
Effectiveness of Random Search in

SVM hyper-parameter tuning

Rafael G. Mantovani *, Andre L. D. Rossi t, Joaquin Vanschoren t, Bernd Bischl § and Andre C. P. L. F. de Carvalho *

* Universidade de Sao Paulo (USP), Sao Carlos - SP, Brazil
Email: {rgmantov.andre}@icmc.usp.br

t Universidade Estadual Paulista (UNESP), Itapeva - SP, Brazil
Email: alrossi@itapeva.unesp.br

t Eindhoven University of Technology (TV/e), Eindhoven, The Netherlands
Email: j.vanschoren@tue.nl

§ Ludwig-Maximilians-University Munich, Germany
Email: bernd.bischl@stat.uni-muenchen.de

Abstract-Classification is one of the most common machine
learning tasks. SVMs have been frequently applied to this
task. In general, the values chosen for the hyper-parameters
of SVMs affect the performance of their induced predictive
models. Several studies use optimization techniques to find a
set of hyper-parameter values that induces classifiers with good
predictive performance. This paper investigates the hypothesis
that a simple Random Search method is sufficient to adjust
the hyper-parameters of SVMs. A set of experiments compared
the performance of five tuning techniques: three meta-heuristics
commonly used, Random Search and Grid Search. The experi­
mental results show that the predictive performance of models
using Random Search is equivalent to those obtained using meta­
heuristics and Grid Search, but with a lower computational cost.

I. INTRODUCTION

Classification is one of the most common machine learning
tasks, on Support Vector Machines (SVMs) have been suc­
cessfully used [1]. Despite their good predictive performance,
SVMs are sensitive to the values of their hyper-parameters.
Several studies investigate the use of optimization techniques
to adjust these hyper-parameters in classification tasks [2]­
[4]. Most of these techniques investigate the employment of
sophisticated meta-heuristics (MTHs), which usually present
high computational costs.

Recent studies suggest that a less complex optimization
technique, such as a Random Search (RS) may be sufficient for
SVM hyper-parameters optimization [5]. SVMs have relatively
few hyper-parameters, associated with the kernel functions
chosen. Thus, this optimization is a problem of low dimen­
sionality that could be addressed by simple techniques. These
few hyper-parameters are often dependent on each other [6],
allowing the existence of a optimal region instead of a single
global optimal solution. As a result, a simple method that
perform few evaluations may efficiently find a good solution.

In this study, we investigate the use of the RS method for
adjusting the hyper-parameters of SVMs. We perform several
experiments to see how RS affects the predictive performance
of the induced SVM models. We expect that the models
induced by SVMs tuned by a simple technique, like RS, can

978-1-4799-1959-8/15/$31.00 @2015 IEEE

have a predictive accuracy similar to models induced by more
sophisticated techniques, such as MTHs. We also compare
RS with another simple optimization technique with a higher
computational cost: Grid Search (GS).

The experiments used a large number of data sets, and
compared RS with three meta-heuristics conunonly used SVM
hyper-parameter tuning: Genetic Algorithm (GA) [7], Particle
Swarm Optimization (PSO) [8] and Estimation of Distribution
Algorithms (EDA) [9]; and another optimization technique that
uses a very simple heuristic, Grid Search (GS), as used by [10].

This paper is structured as follows: section II contextualizes
the hyper-parameter tuning problem and cites some techniques
explored by related work. Section III presents our experimental
methodology and steps covered to evaluate these techniques.
The results are discussed in section IV. The last section
presents our conclusions and future work.

II. HYPER-PARAMETER TUNING

Obtaining a suitable configuration for the hyper-parameters
of a ML algorithm requires specific knowledge, intuition and,
often, trial and error. The tuning of these hyper-parameters is
usually treated as an optimization problem [11], whose objec­
tive function captures the predictive performance of the model
induced by the algorithm. For a given data set D, the optimal
hyper-parameter configuration maximizes the performance of
this algorithm in D. A common performance measure used
in this context is the predictive accuracy. The tuning task has
many aspects that can make it difficult:

• Hyper-parameter values that lead to a model with high
predictive performance for a given data set may not
lead to good results for other data sets;

• Hyper-parameter values often depend on each other.
Hence, optimizing hyper-parameters independently is
not a reasonable strategy;

• Evaluation of a specific hyper-parameter configura­
tion, let alone many, can be very time consuming.

