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Abstract. Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equa-
tions, leads to a negative creation pressure, which can be used to explain the accelerated
expansion of the Universe. Recently, it has been shown that the dynamics of expansion of
such models can not be distinguished from the concordance ΛCDM model, even at higher
orders in the evolution of density perturbations, leading at the so called “dark degeneracy”.
However, depending on the form of the CDM creation rate, the inclusion of spatial curvature
leads to a different behavior of CCDM when compared to ΛCDM, even at background level.
With a simple form for the creation rate, namely, Γ ∝ 1

H
, we show that this model can

be distinguished from ΛCDM, provided the Universe has some amount of spatial curvature.
Observationally, however, the current limits on spatial flatness from CMB indicate that nei-
ther of the models are significantly favored against the other by current data, at least in the
background level.
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1 Introduction

Since 1998, the series of observations of the luminosity-redshift relation of the Supernovae
Type Ia (SNe Ia) has set a new era in cosmology [1–5]. Those observations, complemented by
the observations of the Cosmic Microwave Background (CMB) anisotropies, Baryon Acous-
tic Oscillations (BAO), Hubble parameter in different redshifts, strongly suggest that the
Universe has a great order of spatial flatness and has entered in a late phase of accelerating
expansion [3–15].

Inside the context of relativistic cosmology, the accelerated expansion of the Universe
is usually attributed to a new dark component called dark energy which possesses as main
feature the negative pressure. The most favoured candidate for dark energy is the cosmolog-
ical constant, Λ. This new component not only can fit the SN Ia observations, but can also
complete the matter content in order to recover the flatness of the spatial hypersection of
the Universe, as predicted by inflationary theory and corroborated by CMB observations.

Nevertheless, this concordance model has some serious issues. Due to its equation of
state (pΛ = −ρΛ), the cosmological constant could rise from the vacuum energy of quantum
fields. However, the theoretical estimation to the vacuum energy through quantum field
theory (ρv,Th) is up to 122 orders of magnitude bigger than the observational density [16]. In
fact, the density of cosmological constant Λ, responsible for the late acceleration of expansion
of the Universe as estimated from observational data (ρΛ) is almost zero in natural units
(10−47GeV4) and must be fine tuned to explain quantitatively the acceleration.

One way to avoid such fine-tuning is, as usual in quintessence models, consider that
ρv,Th is cancelled out by some yet unknown mechanism. In this context, inside the General
Relativity, the negative pressure is the key element for acceleration. This can occur naturally
in thermodynamic process departing from the equilibrium, for instance, the matter creation
process at expenses of gravity. This phenomenon gives rise to a term of negative pressure
which should be considered at the level of Einstein Equations, as shown by Prigogine and
collaborators and formulated in a manifestly covariant way by Lima, Calvão & Waga [17–19].
The inclusion of the backreaction at the level of Einstein Field Equations was determinant
to the rise of a new class of cosmological models with matter creation.
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Many CCDM models have been proposed in the literature, each of those have different
phenomenological creation rate dependencies [18–28]. Among them, recently, a model from
Lima, Jesus and Oliveira (LJO) [22] was interesting because it was shown that this model
leads to the same background evolution as the concordance ΛCDM model, for any spatial
curvature. Further, it was shown that even at linear density perturbation evolution, such a
degeneracy persisted, leading to the so called “dark degeneracy” [26, 29].

A first alternative to break such a degeneracy was given by Jesus and Pereira [28], which
have found, directly from quantum field calculations, a creation rate which depended on the
dark matter mass. They have used observational data to constrain the dark matter mass
and have argued that with better constraints in the future, this could be used to distinguish
CCDM from ΛCDM.

In this paper we investigate a cosmological model driven only by cold dark matter
(CDM) creation at expenses of gravitational field in which the rate of CDM creation evolves
reciprocally to the expansion rate, and we include the possibility of nonzero spatial curvature.
We assume that the created particles are described by a real scalar field and consequently
the created particles are its own antiparticles. Similarly to the standard model, the scenario
presented here has the same degree of freedom and is also capable of explaining the acceler-
ating expansion. We show that, with some amount of spatial curvature, the CCDM behavior
differs from ΛCDM and both can be distinguished using observational data.

