2 symmetry softly. We dubbed this case A. In Section 4 we consider the case when
S = H1 and D = (H2,H3) with v1 = vSM and v2 = v3 = 0. We call this case B. We show that both
cases, before the spontaneous symmetry breaking (SSB), are related by a weak basis transformation.
However, after the SSB both cases are still equivalent but only the vacuum alignment is considered
here. We also consider in this case the situation when the S2 symmetry is softly broken avoiding the
mass degeneracy, in this case the equivalence between both cases is also lost. The Yukawa interactions
are the same in both cases and are briefly discussed in Section 5. In Section 6 we study the positivity
of the scalar potential at the tree level, while in Section 7 we consider some phenomenological con-
sequences. Our conclusions are in Section 8 and in the appendices we show the constraint equations
for arbitrary VEVs, for case A in Appendix A, and for case B in Appendix B.
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2. Three Higgs-scalar doublet model and S3 symmetry

We present an extension of the electroweak standard model with three Higgs scalars, all of them
transforming as doublets under SU(2) and having Y = +1. Some of them transform under S3 as a
doublet D = (D1,D2) ≡ 2, and some as a singlet S ≡ 1. As we will see, the latter one is identified
with the SM-like Higgs and the former ones are inert.

The most general scalar potential invariant under SU(2) ⊗ U(1)Y ⊗ S3 symmetry is given by:

V (D, S) = µ2
s S

ĎS + µ2
d[D

Ď
⊗ D]1 + λ1([DĎ

⊗ D]1)
2
+ λ2[(DĎ

⊗ D)1′(DĎ
⊗ D)1′ ]

+ λ3[(DĎ
⊗ D)2′(DĎ

⊗ D)2′ ]1 + λ4(SĎS)2 + λ5[DĎ
⊗ D]1SĎS

+ [λ6[[SĎD]2′ [SĎD]2′ ]1 + H.c.] + λ7SĎ[D ⊗ DĎ
]1S

+ [λ8[(SĎ ⊗ D)2′(DĎ
⊗ D)2′ ]1 + H.c.]. (1)

Denoting an arbitrary doublet by 2 = (x1, x2), we have the product rule S as 2⊗2 = 1⊕1′
⊕2′ where

1 = x1y1 + x2y2, 1′
= x1y2 − x2y1, 2′

= (x1y2 + x2y1, x1y1 − x2y2), and 1′
⊗ 1′

= 1 [26]. Let us define
S = (s+ s0)T ,Di = (d+

i d0i )
T , i = 1, 2. In terms of the S andDi fields, the potential in Eq. (1) is written as

V (S,D1,D2) = µ2
s S

ĎS + µ2
d(D

Ď
1D1 + DĎ

2D2) + λ1(D
Ď
1D1 + DĎ

2D2)
2
+ λ2(D

Ď
1D2 − DĎ

2D1)
2

+λ3[(D
Ď
1D2 + DĎ

2D1)
2
+ (DĎ

1D1 − DĎ
2D2)

2
] + λ4(SĎS)2 + λ5(D

Ď
1D1 + DĎ

2D2)SĎS

+[λ6(SĎD1SĎD1 + SĎD2SĎD2) + H.c.] + λ7SĎ(D1D
Ď
1 + D2D

Ď
2)S

+λ8[SĎD1(D
Ď
1D2 + DĎ

2D1) + SĎD2(D
Ď
1D1 − DĎ

2D2) + H.c.]. (2)

Notice that the potential is written in terms of the symmetry eigenstates independently of how we
form the singlet and the doublet. If µ2

d > 0 only the singlet S gain a VEV and if λ8 = 0 this vacuum
is stable at tree and the one-loop level. For this term be forbidden we impose a Z2 symmetry under
which D → −D and S and all the other fields are even. However, in the appendix we consider the
constraint equations with a general vacuum alignment in order to study under what conditions we
have ⟨D⟩ = 0 and we find that independently of the sign of µ2

d , it is possible to have the vacuum
alignment considered in this paper. The three-Higgs scalar potential has already been considered in
the literature in Refs. [9,10,27,28] but not in the inert doublets context. In fact, unlike the present pa-
per, all these articles have used the S3 symmetry to address the texture of the fermion mass matrices
using a general vacuum alignment.

3. Case A

Let us now consider the case when the three scalar doublets are in the reducible triplet
representation of S3, say, 3 = (H1,H2,H3) where Hi = (H+

i H0
i )

T . This reducible representation is
broken down to the irreducible singlet and doublet ones, i.e., 3 = 2 + 1 ≡ D + S, where:

S =
1

√
3
(H1 + H2 + H3) ∼ 1,

D ≡ (D1,D2) =


1

√
6
(2H1 − H2 − H3),

1
√
2
(H2 − H3)


∼ 2, (3)

or, explicitly in terms of the symmetry eigenstates H+,0
i , i = 1, 2, 3

S ≡


s+

s0


=

1
√
3


H+

1 + H+

2 + H+

3

H0
1 + H0

2 + H0
3


, D1 ≡


d+

1

d01


=

1
√
6


2H+

1 − H+

2 − H+

3

2H0
1 − H0

2 − H0
3


,

D2 ≡


d+

2

d02


=

1
√
2


H+

2 − H+

3

H0
2 − H0

3


. (4)