Many deterministic and probabilistic approaches have been
proposed for the optimization of hyper-parameters of classifi-

cation algorithms [12]. Among the deterministic approaches,
GS is one of the most used due to its simplicity and good
results in previous studies. However, GS is an exhaustive
search method that requires a discretization of the hyper­
parameters space. Some authors have explored more robust
deterministic approaches [S]. Nevertheless, GS is still the most
used method in the literature, since its computational demands
can be satisfied in several cases [3].

For optimization of many hyper-parameters in large data
sets, GS becomes computationally infeasible. In these sce­
narios, probabilistic optimization methods, such as GAs, are
generally preferred. Some studies employ GAs to optimize
hyper-parameters of Artificial Neural Networks (ANNs) or
SVMs [13]. Other authors explored the use of Pattern Search
(PS) [14] or techniques based on gradient descent [IS]. Several
automated tools are also available in the literature, such as
methods based on local search (ParamILS [16]), estimation of
distributions (REVAC [17]) and Bayesian optimization (Auto­
Weka [18]).

In [S], the authors use RS to tune Deep Belief Net­
works (DBNs), comparing RS with grid methods. The authors
showed empirically and theoretically that RS are more effi­
cient for hyper-parameter optimization than trials on a grid.
Their experiments performed had tuned over 20 DBN hyper­
parameters. Other recent works use a collaborative solution
[19], or combine optimization techniques for tuning algorithms
in computer vision problems [20].

A complete survey of RS methods for optimization prob­
lems can be found in [21]. The author reports several studies
using RS algorithms (pure and adaptive) to solve discrete and
continuous optimization problems. Theoretical results regard­
ing the convergence of these methods to a global optimum
are also summarized. A limitation pointed out is that strong
convergence to a global optimum requires strong assumptions
on the structure of the problem.

III. MATERIALS AND MET HODS

As previously mentioned, we aim to investigate when
a simple but faster technique, such as RS, should be used
instead of a more sophisticated, but slower, approach for tuning
SVM hyper-parameters. We employed simple search strategies
(RS, GS) and MTHs (GA, PSO, EDA) to tune SVM hyper­
parameters for 70 different data sets. The accuracy was used to
assess the predictive performance of the induced models and
also to guide the search of the optimization techniques.

In this paper, we consider only the Gaussian kernel for
SVMs. The choice of this kernel is due to its flexibility in
different problems compared to other kernels [22]. Therefore,
the simple search strategies and the MTHs have to tune the
parameter cost (C) and gamma (,). The former is a parameter
of the SVMs and the latter is the a parameter of the Gaussian
kernel. Table I shows the range of values for C and, explored
in this work [23].

In the MTHs, each individual is a pair of real values for
C and ,. The accuracy obtained by SVMs was used as the
fitness value for all optimization techniques. Higher fitness
values indicate more promising hyper-parameter values.

TABLE I. SY M HYPER-PARAMETERS RANGE VALUES INVESTIGATED

[23] .

Hyper-parameter
cost (C)

gamma (,,)

A. Experimental methodology

Maximum

A few experimental methodologies to repeatedly select and
assess regression and classification models can be found in the
literature [24]. When a rigorous model comparison/evaluation
is required, a nested cross-validation (N-CV) methodology is
usually recommended to assess the performance of models. In
this experimental methodology, each data set is divided into
kl partitions and each of these partitions is further divided
into k2 partitions. The inner partition is used for assessing the
average validation accuracy of each possible combination of
values for C and, hyper-parameters (fitness value). The test
accuracy is assessed for the data in the outer loop by using the
best individual returned by the tuning technique for the inner
loop.

This design minimizes the bias of the data when induc­
ing models, but has a high computational cost, since each
technique is executed kl x k2 times to obtain a performance
estimate. If data are divided into 10-folds in two loops, 100
models are induced to evaluate a single data set. The N­
CV design is used in a theoretical scenario, and may not be
practical in real tasks, especially with hyper-parameter tuning.
Thus, it is interesting to explore alternatives to minimize the
bias in data sampling, and being faster than the N-CV.