In section 2, we discuss the dynamics of the universe with the pressure due to creation.
In section 3, we discuss an specific rate of dark matter creation. In section 4, we constrain
the free parameters of the model. In section 5, we compare the model with other models on
the literature. Finally, we summarize the main results in conclusion.

2 Cosmic dynamics on models with creation of CDM particles

We will start by considering the homogeneous and isotropic FRW line element (with c = 1):

ds2 = dt2 − a2(t)

(

dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

)

, (2.1)

where k can assume values −1, +1 or 0.
In this background, the Einstein field equations are given by

8πG(ρrad + ρb + ρdm) = 3
ȧ2

a2
+ 3

k

a2
, (2.2)

and

8πG(prad + pc) = −2
ä

a
−

ȧ2

a2
−

k

a2
, (2.3)

where ρrad, ρb and ρdm are the density parameters of radiation, baryons and dark matter,
prad = ρrad/3 is the radiation pressure and pc is the creation pressure.

The solutions of the EFE above are obtained considering an energy-momentum tensor
(EMT) with the form [17, 30]:

Tµν = Tµν
eq +∆Tµν , (2.4)

where Tµν
eq characterizes thermodynamic equilibrium in the fluid and the creation of matter

and entropy in universe are incorporated to the EFE through the correction term ∆Tµν =
−pc(g

µν − uµuν) [17–19, 30].

– 2 –
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Therefore, the complete EMT (2.4) in the presence of matter creation has the explicit
form:

Tµν = (ρrad + ρb + ρdm + prad + pc)u
µuν − (prad + pc)g

µν , (2.5)

satisfying the conservation law Tµν
;ν = 0.

Assuming solely the creation of dark matter component, the densities of radiation and
baryon components satisfy their respective usual conservations laws, namely:

ρ̇rad + 4
ȧ

a
ρrad = 0 , (2.6)

and

ρ̇b + 3
ȧ

a
ρb = 0 , (2.7)

where each overdot means one time derivative and we have used that prad = ρrad/3 and pb = 0.

On the other hand, when the creation process is considered we should take into account
a matter creation source at level of Einstein Field Equations [18, 19]:

ρ̇dm
ρdm

+ 3
ȧ

a
= Γ, (2.8)

where Γ is the rate of dark matter creation in units of (time)−1.

As shown by [18, 19], the creation rate of cold dark matter is associated to the creation
pressure pc in eq. (2.3) through:

pc = −
ρdmΓ

3H
, (2.9)

where H ≡ ȧ/a and we have considered an “adiabatic” creation, i.e., the case when the
entropy per particle is constant. The so called “adiabatic” regime is a simplifying hypothesis
in which the only source of entropy increase in the universe is the matter creation [17].
Mathematically, according to Calvão, Lima & Waga [18, 19]:

σ̇ =
Ψ

nT

(

β −
ρ+ p

n

)

, (2.10)

where σ is the entropy per particle, Ψ is the particle creation rate, n is the particle density,
T is the temperature and β is given from a phenomenological treatment of creation pressure:

pc = −
βΨ

Θ
, (2.11)

where Θ = 3H is the bulk expansion rate. So, in case σ̇ = 0, as we assume, we have β = ρ+p
n

,
then creation pressure is given by pc = −ρ+p

Θ
Ψ
n
= −(ρ+p) Γ

3H . On the other hand, if σ̇ 6= 0, β
remains as an unknown parameter, which can not be constrained by thermodynamics alone,
as the second law of thermodynamics demands only Ψ ≥ −nσ̇

σ
.

As a consequence of eq. (2.9), one can see that the dynamics of the universe is directly
affected by the rate of creation of cold dark matter, Γ. In particular, in the case Γ >
0 (creation of particles) we have a negative pressure creation and in the case Γ → 0 we
recover the well known dynamics when the universe is lately dominated by pressureless matter
(baryons plus dark matter).