The decomposition of the symmetry eigenstates we make as usual, as H0
i = (1/

√
2)(vi + η0

i + i a0i ),
i = 1, 2, 3. We assume for the sake of simplicity that the VEVs are real, however see Section 7.
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The general constraint equations for the case when all VEVs are different from zero are given in the
Appendix A, Eq. (A.2). When v1 = v2 = v3 = v these constraint equations are reduced to a simple
equation:

t1 = t2 = t3 = v(µ2
s + 3λ4v

2), (5)

and if ti = 0 we have µ2
s = −3λ4v

2
= −λ4v

2
SM < 0, which implies that λ4 > 0.

All scalar mass square matrices have the form

M2
n =

an bn bn
bn an bn
bn bn an


, (6)

where an, bn > 0 and n denotes the scalar sector: n = h, a, c for the scalar, pseudo-scalar and charged
scalar fields, respectively.

This type of matrix is diagonalized by an orthogonal matrix, UTBM : UT
TBMM2

nUTBM = diag(an +

2bn, an − bn, an − bn), with an + 2bn ≥ 0 and an − bn ≥ 0, ∀n, the UTBM is given by

UTBM =



1
√
3

−


2
3

0

1
√
3

1
√
6

−
1

√
2

1
√
3

1
√
6

1
√
2

 . (7)

In the case of CP-even neutral scalars, we have 3ah = 2µ2
d + (2λ4 + λ̄′)v2

SM , and 6bh = −2µ2
d +

(4λ4 − λ̄′)v2
SM , where λ̄′

= (λ5 + λ7 + 2λ6), and the eigenvalues are the following:

m2
h1 ≡ m2

h = 2λ4v
2
SM ,

m2
h2 = m2

h3 ≡ m2
H = µ2

d +
1
2
λ̄′v2

SM = µ2
d +

1
4

λ̄′

λ4
m2

h, (8)

where we have used v = vSM/
√
3.

Denoting as h0
i the mass eigenstates, we have h0

i =


i(U
T
TBM)ijη

0
j , where UTBM is given in (7).

Explicitly we have

h0

h0
2

h0
3

 =


1

√
3
(η0

1 + η0
2 + η0

3)

−
1

√
6
(2η0

1 − η0
2 − η0

3)

−
1

√
2
(η0

2 − η0
3)

 ≡ Re

 s0

−d01
−d02

 , (9)

and the scalar h0
≡ Re s0 which, in Section 5, will be identified with the SM Higgs boson and the

doublet h1 ≡ h with the SM scalar doublet.
In the CP-odd neutral scalars sector, the mass matrix is given as in Eq. (6) but now with 3aa =

2µ2
d + λ̄′′v2

SM and 6ba = −2µ2
d − λ̄′′v2

SM , where λ̄′′
= (λ5 + λ7 − 2λ6) and in this case we obtain the

following masses:

m2
A1 = 0,

m2
A2 = m2

A3 ≡ m2
A = µ2

d +
1
2
λ̄′′v2

SM = µ2
d +

1
4

λ̄′′

λ4
m2

h. (10)

Denoting A0
i the pseudo-scalar mass eigenstates, we have A0

i =


i(U
T
TBM)ija0j and making the same

as in Eq. (9) we obtain that A0
= Im s0 is the would-be Goldstone boson, while A0

2 = −Im d01 and
A0
3 = −Im d02 are physical CP odd fields.
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Similarly in the charged scalars sector we use Eq. (6) with 6ac = 2µ2
d + λ5v

2
SM and 12bc =

−2µ2
d − λ5v

2
SM and in this case we obtain the following masses:

m2
c1 = 0,

m2
c2 = m2

c3 ≡ 2m2
c = µ2

d +
λ5

2
v2
SM = µ2

d +
1
8

λ5

λ4
m2

h, (11)

and, ifH+

i denote the charged scalar symmetry eigenstates and h+

i the respectivemass eigenstates, we
have h+

i =


i(U
T
TBM)ijH+

j . Using again the Eq. (7) we obtain s+ = h+ thewould-be charged Goldstone
boson, and the physical charged scalars: −d+

1 = h+

2 and −d+

2 = h+

3 .
We summarize these results by usingmixingmatrix in Eq. (7), andwriting theHiggs scalars doublet

D and the singlet S, but now in terms of the mass eigenstates, h0
i , A

0
i and h±

i , as

S ≡ φ =

 h+

1
√
2
(
√
3v + h0

+ iA0)

 , D ≡ −(φ1, φ2), φk =

 h+

k
1

√
2
(h0

k + iA0
k)

 , (12)

where k = 2, 3.
We have the sum rule from Eqs. (8), (10) and (11):

m2
H + m2

A + 2m2
c = 3µ2

d +
1
λ4

(λ̄′
+ λ̄′′

+ λ5)m2
h. (13)