An alternative is to induce models in a single cross­
validation step (S-CV) separating data into training, validation
and test partitions. The S-CV methodology is depicted in
Figure 1. Whenever a tuning technique is executed, the data set
is divided into k stratified partitions. SVM is trained with k - 2
partitions (training folds) for each candidate solution found by
the technique. One partition is separated to validate the model
(validation fold) and the remaining partition is separated to test
it (test fold).

The test and validation accuracies are assessed through
the model induced with the training partitions and the hyper­
parameters values found by the optimization technique. This
process is repeated for all k permutations in S-Cv. The
average validation accuracy is then used as the fitness value
of an individual of the MTHs, which will guide the search
process. In the end, the individual with the highest validation
accuracy is returned (with its hyper-parameters values), and
the technique performance is the average test accuracy of this
individual. We used this S-CV experimental methodology in
this paper.

B. Data sets

Seventy data sets from the VCI repository [2S] were
used in the experiments. All of them were preprocessed and
standardized with f..l = 0 e (J = 1 internally when running in
SVMs, since this can reduce the time to find support vectors.
This internal data normalization is performed by package
'el071' (R interface for 'LIBSVM' library), employed here
to train SVMs.

test accuracy
of the best
individual

for each
individual

acc

training
folds

averaged validation
uides the search
.

validation test

validation
accuracy
(fitness)

fold fold

Data set

test
accuracy
(stored)

repeat K
times

Fig. 1. Single cross-validation (S-CV) experimental methodology for hyper-parameter tuning.

In terms of data complexity, data sets may be categorized
in two classes of problems:

• Low complexity: a data set that has less than 50
attributes. Most of the datasets are in this category
(65 of 70);

• High complexity: a data set that has 50 or more
attributes. Only 5 of the all data sets are included here.

The average number of features per data sets is 15, with a
standard deviation of 17. As such, it should be noted that, in
this work, optimization techniques are assigning solutions to
problems of relatively low complexity.

C. Tuning techniques

The MTHs, namely GA, PSO and EDA were implemented
in R using packages available on CRANI: "GA", "pso", and
"copulaedas", respectively. The parameter values for GA and
PSO were the same used in [23].

The GA uses: a uniform random mutation operator with a
rate value of 0.05; a selection method by tournament (with
k=3); and a local arithmetic crossover methodology. The
chosen EDA was a Gaussian Copula EDA (GCEDA) with the
default parameters provided by the package. GCEDA assumes
that there are dependence relationship between variables.

The simpler search techniques, GS and RS, were im­
plemented. Moreover, we compared SVMs with the hyper­
parameter default values (DF) provided by the package 'e1071'
[26]. Each technique was run 30 times for each data set,
because all techniques are stochastic (except GS). For each
candidate solution, we calculated the mean validation and test
predictive accuracy, together with the standard deviation.

IV. EXPERIMENT S

The first step in the experiments was the definition of
how many hyper-parameter settings should be analyzed by
the techniques. As such, we investigated whether increasing
the number of evaluations (individuals in the case of MTHs)
leads to a higher accuracy of the induced models.

I http://cran.r-project.org/

TABLE II. SV M HYPER-PARAMETERS SCENARIOS INVESTIGATED.

Scenario Evaluations Pop Size Generations
sc-200 200 20 10

sc-2.Sk 2S00 100 2S

sc-Sk SOOO 100 50

sc-IOk 10000 100 100

Since we just want a simpler estimate, we used only 22
data sets (a heterogeneous control group) and the GA. Four
combinations of numbers of individuals in the population and
maximum number of generations were considered, which are
illustrated in Table II.

The experimental results are summarized in Table III. The
first column presents the data sets used in this experiment. The
next columns are the validation and test accuracies for each
combination, including the bias (the difference between these
accuracies). These values are averaged over 30 runs, with the
standard deviation in parenthesis.

According to these results, the evaluation of a larger num­
ber of individuals with more generations did not improve the
predictive accuracy. Similar accuracy values (both validation
and test) were obtained in all combinations, with a low
standard deviation associated with the induced models. The
biases calculated are also very small even in combinations with
fewer evaluations. A possible reason is the small number of
hyper-parameters in this study and the simple landscape of the
solutions. Therefore, we decided to use the smallest number
of evaluations in the next experiment.