– 3 –
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3 Creation of Cold Dark Matter (CCDM) model

The difficulties in identifying the nature of dark energy led the cosmologists to a quest for
better candidates to explain the late acceleration of the Universe. In the literature, models
with CDM creation has been discussed as a viable explanation to this recent phenomenon. It
has been shown that under a convenient choice of the particle creation rate Γ, this scenario
is able to support the observed dynamics, linear structure formation and thermodynamics
features of the late Universe [18–28].

We argue that a natural dependence of the CDM creation rate is on the expansion rate,
as already proposed in other CCDM models present on the literature. It has already been
studied a linear dependence with the Hubble parameter [21] and a power law dependence
on Hubble parameter [20, 31]. It is clear to us that the expansion acceleration is a recent
feature, so the CDM creation also must be recent. As the Universe evolves, the Hubble
parameter decreases, and Γ must increase. We can satisfy those conditions by assuming Γ
to be a negative power law of H, or, in the simplest case, Γ ∝ H−1. So, in this work, we
consider the following creation rate:

Γ = 3α
H2

0

H
, (3.1)

where α is a constant free parameter of the model which drives the creation rate and the factor
3H2

0 has been introduced for mathematical convenience. This is also interesting because, as
we shall see, with the identification α = ΩΛ, the flat ΛCDM is a particular case of our CCDM
model, when we neglect the baryon contribution.

Since we are considering only the late phase of the dynamics of the universe, we can
neglect the radiation terms from now on. Thus, by combining eqs. (2.2) and (2.3), we have

ä

a
= −

4πG

3
(ρb + ρdm + 3pc) . (3.2)

Replacing pc from eq. (2.9), we may write

ä

a
= −

4πG

3

[

ρb + ρdm

(

1−
Γ

H

)]

. (3.3)

Using that ä
a
= Ḣ +H2 and changing variables from time to redshift, we find

dH

dz
=

H

1 + z
+

H2
0Ωb(1 + z)2Γ

2H2
+

H2 −H2
0Ωk(1 + z)2

2H(1 + z)

(

1−
Γ

H

)

, (3.4)

where we have used the solution of (2.7) to baryon density, ρb = ρb0(1 + z)3, Ωb =
ρb0
ρc0

is the

present baryon density parameter, and Ωk = − k
H2

0
is the present curvature density parameter.

Replacing the creation rate (3.1) and changing to dimensionless variable y ≡
(

H
H0

)2
, we find

dy

dz
= 3

y − α

1 + z
+

3αΩb(1 + z)2

y
− Ωk(1 + z)

(

1−
3α

y

)

, (3.5)

which can not be solved analytically, except for some special cases. For example, if the
Universe is spatially flat and we can neglect baryons (Ωk = Ωb = 0), we can solve (3.5)
to find:

H(z)2 = H2
0 [α+ (1− α)(1 + z)3] , (3.6)

– 4 –
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which corresponds to the flat CCDM LJO model, or to flat ΛCDM model, with the identifica-
tion α = ΩΛ. However, by introducing baryons or curvature, this model can not recover the
LJO or the ΛCDM model anymore. So, this simple, and proper, generalization can be useful
to discriminate between CCDM models and ΛCDM model even in the background level. On
the other hand, the LJO and ΛCDM models can only be distinguished at the perturbation
levels [23] and only in the absence of the separation of dark matter components [26].

There is also one more analytical solution. If we neglect curvature (Ωk = 0), retaining
baryon density (Ωb 6= 0), we find an analytical solution to (3.5),

(

H

H0

)2

= Ωb(1 + z)3



1 +W





(1− Ωb) e
1−α

Ωb
+ α

(1+z)3Ωb

−1

Ωb







 , (3.7)

where W (x) is the principal Lambert W function, also known as product logarithm, real
solution to equation x = W (x)eW (x).