The mass degeneracy in Eqs. (8), (10) and (11), is due to a residual symmetry as we will see below.
Theµ2

d parameter appearing in these equations is not related to the spontaneous symmetry breaking.
Thus, since µ2

d is not protected by any symmetry, it may be larger than the electroweak scale. On one
hand, if µ2

d > v2
SM (assuming the λ′s are of order one) the masses of the scalar h0

2,3, pseudo-scalar A
0
2,3

and the charged scalar h±

2,3 are heavier than h0, independently of the values of the λ’s and vSM . On the
other hand, if µ2

d < 0 and λ̄′, λ̄′′ > 0, λ5 > 0, all these particles may be lighter than h0. However,
since λ5 may be negative, λ4 is always positive, and in this casem2

c < 0, as can be seen from Eq. (11),
here we will consider only µ2

d > 0 and larger than |(λ5/8λ4)|m2
h .

The potential in Eq. (2) can be written in terms of SU(2) scalar doublets with their components
being the mass eigenstates given in Eq. (12):

V (φi) = 3λ4v
2φĎφ + µ2

d(φ
Ď
1φ1 + φ

Ď
2φ2) + λ1(φ

Ď
1φ1 + φ

Ď
2φ2)

2
+ λ2(φ

Ď
1φ2 − φ

Ď
2φ1)

2

+ λ3[(φ
Ď
1φ2 + φ

Ď
2φ1)

2
+ (φ

Ď
1φ1 − φ

Ď
2φ2)

2
] + λ4(φ

Ďφ)2 + λ5φ
Ďφ(φ

Ď
1φ1 + φ

Ď
2φ2)

+ λ7[|φ
Ďφ1|

2
+ |φĎφ2|

2
] + {λ6[(φ

Ďφ1)
2
+ (φ

Ď
2φ)2] + λ8[φ

Ďφ1(φ
Ď
1φ2 + φ

Ď
2φ1)

+ φĎφ2(φ
Ď
2φ2 − φ

Ď
1φ1)] + H.c.}. (14)

Notice that this scalar potential is the same as that in Eq. (2). However the earlier one was written in
terms of the symmetry eigenstates and (14) is in terms on themass eigenstates. This occurs only in this
model and not in any 3HDM and it is a consequence of the S3 symmetry and the vacuum alignment.

Notice that this scalar potential with three Higgs scalar doublets under SU(2), is as simple as the
two doublet case, see for instance in Ref. [29]. From Eq. (14), we can see that if λ8 = 0 there is still a
residual S2 symmetry: it is invariant under the exchange of the doublets φ1 ↔ φ2. Notice, however,
that the mass degeneracy is due to the fact that the λ8 term does not contribute to the Higgs scalar
masses, this is easy to be verified, once λ8 corresponds only to the trilinear and quartic interactions
among the three doublets. Anyway, we have considered only the λ8 = 0 case due to the Z2 symmetry
considered above.

We will show later on under which conditions the potential in Eq. (2) (or (14)) is bounded from
below. For the moment, just notice that when v1 = v2 = v3, if λ4 > 0, the minimum of the scalar
potential (Vmin = −λ4v

4
SM ) is global and stable minimum if the masses square, given in (8), (10) and
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(11) are all positive and, if the conditions for the λ’s given in Section 6 are satisfied. However, the
stability of the solution v1 = v2 = v3 under radiative corrections will be studied elsewhere.

The residual S2 symmetry can be broken, if necessary, to avoid the mass degeneracy and also the
domain wall problem. This can be done by quantum corrections [30] and/or by soft terms in the scalar
potential. As an illustration, here we break this symmetry by adding the following quadratic terms
µ2

nmH
Ď
nHm, n,m = 2, 3 to the scalar potential in (1). The mass matrices in all the scalar sectors are

now of the form

M2
n =

an bn bn
bn an + µ2

22 bn + µ2
23

bn bn + µ2
23 an + µ2

33

 , (15)

where µ2
nm are naturally small, and we will assume that are real for the sake of simplicity. Although

when µ2
22 = µ2

33 = ν2 and µ2
23 = µ2 the matrix above is still diagonalized by the tribimaximal

matrix, as the neutrinos masses [31], this is not possible with scalars fields: in this case there is no
would-be Goldstone bosons. In order to have the correct number of these bosons we have to impose
that µ2

22 = µ2
33 = −µ2

23 ≡ µ2. In this case the matrix in Eq. (15) is still diagonalized by tribimaximal
matrix in Eq. (7), and the eigenvalues are now (2an + bn, an − bn, an − bn + µ2) and we still have
S = φ and D = −(φ1, φ2), as in the previous case.