A. Comparison of tuning strategies

In order to illustrate the behaviour of the tuning in these
different scenarios, we generated graphics for all data sets from
control group. Figure 3 show graphics of the 'led7digit' data
set. These pictures illustrate the area covered by the GA for the
SVM hyper-parameter search space, and the histogram of the
accuracies of the induced models during the search process.

Figures left-sided (3a, 3c, 3e, 3g) show the heat map of
the individuals found during the GA execution. Each point
represents a solution in the hyper-parameter space. Red points
represent better predictive accuracy, while yellow represent
lower accuracy. The black point represents hyper-parameter

Data set
blogger
breast-tissue-4c1ass
breast-tissue-6c1ass
bupa
fertility-diagnosis
flags
glass
hepatitis
led7digits
leukemia-haslinger
Iympography
parkinsons
qualitative-bankruptc y
seeds
statlog-heart
teaching- assistant-evaluation

thyroid-newthyroid
user-knowledge
veI1ebra-c olumn-3c
voting
wholesale-channel
wine

75 -

Q;
Cl
8'

:c

. � r-

�--
I
(J)
gj
(j
,.
CD "
gj
1
gj
� .0

TABLE III. SY M ACCURACIES OF THE INDUCED MODELS OBTAINED IN EACH SCENARIO.

GA - 200 evaluations GA - 2500 evaluations GA - 5000 evaluations
Val ace (sd)
0.60 (0.02)
0.57 (0.02)
0.43 (0.03)
0.74 (0.01)
0.88 (0.01)
0.66 (0.02)
0.72 (0.01)
0.88 (0.01)
0.37 (0.02)
0.90 (0.01)
0.87 (0.01)
0.95 (0.01)
0.99 (0.01)
0.96 (0.01)
0.85 (0.01)
0.51 (0.03)
0.98 (0.01)
0.92 (0.01)
0.87 (0.01)
0.95 (0.01)
0.92 (0.01)
0.99 (0.01)

32 32

..

I
(J) OS
gj 0. "
(j .0
co
I
CD "
gj
1
gj
� .0

Test ace (sd) Bias Val ace (sd) Test ace (sd) Bias Val ace (sd) Test ace (sd)

. ..

7
r-

0.55 (0.05) 0.05 0.60 (0.02)
0.53 (0.03) 0.04 0.59 (0.02)
0.42 (0.04) 0.01 0.45 (0.02)
0.73 (0.01) 0.01 0.75 (0.01)
0.88 (0.01) 0.01 0.88 (0.01)
0.64 (0.02) 0.02 0.67 (0.02)
0.69 (0.02) 0.03 0.73 (0.01)
0.87 (0.01) 0.02 0.89 (0.01)
0.37 (0.03) 0.01 0.39 (0.02)
0.89 (0.01) 0.01 0.90 (0.01)
0.86 (0.01) 0.01 0.88 (0.01)
0.94 (0.01) 0.01 0.95 (0.01)
0.99 (0.01) 0.01 0.99 (0.01)
0.96 (0.01) 0.01 0.97 (0.01)
0.85 (0.01) 0.01 0.86 (0.01)
0.47 (0.03) 0.04 0.52 (0.02)
0.97 (0.01) 0.01 0.98 (0.01)
0.92 (0.01) 0.01 0.93 (0.01)
0.86 (0.01) 0.01 0.87 (0.01)
0.94 (0.01) 0.01 0.95 (0.01)
0.91 (0.01) 0.01 0.92 (0.01)
0.90 (0.01) 0.09 0.99 (0.01)

35 33 --
r-r-

24
.� �" 2 0" '

---, �J[D
I I I

(J) (J) (J) (J) !!l '0; � gj E 'c, 0 Oi c: c;, '5
Cl 0. r--
OS CD

�
'9

.r:

�
:.e
.l!!