However, if we neglect baryons only (Ωb = 0, Ωk 6= 0), or if we consider the full
equation (3.5), with Ωb 6= 0 and Ωk 6= 0, we can not find an analytical solution to H(z), and
we have to resort to numerical methods. Nevertheless, if curvature and baryonic contributions
can both be considered small (0 < Ωb ≪ 1, |Ωk| ≪ 1), we can find an approximation,

(

H

H0

)2

= α+ (1− α)(1 + z)3 +
Ωk

2

[

1− (1 + z)2
]

+ 3Ωk log(1 + z)+

+

(

Ωbα

1− α
− Ωk

)

log
[

α+ (1− α)(1 + z)3
]

, (3.8)

which we have found by solving (3.5) with Ωb = Ωk = 0, replacing the solution on (3.5) and
solving again, with Ωb 6= 0, Ωk 6= 0.

In figure 1 we show the numerical solutions of H(z)/H0 for some values of the free
parameters of the model, namely, Ωk and α. It is worthy to remark that the model has as
particular cases two well known models: the Einstein-de Sitter, for Ωk = 0 and α = 0 and
the flat ΛCDM for Ωk = 0 and α ∼ 0.7 and Ωb = 0.

4 Observational constraints

In this section, we obtain constraints to the free parameters of the model, namely, Ωk and α.
In order to do this, we considered some measurements of the Hubble parameter, H(z) [32]
and the Supernovae Type Ia (SN Ia) dataset of Union 2.1 [6].

4.1 H(z) constraints

Hubble parameter data as function of redshift yields one of the most straightforward cosmo-
logical tests because it is inferred from astrophysical observations alone, not depending on
any background cosmological models.

At the present time, the most important methods for obtainingH(z) data are (i) through
“cosmic chronometers”, for example, the differential age of galaxies (DAG), (ii) measurements
of peaks of acoustic oscillations of baryons (BAO) and (iii) through correlation function of
luminous red galaxies (LRG) [9–15]. In this work, we use the data compilation of H(z)
from Farooq and Ratra [32], which is, currently, the most complete compilation, with 28
measurements.

– 5 –
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Figure 1. Numerical solutions for H/H0 in function of the redshift z, and its sensitivity to the free
parameters α and Ωk. Left) Evolution of H(z) with α = 0.7 and Ωk = 0 (solid curve), Ωk = 0.6
(dashed curve) and Ωk = −0.5 (dashed-dotted curve). Right) Evolution of H(z) with Ωk = 0 and
α = 0.0 (solid curve), α = 0.7 (dashed-dotted curve) and α = 0.9 (dashed curve).

From these data, we perform a χ2-statistics, generating the χ2
H function of free

parameters:

χ2
H =

28
∑

i=1

[

H0E(zi, α,Ωk,Ωb)−Hi

σHi

]2

, (4.1)

where E(z) ≡ H(z)
H0

and H(z) is obtained by solving numerically eq. (3.5).
Throughout every analysis on this paper, we fix the baryon density parameter at the

value estimated by Planck and WMAP: Ωb = 0.049 [7], a value which is in agreement with
Big Bang Nucleosynthesis (BBN), as shown on ref. [33].

As the function to be fitted, H(z) = H0E(z), is linear on the Hubble constant, H0, we
may analitically project over H0, yielding χ̃2

H :

χ̃2
H = C −

B2

A
, (4.2)

where A ≡
∑n

i=1
E2

i

σ2
Hi

, B ≡
∑n

i=1
EiHi

σ2
Hi

, C ≡
∑n

i=1
H2

i

σ2
Hi

and Ei ≡
H(zi)
H0

. The result of such

analysis can be seen on figure 2 (left). As can be seen, the results from H(z) data alone
yield very loose constraints on the plane Ωk-α. In fact, over the region 0 < α < 1.4 and
−1 < Ωk < 1, only the 68% c.l. statistical contour could close. The minimum χ2 was
χ2
min = 16.269, which is too low for 28 data, yielding a χ2 per degree of freedom χ2

ν = 0.626.
The best fit parameters were α = 0.791+0.18

−0.085, Ωk = 0.04+0.46
−0.40 in the joint analysis. We

believe that such a loose constraint can be due to a underestimate of uncertainties on the
H(z) compilation data, which is evidenced by its low χ2

ν . This issue has been addressed
by [32] by combining H(z) data with other constraints. While [32] uses a prior over H0, we
choose to use a prior over Ωk, as a prior overH0 did not affect much the constraints found with
H(z) data only. We have considered a prior over Ωk based on Planck and WMAP results [7].