4. A change of weak basis: Case B

We can build the singlet and a doublet of S3 with just one SU(2)-doublet, sayH1, and the other two,
say H2 and H3, transform as the irreducible doublet of S3, i.e.,

S = H1 ∼ 1, D = (H2,H3) ∼ 2. (16)
But, note that, the two bases are related by the tribimaximal matrix in Eq. (7), i.e, S

D1
D2


= UT

TBM

H1
H2
H3


(17)

with UT
TBM being the transpose of the matrix in Eq. (7) and S, D1 and D2 here are those in Eq. (3). The

representation in Eq. (16), is called here case B. It was considered since a long time ago [27,32–35] but
in other context and different motivations.

Although both cases in (3) and (16) are related by the transformation in Eq. (17) and can be
considered just the same model in two different basis, we can see that this is true only before the
spontaneous symmetry breaking. The VEV of the S3 triplet in case A is given byH1

H2
H3


=


v1
v2
v3


. (18)

When the decomposition in Eq. (3) is used and the vacuum alignment v1 = v2 = v3 =
vSM√

3
is used it

implies the inert character of the doublet D. However, in case B we haveH1
H2
H3


=


vSM
0
0


. (19)

We see that the vacua in (18) and (19) are related by the transformation in (17) only when v1 =

v2 = v3 =
vSM√

3
. Hence, only in this situation both cases are identical before and after the spontaneous

symmetry breaking. But in a general vacuum the inert character of the doublet is lost because in this
case the mass matrices are of the general form, a full 3× 3 matrix, and after the field rotation the SM-
Higgs like will be a linear combination of this three fields, this implies that at tree level and/or loop
level all scalars couple to all fermions. Hence we have to impose in case B that v2 = v3 = 0. In fact,
the constraint equations are different and are given in the Appendix B. These constraint equations are
the same, see Eq. (5) with 3v2

= v2
SM only in the vacuum alignment used in this paper.
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The constraint equations in Eq. (B.2) implies, with the vacuum alignment given above, µ2
s =

−λ4v
2
SM and the mass square matrices are all diagonal: there is no mixing among the scalar fields in

each charge sector. At tree level the masses are the same as in case A, see Eqs. (8)–(11). The doublets
of SU(2) written in terms of the mass eigenstates are denoted, as before, by φ and φ1,2. In this case
the scalar potential in terms of these fields is given also in Eq. (14) again with λ8 = 0, this shows that
even after the SSB the models are equivalent. Unlike the case A, there is no mixing among the mass
eigenstate scalar fields therefore these fields are in the irreducible representations of S3 too: S ≡ φ
and D = (d1, d2) ≡ (φ1, φ2).

The transformation φ1 ↔ φ2 is again a residual S2 symmetry which, if necessary, can be softly
broken by adding terms like µ2HĎ

2H3, (µ2 is also considered to be real for simplicity). In this case, the
mass matrices are given by

M2
n =

m2
n1 0 0
0 m2

n2 µ2

0 µ2 mn2

 , (20)

where n = h, a, c , for scalar, pseudo-scalar and charged scalar field, respectively. The mixing now is
only in the inert sector and the masses square are

m̄2
h1 = m2

h, m̄2
h2 = m2

h − µ2, m̄2
h3 = m2

h + µ2,

m̄2
a1 = 0, m̄2

a2 = m2
a − µ2, m̄2

a3 = m2
a + µ2,

m̄2
c1 = 0, m̄2

c2 = m2
c − µ2, m̄2

c3 = m2
c + µ2, (21)

wherem2
h,m

2
a andm2

c are given in Eqs. (8), (10) and (11), respectively. The mass matrices of the form
in (20) are diagonalized by the orthogonal matrix

U =


1 0 0

0 −
1

√
2

1
√
2

0
1

√
2

1
√
2

 , (22)

and the mixing between φ1 and φ2 is maximal.
Thus, in terms of the mass eigenstate fields, the scalar doublets of SU(2) are written as S = φ and

D ≡ −(D1,D2) = −(−φ1 + φ2, φ1 + φ2), where φi are the SU(2) doublets written in terms of the
mass eigenstate fields. Explicitly

S ≡ φ =

 h+

1
√
2
(vSM + h0

+ iA0)

 ,

φ1 =


1

√
2
(−h+

2 + h+

3 )

1
2
[−h0

2 + h0
3 + i(−A0

2 + A0
3)]

 , φ2 =


1

√
2
(h+

2 + h+

3 )

1
2
[h0

2 + h0
3 + i(A0

2 + A0
3)]

 . (23)

It is important to note again that after the degeneracy breaking we lose the connection between the
two cases as can be seen by comparing Eq. (12) with (23).

5. The Yukawa sector

If in cases A and B in the lepton and quark sectors all fields transform as singlet under S3, they only
interact with the singlet S as following:

−Lyukawa = L̄iL(Gl
ijljRS + Gν

ijνjRS̃) + Q̄iL(Gu
ijujRS̃ + Gd

ijdjRS) + H.c., (24)

S̃ = iτ2S∗ and we have included right-handed neutrinos.
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We see that the fermion masses, as in the SM, arise only through the VEV of the singlet S which is
the only field, or linear combination of fields, with a non-zero VEV, see Eqs. (12) and (23). Hence,
there is no FCNC in the lepton and quark sectors at the tree level. Moreover, we obtain arbitrary
mass matrices from Eq. (24), because there is just one source of the fermion masses which are given
by M f

= (vSM/
√
2)Gf , f = l, ν, u, d and where vSM = 246 GeV. The neutral interactions are

(
√
2/vSM)f̄LM̂ f fRh0, where M̂ f is the diagonal mass matrix in the f -sector. These mass matrices are

general enough to accommodate a realistic VPMNS and VCKM mixingmatrices.Moreover, since the right-
handed neutrinos may have a Majorana mass term we can have a type-I seesaw mechanism.