0.56 (0.04)
0.53 (0.03)
0.40 (0.04)
0.73 (0.01)
0.88 (0.01)
0.64 (0.02)
0.70 (0.02)
0.87 (0.01)
0.38 (0.03)
0.88 (0.02)
0.85 (0.02)
0.94 (0.01)
0.99 (0.01)
0.95 (0.01)
0.85 (0.01)
0.49 (0.04)
0.97 (0.01)
0.92 (0.01)
0.86 (0.01)
0.94 (0.01)
0.91 (0.01)
0.98 (0.01)

..
15

7

17

0.04
0.06
0.05
0.02
0.01
0.03
0.04
0.01
0.01
0.02
0.03
0.01
0.01
0.01
0.01
0.04
0.01
0.01
0.01
0.01
0.01
0.01

· · · · · · 1 · ·

0.60 (0.03)
0.59 (0.02)
0.46 (0.03)
0.75 (0.01)
0.88 (0.01)
0.66 (0.02)
0.73 (0.01)
0.89 (0.01)
0.39 (0.02)
0.90 (0.01)
0.87 (0.01)
0.95 (0.01)
0.99 (0.01)
0.97 (0.01)
0.86 (0.01)
0.52 (0.02)
0.98 (0.01)
0.93 (0.01)
0.87 (0.01)
0.95 (0.01)
0.92 (0.01)
0.99 (0.01)

7

0.56 (0.04)
0.53 (0.03)
0.40 (0.04)
0.73 (0.01)
0.88 (0.01)
0.64 (0.02)
0.70 (0.02)
0.87 (0.02)
0.39 (0.02)
0.89 (0.01)
0.85 (0.01)
0.94 (0.01)
0.99 (0.01)
0.96 (0.01)
0.85 (0.01)
0.48 (0.03)
0.97 (0.01)
0.92 (0.01)
0.86 (0.01)
0.94 (0.01)
0.91 (0.01)
0.98 (0.01)

. . . .

r-nl. l ...!L �,�
I I I I I

Q; ,.,
Cl .r:

� c:
�

8' OS
.r: 0.
� E
'E �
CD "'" "
�

(J) ,., (J) t:: Cl -c
c: "

-g OS c: '[0 a CD :2 (J)
5l .r: c: "

aJ .r: .l2 I :;; c: Cl .l!l j iii os .Q CD
0. .0 19

c:
I I
CD '" -c

.� 'e Oi ,., £ 1i! " C"
Data set

Fig. 2. Average generation that the best solution was found by data set

GA - 10000 evaluations
Bias Val ace (sd) Test ace (sd)
0.04 0.60 (0.02) 0.56 (0.03)
0.05 0.59 (0.02) 0.53 (0.04)
0.06 0.46 (0.02) 0.42 (0.04)
0.02 0.75 (0.01) 0.74 (0.01)
0.01 0.88 (0.01) 0.88 (0.01)
0.02 0.67 (0.01) 0.65 (0.02)
0.03 0.73 (0.01) 0.70 (0.02)
0.02 0.89 (0.01) 0.87 (0.02)
0.01 0.39 (0.02) 0.36 (0.02)
0.01 0.90 (0.01) 0.89 (0.01)
0.02 0.87 (0.01) 0.84 (0.02)
0.01 0.95 (0.01) 0.94 (0.01)
0.01 0.99 (0.01) 0.99 (0.01)
0.01 0.97 (0.01) 0.95 (0.01)
0.01 0.86 (0.01) 0.84 (0.01)
0.05 0.52 (0.03) 0.48 (0.03)

0.01 0.98 (0.01) 0.97 (0.01)
0.01 0.93 (0.01) 0.92 (0.01)
0.01 0.87 (0.01) 0.86 (0.01)
0.01 0.95 (0.01) 0.94 (0.01)
0.01 0.92 (0.01) 0.91 (0.01)
0.01 0.99 (0.01) 0.99 (0.01)

22

1 15

db
I I I I
CD " Cl Qi CD
Cl (') c: c: c:
-g

I ., c: .� c: S! os
�

E .r:
" 'f

.2 � CD
.!. 0;

5l
os (J)
.0 �

" CD 0
.r: t:: ;: �

Bias
0.04
0.06
0.04
0.01
0.01
0.02
0.04
0.02
0.03
0.01
0.03
0.02
0.01
0.01
0.01
0.04
0.01
0.01
0.01
0.01
0.01
0.01

default values. We can see that increasing the number of
evaluations is possible to have a better idea of the search space
and where the best solutions to the problem are located.