Planck + WMAP indicate Ωk = −0.037+0.043
−0.049, at 95% c.l., in the context of ΛCDM.

Based on this result, along with the symmetrization process suggested by [34], we use a prior
of Ωk±σωk

= −0.043±0.046. We will refer to this simply as the CMB prior. The results can
be seen on figure 2 (right). As can be seen there, the limits over α and Ωk are quite better. We
have found χ2

min = 16.344, α = 0.775+0.059+0.098
−0.064−0.11

+0.14
−0.16 and Ωk = −0.041± 0.069± 0.11± 0.16.

In order to improve these constraints, we made a combined analysis with SN Ia data.

– 6 –



J
C
A
P
0
1
(
2
0
1
6
)
0
1
4

4.2 Supernovae Type Ia bounds

The parameters dependent distance modulus for a supernova at the redshift z can be com-
puted through the expression

µ(z|s) = m−M = 5 log dL + 25 , (4.3)

where m and M are respectively the apparent and absolute magnitudes, s ≡ (H0, α,Ωk)
is the set of the free parameters of the model and dL is the luminosity distance in unit of
Megaparsecs.

Since in the general case H(z) has not an analytic expression, we must define dL through
a differential equation. The luminosity distance dL can be written in terms of a dimensionless
comoving distance D by:

dL = (1 + z)
c

H0
D . (4.4)

The comoving distance can be related to H(z), taking into account spatial curvature,
by the following relation [35]:

(

H

H0

)2

≡ y =
ΩkD

2 + 1

D′2
, (4.5)

where the prime denotes derivation with respect to redshift z. Inserting this relation in
eq. (3.5), we obtain a differential equation for D:

D′′ =
ΩkDD′2

1 + ΩkD2
−

3D′

2(1 + z)
+

D′3

2(1 + ΩkD2)

[

3α

1 + z
+Ωk(1 + z)

(

1−
3αD′2

1 + ΩkD2

)]

−

−
3αΩb(1 + z)2D′5

2(1 + ΩkD2)2
. (4.6)

To solve numerically this equation we have used as initial conditions D(0) = 0 and
D′(0) = 1. The former condition can be derived from the relationship dL ≈ cz/H0, valid
for small redshifts in a FLRW universe. In order to constrain the free parameters of the
model we considered the Union 2.1 SN Ia dataset from Suzuki et al. [6]. The best-fit set of
parameters s was estimated from a χ2 statistics with

χ2
SN =

N
∑

i=1

[

µi(z|s)− µi
o(z)

]2

σ2
i

, (4.7)

where µi(z|s) is given by (4.3), µi
o(z) is the corrected distance modulus for a given SNe Ia

at zi being σi its corresponding individual uncertainty and N = 580 for the Union 2.1 data
compilation.

In figure 2 (left), we display the space of parameters Ωk − α and the contours for
1σ, 2σ and 3σ of confidence intervals. Using SN data alone, and marginalizing the nuisance
parameter h (H0 = 100h km s−1Mpc−1), we constrain the free parameters as α = 0.788+0.23

−0.086,

Ωk = 0.04+0.39
−0.35 at 68% confidence level and χ2

ν = 0.974. We also show, on figure 2 (left), the
combination SNs Ia + H(z), obtained by adding χ2

SN+χ2
H and marginalizing over h. As can

be seen, adding H(z) data alone to SN Ia data, barely changes the SN constraints. In fact,
we have found, on this case, α = 0.792+0.11 +0.26

−0.061−0.093, Ωk = 0.05+0.25+0.42
−0.24−0.40, with χ2

ν = 0.956. The
main difference on this case, is that the 95% c.l. contours could close on the region considered.
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Figure 2. The results of our statistical analysis, with contours for 68.3%, 95.4% and 99.7% confidence
intervals. In both panels, the dashed lines correspond to SNs Union 2.1 data. Left) Dotted lines:
constraints from H(z) data, solid lines: constraints from SNs + H(z). Right) Solid lines: constraints
from SNs + H(z) + CMB prior on Ωk.