Notwithstanding, unlike the case of the SM, having only one source of fermion masses is not
guaranteed to avoid FCNC in the scalar sector. In fact, the case of natural flavor conservation when
there are discrete symmetries was not considered in Ref. [36]. Hence, it is worth considering briefly
this issue. Let D be a generic non-Abelian discrete symmetry with multiplication law ∗ under which
the left- and right-handed fermions, namely fDL and fDR , are in different representations of the gauge
symmetry but are singlet under the D symmetry. The scalar multiplets, HD , transform non-trivially
under the gauge symmetry, but are singlet of D since this is the scalar that couple to fermions. The
Yukawa interactions are of the form f̄DL ∗ fDR ∗HD ∼ 1, i.e., it is invariant under the gauge and discrete
transformations. Even if HD is in the trivial representation of D as we have assumed, without the
vacuum alignment discussed above there are FCNC in each charge sector. With an arbitrary vacuum
alignment the relation in Eq. (9), which implies that ReS0 = h0, is no longer valid and S0 is a linear
component of the three neutral mass eigenstates and all of them contribute to the fermion mass
matrices. It suggests that the vacuum alignment can be added to the conditions in Ref. [36] to have
natural flavor conservation in neutral currents at the tree level when discrete symmetries are present
in the model. Here we have considered D = S3.

6. Analysis of the scalar potential

The scalar potential has to be bounded from below to ensure its stability. In the SM this is easy at
least at tree level, we just have to ensure that the quartic term in the potential has λ > 0. In theories
that increase the number of scalarmultiplets it ismore difficult to ensure the positivity of the potential
in all directions. A scalar potential has a quadratic form in the quartic couplings in the form Aabξ

2
a ξ 2

b .
If the matrix Aab is copositive in the sense of Ref. [37], it is possible to ensure that the potential is
bounded from below. Let us apply this analysis to our case.

We obtain the copositive conditions in the quartic terms in the scalar potential given in Eq. (14),
by defining:

|ζi|
2

= ξ 2
i , ζ

Ď
i ζj = ξiξjρieiθi (25)

where ζi = S,D1,D2, and ρi and θi are not physical parameters. From the scalar potential of Eq. (2)
we obtain the matrix A in the base (ξ 2

1 , ξ 2
2 , ξ 2

3 ) the matrix elements are given by:

A11 = λ4,

A22 = λ1 + λ3,

A33 = A22,

A12 = A21 =
1
2
[λ5 + ρ2

1 (λ7 + 2λ6 cos(2φ1))],

A13 = A31 =
1
2
[λ5 + ρ2

2 (λ7 + 2λ6 cos(2φ2))],

A23 = A32 = 2(λ3 − λ2) + ρ2
3 (λ2 + λ3) cos(2φ3). (26)

Now we most minimize the potential with respect to the free parameters ρi and φi. For the terms
2λ7 cos(2φ1) and 2λ7 cos(2φ2) it is obvious that the minimum will be when cos(2φ1) = cos(2φ2) =

−1, for the element A23 to the minimum occurs for ρ3 = 1 and cos(2φ3) = −1, which leaves us with

A11 = λ4,

A22 = λ1 + λ3,
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A33 = A22

A12 = A21 =
1
2
(λ5 + ρ2

1 (λ7 − 2λ6)),

A13 = A31 =
1
2
(λ5 + ρ2

2 (λ7 − 2λ6)),

A23 = A32 = −4λ2. (27)

Now if λ7 − 2λ6 ≥ 0, the minimum of the potential is obtained by setting ρ1 = ρ2 = 0, but if
λ7 − 2λ6 ≤ 0 then the minimum is given by ρ1 = ρ2 = 1. To simplify our analysis and since
the results for ρ1 and ρ2 are equal we will set ρ1 = 0 and ρ2 = 1. Finally we have the following
expressions for the matrix elements,

A =

λ4
1
2
λ5

1
2
[λ5 + λ7 − 2λ6]

λ1 + λ3 −4λ2
λ1 + λ3

 . (28)

For a symmetric matrix A of order 3 the copositivity criteria are summarized as follows: aii > 0
and vij = aij +

√
aiiajj > 0 and

√
a11a22a33 + a12

√
a33 + a13

√
a22 + a23

√
a11 +

√
v12v13v23 > 0.