In Figure 2 are depicted the average generation where the
best solutions were found by GA in the scenario with 10
thousand evaluations. The figure shows the values for each
data set in the control group. It may be observed that, in some
cases, the GA quickly found good solutions (about 3 to 5
generations). In other data sets, GA spent around 30 iterations
to find the best solutions. However, most data sets can have
a good convergence up to 25 generations (indicated by the
dashed line). Therefore, we have chosen a maximum of 25
iterations for the tuning tasks.

The graphics on the right (3b, 3d, 3f, 3h) depict the
accuracies obtained in validation and test sets. Bars in pink
indicate the amount of individuals of the test set that reached
a certain level of accuracy. The light blue bars denote those
from the validation set. The region in gray is where the
two distributions overlap. The more overlap, the lower the
bias technique to estimate the performance of models in both
evaluation sets.

When increasing the number of evaluations, the distribu­
tions of the accuracies tend to overlap and the bias in a S-CV
decreases. However, there is a greater number of points that
achieve the same accuracy. This can be observed mainly in
executions up to 2000 evaluations. This behaviour can be seen
by both the density of dots in the heatmaps and the amount
of individuals with the same accuracy in histograms.

To perform well, EDAs need a population with at least
100 individuals [9]. So, we set the initial population of all
optimization techniques to 100 individuals. Doing this leads
to a total of at most 25 x 100 = 2500 evaluations of hyper­
parameter values during the search. This value is in line with
what was done in [1], where the authors executed a Genetic
Prograrmning algorithm to adjust SVM hyper-parameters with
a budget of 2000 evaluations.

0-

� -5-

�
-10-

-15-

0-

� -5-

�
-10-

-15-

0-

� -5-

�
-10-

-15-

0-

� -5-

�
-10-

-15-

SVM hyper-parameters space

10
cost

(a) GA heatmap with 200 evaluations

SVM hyper-parameters space

10
cost

(C) GA heatmap with 2500 evaluations

SVM hyper-parameters space

10
cost

(e) GA heatmap with 5000 evaluations

SVM hyper-parameters space

10
cost

15

15

15

15

0.3
0.2
0.1

fitness
0.4
0.3
0.2
0.1

0.3
0.2
0.1

fitness
0.4
0.3
0.2
0.1

600-

400-

�
�

�
200-

0-

6000-

2000-

0-

15000-

� 10000-
iii
�

�

5000-

0-

30000 -

10000-

0-

led7digit dataset accuracies distribution

0.1
, , 0.2 0.3

Individuals Accuracies

accuracy
test

validation

0.4

(b) Distributions of accuracies with 200 evaluations

led7digit dataset accuracies distribution

0.1 , , 0.2 0.3
Individuals Accuracies

0.4

accuracy
test

validation

(d) Distributions of accuracies with 2500 evaluations

led7digit dataset accuracies distribution

0.1 , , 0.2 0.3
Individuals Accuracies

0.4

accuracy
test

validation

(f) Distributions of accuracies with 5000 evaluations

led7digit dataset accuracies distribution

, ,

accuracy
test

validation

0.0 0.1 0.2 0.3 0.4
Individuals Accuracies

(g) GA heatmap with 10000 evaluations (h) Distributions of accuracies with 10000 evaluations
Fig. 3. Heat maps of tuning techniques when searching for solutions. Data set: 'Zed7digits'

1.00 -

0.75-
>. u
�
:::l
8 0.50 -

«
1i5
�

0.25-

0.00-

1.00 -

>.0.75-

�
:::l � 0.50-

1i5
� 0.25-

0.00-

1.00 -

0.75 -
>.

�
:::l U .::t 0.50-

1i5
�

0.25 -

0.00-

II

Data set

Data set

Fig. 4. Accuracy improvement via the tuning techniques for each data set.

technique

. df

.PSO

. eda

rs

gs

. ga

technique

df

pso

eda

rs

gs

ga

technique

df

pso

eda

rs

gs

ga

B. SVM hyper-parameter tuning

Based on the previous results, the parameter tuning tech­
niques were applied to each data set using the S-CV method­
ology. The maximum number of evaluations for each opti­
mization technique was fixed to 2500. Figure 4 summarizes
the results for 70 data sets. The first bar shows the predictive
accuracy when default values are used. Subsequent columns
show the improvement in predictive performance when the
tuning techniques are applied. Larger bars indicate a gain in
performance. Results are averaged over 30 executions.