Data α Ωk χ2
ν

H(z) 0.791+0.18
−0.085 0.04+0.46

−0.40 0.626

SNs 0.788+0.23
−0.086 0.04+0.39

−0.35 0.973

SNs+H(z) 0.792+0.11 +0.26
−0.061−0.093 0.05+0.25+0.42

−0.24−0.40 0.955

SNs+H(z) +H0 prior 0.787+0.11 +0.25
−0.065−0.096 0.01+0.26+0.43

−0.26−0.42 0.957

H(z) +H0 prior 0.786+0.17+0.61
−0.085−0.12 −0.06+0.35+0.61

−0.35−0.57 0.649

H(z)+CMB prior 0.775+0.059+0.098+0.14
−0.064−0.11 −0.17 −0.041± 0.069± 0.11± 0.16 0.629

SNs+H(z)+CMB prior 0.768+0.034+0.058+0.084
−0.031−0.051−0.069 −0.036+0.066+0.11+0.15

−0.068−0.11−0.15 0.955

Table 1. Results of the joint analysis for the different combinations of data. Limits on the parameters
correspond to 68.3%, 95.4% and 99.7% c.l. as explained on text.

So, in order to find the best possible constraints with the data available, we made the
full combination of SNs + H(z) + CMB prior on Ωk. In this case, the constraints were quite
restrictive, as shown in figure 2 (right). As one can see, the CMB prior makes a great cut
over the Union 2.1 contours, as Ωk is strongly constrained, in this case. We have found,
on this case, in the joint analysis: α = 0.768+0.034+0.058+0.084

−0.031−0.051−0.069, Ωk = −0.036+0.066+0.11+0.15
−0.068−0.11−0.15,

χ2
ν = 0.957. Table 1 summarizes the analysis results, including the analysis with the H0

prior, based on the current limit on H0 given by [36], H0 = 72.0± 3.0 km s−1Mpc−1.

5 Comparison with CCDM and ΛCDM models

In the absence of baryons and if the spatial curvature vanishes, this model coincides both
with the concordance ΛCDM model and LJO model [22], where Γ ∝ H

ρ
. Also, this model

has the same creation rate as the CCDM1 model of ref. [27]. However, it is the first time
that baryons and nonzero spatial curvature are considered on this model. As baryons are
separately conserved, the DM creation rate Γ ∝ 1

H
leads to a huge difference on the Universe

evolution, as we have shown on our analytical solution, eq. (3.7).
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Figure 3. Ratio of H(z) curves from ΛCDM and CCDM for some values of Ωb and Ωk. For both
panels, α = 0.792, from the SNs+H(z) best fit. (a) Ωb = 0.049, Ωk = 0. (b) Ωb = 0.049 and some
values of Ωk.

It has already been shown that the LJO model can not be distinguished from ΛCDM, for
any value of spatial curvature, neither at background level [22] nor at perturbation level [26].
In this manner, LJO gives rise to the so called “dark degeneracy” [26], where, through cosmo-
logical observations, one can not determine if it is the quantum vacuum energy contribution
(ΛCDM) or the quantum vacuum dark matter creation (CCDM) which accelerates the Uni-
verse. However, in the model proposed here, if the Universe has some amount of spatial
curvature or baryons, we can distinguish it from ΛCDM.

In fact, as we can see on figure 3a, the relative difference is greater than 10% on H(z),
for z & 1.2 and Ωb = 0.049, even for a spatially flat Universe. On figure 3b, one may see
that for Ωk 6= 0, this difference can go up to ∼60% at z ∼ 1 if the Universe is open enough
(Ωk = 0.3) or up to ∼20% if the Universe is closed enough (Ωk = −0.181). These limits are
in agreement with the CCDM constraints from SNs + H(z) alone.