Explicitly we obtain:

λ4 > 0,
λ1 + λ3 > 0,

λ5 + 2


λ4(λ1 + λ3) > 0,

λ5 + λ7 − 2λ6 + 2


λ4(λ1 + λ3) > 0,

λ1 + λ3 > 4λ2, (29)

and

(λ1 − 2λ2 − λ3)


λ4 +


(−4λ2)(λ1 + λ3)λ4

+


λ1 + λ3(λ5 + λ7 − 2λ6) +

√
λ1 − λ2(2

√
(λ1 + λ3)λ4 + λ5 + λ7 − 2λ6)

√
2

> 0,

(−4λ2)


λ4 +


(−4λ2)(λ1 + λ3)λ4 +


λ1 + λ3(λ5)

+

√
λ1 − λ2(2

√
(λ1 + λ3)λ4 + λ5)
√
2

> 0. (30)

It is easy to verify that if the conditions in Eqs. (29) are satisfied the conditions in Eq. (30) are
automatically satisfied. Hence, the positivity of the scalar potential is guarantee just by the conditions
in Eqs. (29).

7. Some phenomenological consequences

It is well known that two-Higgs doublet models have an interesting phenomenology [5]. For
instance, (i) in a broad class of this type ofmodels there isCP violation arising purely from the exchange
of Higgs bosons but FCNC are allowed [3], and (ii) in the class of models with inert scalars the lightest
neutral fields is, at least in some range of the parameters, a darkmatter candidate in the universe. Here
we will consider only these two phenomenological aspects in this model. The first one is CP violation
and, secondly the possibility of having a dark matter candidate.

In general in three Higgs doublet models there is also CP violation via de exchange of scalar
fields [6]. We will analyze this issue in the present model. In case A, and the potential in Eq. (1) or in
Eq. (2). Let us suppose that the VEVs are complex, and still imposing v1eiθ1 = v2eiθ2 = v3eiθ3 = VeiΘ
as a stable minimum of the scalar potential. The phase Θ , which appears only in the singlet S, can
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be transformed away with a global U(1) transformation as it happens in the standard model. On the
other hand, if θ1 ≠ θ2 ≠ θ3 we lost the inert feature of the two SU(2) doublets in D = (φ1, φ2). Thus,
if we want two inert doublets there is no spontaneous CP violation through the VEVs. We can also
consider the possibility to have hard explicit CP violation through complex coupling constants in the
scalar potential because λ6 may be complex, we can define λ6 = |λ6|eiα6 . In this case, it is possible
to transform away the λ6 phase by making the global phase rotations S → SeiaS and D → DeiaD , and
choosing aD − aS = α6/2, the λ6 phase can be eliminated, wherefore we see that in this context there
is no CP violation in the scalar sector, just the hard violation in the quark and lepton mixing matrices.

We can try, also, to have soft explicit CP violation through the quadratic non-diagonal term in the
scalar potential µ2hĎ2h3 assuming that µ2 is complex, as in Ref. [4]. However it is not possible in case
A once the mass matrices in Eq. (15) are not diagonalized by tribimaximal-type matrix and the inert
feature of the two extra doublets is lost. However, this source of CP violation is possible in case B since,
as can be seen from Eq. (20), notwithstanding the mixing and the CP violation occurs only in the inert
sector.

It is well known that there exists a range of the parameters in which an inert doublet is a candidate
for dark matter (DM) [13–15,30]. This may also imply, in the present model, contributions to the
invisible decay of the SM-like Higgs [38–40]. It has been shown in Ref. [22] that, in the context of
one inert Higgs doublet (IDM), there are three allowed regions of masses that are compatible with
observed value of ΩDMh2: (i)

<
∼ 10 GeV; (ii) 40–150 GeV, and (iii)

>
∼ 500 GeV. Notice that the regions

(i) and that in 40–60 GeV there is SM Higgs invisible decay.
The same may happen in the present model with h0

2,3. Here we will only show that, for a range of
the parameters and for the three allowed regions above the spin-independent cross section for the
h0
2,3-nucleon scattering agrees with the Xenon100 results [41], the Lux results [42] and the theoreti-

cal prediction of Xenon1T. And at the same time for the region (i) and 40–60 GeV, h0
→ h0

2,3 may be
compatible with the invisible width decay. Here wewill consider only when there is mass degeneracy
in case A.

The spin-independent cross section for DM–nucleon scattering is given by [22]:

σSI = 2 ×
m4

p λ̄′ 2f 2

4π(mp + mh02
)2m4

h02

, (31)

where the factor 2 is because we have two mass degenerated inert scalars, and f = 0.326, see [39];
and the invisible Higgs width by:

Γ (h0
→ h0

2h
0
2(h

0
3h

0
3)) = 2 ×

λ̄′ 2v2
SM

32πmh02

1 −


4mh02

mh

2

. (32)

In Fig. 1 we show the excluded region given by Xenon100 [41] and Lux [42] results and the
theoretical prediction for Xenon1T, Fig. 1(a) shows the behavior of Eq. (31) as a function of themasses
for a fixed λ̄′ for masses less than 10 GeV, in this case the best solution is for λ̄′

= 5 × 10−4, but with
masses lower than 6 GeV all values are allowed. Fig. 1(b) shows the behavior of Eq. (31) as a function
of λ̄′ for masses between 40 and 160 GeV, in this case we have two good solution for λ̄′

= 5 × 10−4

for the entire range and λ̄′
= 10−3 for masses between 60 and 160 GeV. Finally in Fig. 1(c) we show

that for masses larger than 500 GeV λ̄′ is allowed for a range between 5 × 10−4 and 9 × 10−3. These
values are in agreement with the calculation of the relic density for this model as shown in Ref. [43].

In Fig. 2(a) we show the invisible Higgs width, using Eq. (32), and in Fig. 2(b) the branching ratio
Br(h → inv) =

Γ (h→inv)
ΓSM+Γ (h→inv) , as functions of the scalarmass andwith three values for λ̄′

= 5×10−4,

1×10−3 and9×10−3 for themass rangemh02
< 62GeV.Note that the curve for λ̄′

= 0.009 is excluded
if we want to have a dark matter candidate and the invisible branching ratio B(h → DM) < 0.2 [38].

Since λ̄′
= λ5 +λ6 + 2λ7, from the constraints in Eq. (29) and from the expressions for the masses

in Eq. (8) and Eq. (11), we have

2(m2
H − µ2

d)

v2
SM

√
λ4(λ1 + λ3)

> −1,
(4m2

c − 2µ2
d)

v2
SM

√
λ4(λ1 + λ3)

> −1. (33)
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Fig. 1. The gray areas show the regions excluded by Xenon, Lux and the theoretical prediction Xenon1T for σSI defined in
Eq. (31) as a function of the DM-candidate mass, and for three different values of λ̄′ . (a) is the region for masses less than 10
GeV, (b) shows the behavior of Eq. (31) formasses between 40 and 160GeV, finally in (c) we show the allowed region formasses
larger than 500 GeV.

FromEq. (33), we obtain the allowed region forµ2
d and (λ1+λ3) if we fixm2

H andm2
c , andλ4 = 0.13

is fixed by the SM Higgs mass. These are shown in Fig. 3 for (a) m2
H = 54.1 and m2

c = 85, (b)
m2

H = 80 and m2
c = 95, and (c) m2

H = 168 and m2
c = 84.7. These values are also compatible with the

experimental data of dark matter, as was shown in Ref. [43].
The presence of two inert doublet implies in contributions for h0

→ γ γ [44], and h0
→ Zγ [45].

In the latter paper it was obtained the best value for λ5, that fit the current data for h → γ γ , when
it is λ5 = −0.4, in Fig. 4 we show the constraints on λ1 and λ3 using the third line of Eq. (29),
(λ5 +

√
λ4(λ1 + λ3) > 0).

8. Conclusions

If the Higgs sector has, as in the fermion sector, three sequential generations, we should expect the
existence of extra symmetries to make the interactions and the mass spectra simplest in the scalar
sector. This is because, in general, three Higgs doublet models have complicated scalar potentials and
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Fig. 2. The invisible Higgswidth (a) defined in Eq. (32), and the branching ratio (b), Br(h → inv) =
Γ (h→inv)

ΓSM+Γ (h→inv) as functions

of the scalar mass with λ̄′
= 5 × 10−4 , λ̄′

= 9 × 10−3 and λ̄′
= 10−3 for masses in the range mh < 62 GeV. As can be seen

λ̄′
= 9 × 10−3 is excluded by data, if we want that the scalar be a dark matter candidate.

Fig. 3. The allowed region, using Eq. (33), for µ2
d and (λ1 + λ3) when we fix (a) m2

H = 54.1 and m2
c = 85, (b) m2

H = 80 and
m2

c = 95, and (c)m2
H = 168 and m2

c = 84.7. With λ4 = 0.13 fixed by the SM Higgs mass.

mass matrices in each charge sector are diagonalized by arbitrary unitary 3× 3 matrices having each
one threemixing angles and six phases (some of themmay be absorbed). In the presentmodel because
of the S3 symmetry and the vacuum alignment, the entries of the rotation matrices are, at the tree
level, Clebsch–Gordan-like coefficients. This eliminate plenty of new parameters that should have to
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Fig. 4. Using Eq. (29), λ5 > −
√

λ4(λ1 + λ3), and the results in Fig. 3 we obtain the allowed region for λ1 and λ3 when we fix
λ5 = −0.4 and λ4 = 0.13 is fixed by the SM Higgs mass, is the yellow area in figure above.

be determined by experiments. In fact, the scalar potential in this models is as simple as that in a
general two Higgs doublet model. The only difference is the λ8 term in the scalar potential, see Eq. (1)
or (2). Anyway it is necessary thatλ8 = 0 in order tomaintain the inert character of the doublet of S3,D.

Moreover, like multi-Higgs models with no flavor changing neutral currents mediated by neutral
scalars, the only mixing parameters appearing in the fermion charged interactions are the CKM and
PMNS angles and phases. For more details see Ref. [44]. We would like to stress that the existence
of two inert doublets, and the flavor conservation in the neutral currents mediated by scalars are
consequences of three ingredients: (i) the S3 symmetry, (ii) the representation content of the fermion
and scalar multiplets under S3, and, (iii) the vacuum alignment.