In a similar way, following the lines of [29, 37–39], we have made a comparison between
the effective equations of state of the dark sector (ωeff ≡ pdm+pde

ρdm+ρde
) for the models CCDM and

ΛCDM. For CCDM, from eqs. (2.9) and (3.1) we find ωeff as:

ωeff,CCDM = −α

[

H0

H(z)

]2

= −
α

E(z)2
, (5.1)

while for ΛCDM:
ωeff,ΛCDM =

pΛ
ρΛ + ρdm

= −
ρΛ

ρΛ + ρdm
. (5.2)

This comparison can be seen on figure 4, where we show how the ωeff from CCDM
compares with a fiducial ΛCDM model. We choose for the fiducial ΛCDM the spatially
flat best fit model from Planck + WMAP [7], with ΩΛ = 0.685 ± 0.017. As we can see on
figure 4a, the ratio of effective EOS for the spatially flat models has a small variation from
unity (∼ 10%), and has also an weak dependence with redshift. In figure 4b, however, one
may see that the dependency on the curvature parameter leads to a greater variation with
respect to ΛCDM, which is more accentuated for closed CCDM models, but never exceding
∼ 30%. We find, as a general tendency, that CCDM has an slightly greater effective EOS
when compared to the fiducial ΛCDM model. We believe that this small deviation should
not reduce the structure formation significantly.
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Figure 4. Effective equation of state of the dark sector (ωeff ≡ pdm+pde

ρdm+ρde

). For both panels, α = 0.792
and we have used for ΛCDM the fiducial spatially flat model from Planck with parameter values:
ΩΛ = 0.685, Ωb = 0.049. (a) Ratio between the effective equations of state in the models ΛCDM
and CCDM (ωeff,ΛCDM/ωeff,CCDM for the spatially flat models (Ωk = 0). (b) The ratio between the
effective equations of state for some selected values of Ωk in the CCDM model.

We have shown that by considering this natural dependence of the creation rate Γ with
the expansion rate H, the direct inclusion of spatial curvature or baryons already breaks
the “dark degeneracy”. The question now is: can the Universe be nonflat enough or have
enough baryons in order to distinguish both models observationally? Part of the answer is on
figure 2. As we have seen, SNs + H(z) alone, which are observational data quite independent
from cosmological models, are not enough for constraining the spatial curvature. Namely,
looking at its 95% confidence limits over the curvature, we have −0.19 < Ωk < 0.30 so, the
Universe can be flat, quite open (Ωk ∼ 0.30) or quite closed (Ωk ∼ −0.19). Spatial curvature
on the border of this limit is enough for distinguishing CCDM from ΛCDM, as can be seen
on figure 5.

We have plotted, on figure 5, H(z) curves for some values of Ωk, in the context of CCDM
and ΛCDM. In all curves, we have fixed α = ΩΛ = 0.792, the CCDM best fit from SNs +
H(z), and we have used the H0 value from [36], H0 = 72.0 ± 3.0 kms−1Mpc−1. As we can
see, if the Universe is closed, CCDM and ΛCDM are harder to be distinguished, with a small
distinction only at high redshifts. If, however, the Universe is open, the distinction can be
made at intermediate redshifts, and, at high redshifts, the distinction is clear even with the
current set of H(z) data.

However, if we take into account the prior over Ωk given by CMB, we can not distinguish
them, as we have, in this case, an strict 95% confidence limit over the curvature of −0.104 <
Ωk < 0.030. This certainly is not enough to distinguish CCDM from ΛCDM. It can also be
seen on figure 5, where we have used the less strict 99.7% c.l. drawn from the CMB prior,
−0.181 < Ωk < 0.095. Here, one could think that CMB constraints on ΛCDM could not be
used, directly, to constrain CCDM models, as the former model has not matter creation and
the latter has. However, for the creation rate used here, Γ ∝ 1

H
, creation is negligible on

early Universe evolution, thus not changing the signatures imprinted on the last scattering
surface. Thus, we conclude that the Universe is quite spatially flat, even in the context of this
particular CCDM model, so we can not distinguish it from ΛCDM. The “dark degeneracy” is
maintained from this analysis, at least while no more data is obtained in order to distinguish
the models.
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simply the superior limit on CCDM from SNs + H(z) alone. Also shown is the H(z) data used for
the statistical analysis.