If the lightest neutral scalars are the CP-even as we have assumed here, the CP-odd ones can be
produced at LHC in vector-boson fusion. This also deserves a detailed study.
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Appendix A. Constraint equations in model A

Expanding the scalar potential in Eq. (1) as a function of VEV’s, we will obtain:

V =
1
36

(6µ2
s (v1 + v2 + v3)

2
+ 12µ2

d(v
2
1 + v2

2 − v2v3 + v2
3 − v1(v2 + v3))

+ 4λ1(v
2
1 + v2

2 − v2v3 + v2
3 − v1(v2 + v3))

2
+ 4λ3(v

2
1 + v2

2 − v2v3 + v2
3

− v1(v2 + v3))
2) + λ4(v1 + v2 + v3)

4
+ 2λ5(v1 + v2 + v3)

2(v2
1 + v2

2 − v2v3 + v2
3

− v1(v2 + v3)) + 2λ6(v1 + v2 + v3)
2(v2

1 + v2
2 − v2v3 + v2

3 − v1(v2 + v3))

+ 4λ7(v1 + v2 + v3)
2(v2

1 + v2
2 − v2v3 + v2

3 − v1(v2 + v3))

− 2
√
2λ8(v1 + v2 − 2v3)(2v1 − v2 − v3)(v1 − 2v2 + v3)(v1 + v2 + v3), (A.1)
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the constraint equations are explicitly given by:

18t1 = 6µ2
d(2v1 − v2 − v3) + 6µ2

sV + 2(Λ1 − 4
√
2λ8)v

3
1 − [(Λ2 +

√
2λ8)(3v2

1 + v2
2 + v2

3)

− (Λ3 − 7
√
2λ8)v2v3](v2 + v3) + 6[(Λ4 + 2

√
2λ8)(v

2
2 + v2

3)

+ (Λ5 − 2
√
2λ8)v2v3]v1 (A.2)

18t2 = −µ2
d(v1 − 2v2 + v3) + 6µ2

sV + 2Λ1v
3
2 + (Λ2 −

√
2λ8)(v

3
1 + v3

3 + 3v2
2v3 + 3v2

2v1)

+ 6(Λ4 + 2
√
2λ8)(v

2
1 + v2

3)v2 + 3(Λ5 − 2
√
2λ8)(v1v3 + 2v2v3 + v2

3)v1 (A.3)

18t3 = −6µ2
d(v1 + v2 − 2v3) + µ2

sV + 2Λ1v
3
3 − (Λ2 +

√
2λ8)(v

3
1 + v3

2 + 3v1v
2
3 + 3v2v

2
3)

+ 6(Λ4 + 2
√
2λ8)(v

2
1 + v2

2)v3 + 3(Λ5 − 2
√
2λ8)(v1v2 + v2

2 + 2v2v3)v1 (A.4)

where

Λ1 = 2λ′
+ λ4 + 2λ̄′, Λ2 = 2λ′

− 2λ4 − λ̄′, Λ3 = 2(λ′
+ 2λ4 − 2λ̄′),

Λ4 = λ′
+ λ4, Λ5 = 2λ4 − λ̄′. (A.5)

Although the λ8 term allows solutions, in this case the λ8 symmetry has to be forbidden because
it induces a tadpole that destabilize the vacuum alignment.

Appendix B. Constraint equations in model B

Expanding the scalar potential in Eq. (2) as a function of VEV’s we have

V =
1
4
(2µ2

s v
2
1 + λ4v

4
1 + v2

2(2µ
2
d + (λ5 + λ6 + 2λ7)v

2
1

− 2λ8v1v2 + (λ1 + λ3)v
2
2) + (2µ2

d + (λ5 + λ6 + 2λ7)v
2
1

+ 6λ8v1v2 + 2(λ1 + λ3)v
2
2)v

2
3 + (λ1 + λ3)v

4
3). (B.1)

With the representation in Eq. (16), the constrain equation are

2t1 = v1


2µ2

s + 2λ4v
2
1 + λ̄′(v2

2 + v2
3) −

λ8

v1


v3
2 + v2v

2
3


,

2t2 = v2


2µ2

d + λ̄′v2
1 + (λ1 + λ3)(v

2
2 + v2

3) − 3λ8


v1v2 −

v1v
2
3

v2


,

2t3 = v3[2µ2
d + λ̄′v2

1 + 2(λ1 + λ3)(v
2
2 + v2

3) + 6λ8v1v2], (B.2)

and we see that even in the general case when v1 ≠ v2 ≠ v3 they are different from the respective
equations in model A, see Eq. (A.2).

Notice that the λ8 term avoids the zero solution for v1 and v2. If this term is forbidden with a Z2
symmetry under which D → −D and all the other fields being even under this symmetry, we can
have the solution v1 = vSM and v2 = v3 = 0.
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