6 Conclusion

In this work we proposed a new cosmological model, based on the matter creation phenomena.
We have shown that the proposed model is able to explain the background accelerating
dynamics of the Universe, without a new dark fluid with negative pressure.

We have demonstrated that the present model is able to avoid the “dark degeneracy”
simply through the presence of a baryonic content or the spatial curvature. For both cases,
the model presents a distinguishable Hubble expansion from the ΛCDM.

We have shown that this model can be theoretically distinguished from another CCDM
model, LJO, with the inclusion of baryons and spatial curvature. It happens simply be-
cause, having different creation rates, the inclusion of baryons or spatial curvature leads to
a distinction between these models.

As discussed in this work, at the background level, regarding the current data from SNe
Ia and H(z), CCDM and ΛCDM can lead to quite different predictions. As we have seen
on section 5, SNs + H(z) data alone give a 95% c.l. of −0.19 < Ωk < 0.30. Thus, CCDM
allows for a quite open Universe, with Ωk = 0.3, while ΛCDM would lead to a non-physical
situation with Ωm = Ωb +Ωdm < 0.

Nevertheless, when a CMB prior over the curvature is considered, the CCDM and
ΛCDM models can not be distinguished from each other. As we have shown on section 5,
while the inclusion of a CMB prior improves the constraints on the free parameters, it also
tends to prefer a spatially flat Universe, thus reducing the contrast between the ΛCDM
and CCDM theoretical predictions. In fact, the 95% c.l. constraint over the curvature was
−0.104 < Ωk < 0.030, when including the CMB prior.

During the writing of this paper, Sarkar et al. [40] have made an analysis where they put
limits on epoch of DM formation. By summarizing, they conclude that for models endowed
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with CDM creation, not all the observed CDM can be created too late on the Universe
evolution. However, their analysis can not be applied to our model, as they study the case
where CDM is created at radiation expenses, thus constraining the CDM created with Neff

from CMB data. In our case, CDM comes from gravitational particle production, thus being
more in line with the work by Lima and Baranov [30]. That is, our model does not rely on
any dark radiation in order to CDM creation take part on Universe evolution, as assumed
by ref. [40]. Even though gravitational particle production can not be ruled out by their
analysis, we perform here a small proof of early dark matter existence in our CCDM model.

Although we can not access in our model the CDM creation at early times, as we
neglected the radiation contribution, we can make a rough estimate of the early CDM in our
model by taking the approximation Ωb ≈ Ωk ≈ 0 (which corresponds to LJO). In this case,
we have for DM density: ρdm = ρdm0

[

α+ (1− α)(1 + z)3
]

. Estimating the dark matter
mass inside a comoving volume by M ∝ ρdma

3, we have

M = M0

[

α(1 + z)−3 + 1− α
]

, (6.1)

whereM0 would be the dark matter mass today. Thus it is clear that, even at higher redshifts,
a quantity of CDM is already present, as we can see from the limit M(z → ∞) = M0(1−α).

Of course, we can not take such a limit, as for much high redshifts radiation contribution
becomes non-negligible, so it changes H(z), thus affecting Γ and ρdm(z). However, one can

fix an initial mass Mi = M(zi) for some high zi & 100, so M(zi)
M0

= α(1+zi)
−3+1−α ≈ 1−α.

So, we can see that for such redshift the creation is negligible and CDM mass is dominated
by dark matter created during the inflation.

Further investigations including perturbation analysis should be made, in order to realize
if more significant distinctions between CCDM and ΛCDM models can be found at higher
orders of density perturbations evolution.
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