It should be noted that there are some cases where the
tuning does not provide significant improvements. This oc­
cured in the data sets monks}, iris, and others originating
from simple classification tasks. The data sets wpbc and
habermans-survival have shown no improvement. However, in
most data sets the adjustment improves the performance of the
models. The most characteristic cases are perhaps the data sets
audiology, leukemia-haslinger, statlog-heart and wine.

TABLE IV. WIN-TIE-Loss OF THE OPTIMIZATION TECHNIQUES FOR

70 DATA SETS.

Technique Win Tie Loss
GA 1 44 25

pso 3 47 20

EDA I 41 28

RS 2 44 24

GS 2 43 25

OF 2 4 64

These results also allow us to observe that no technique was
the best on all data sets. Table IV corroborates this showing a
high number of ties between the techniques. The experiments
have shown that, in general, the DF values are good initial
values for the SVM hyper-parameters, but in most cases tuning
the hyper-parameters resulted in a substantial improvement in
the accuracy of the induced models.

Additionally, we observe that a considerable number of
tuning steps lead to good solutions (compared with DF) and
allow RS to obtain an average accuracy similar to the MTHs.
The comparison of the results obtained by GS compared to
those obtained by RS allows us to observe that the latter is
able to generate models that are better than the former with
the same number of evaluations, a behavior already observed
in the literature with other classifiers [5].

The Friedman statistical test with the Nemenyi post-hoc
test and confidence level of 95% was applied for the exper­
imental results to compare the predictive performance of the
optimization effect for all data sets. Table V presents when
significant differences occurred. An asterisk means that the
technique in the line is statistical different from the technique
in the column with 95% confidence. According to the test,
all the tuning techniques found better hyper-parameter values
than the default values (DF). They also showed no difference
in the predictive performance between the tuning techniques.
These results support the claim that, for SVMs, a simple and
faster technique such as RS is able to obtain similar results
compared to more sophisticated techniques (e.g. MTH), and
traditional techniques (e.g. GS). These results could be due to
the low dimensional space Gust 2 hyper-parameters) and with
a higher hyper-space the RS might no be so effective.

TABLE V. FRIEDMAN-NEMENYI TEST RESULT

Technique

GA

pso

EDA

RS

GS

OF

V. CONCLUSION

This work investigated the use of the Random Search
(RS) method for adjusting hyper-parameters of Support Vector
Machines (SVMs). Experiments were carried out with MTHs,
RS and GS over 70 data sets from VCI, mostly of low
dimensionality. The experiments corroborated our hypothesis
for the datasets and techniques used: RS, a simple tuning
technique hyper-parameter values, can generate SVM models
with predictive accuracy similar to the models generated by
meta-heuristics.

RS also obtained better solutions than DF, and as good as
GS. It must be observed that statistical tests showed no signif­
icant difference between the MTHs and the other techniques
for the optimization of SVM hyper-parameters.

As future work, we intend to add pre- and post-processing
hyper-parameters that may increase the complexity of the tun­
ing problem being addressed, and expand the experiments to
include harder problems (datasets), and other ML algorithms,
mainly those with a larger number of hyper-parameters. We
also aim to build on, and make all our experiments available
in OpenML [27], [28] for reproducibility and further study.

ACKNOWLEDGMENT

The authors would like to thank CAPES, CNPq and
FAPESP (Brazilian Agencies) for the financial support.

REFERENCES

[l] P. Koch, B. Bisch!, O. Flasch, T. Bartz-Beielstein, C. Weihs, and W. Ko­
nen, "Tuning and evolution of support vector kernels," Evolutionary
Intelligence, vol. 5, no. 3, pp. 153-170, 2012.

[2] S. Ali and K. A. Smith-Miles, "A meta-learning approach to automatic
kernel selection for support vector machines," Neurocomp., vol. 70,
no. 13, pp. 173-186, 2006.

[3] I. Braga, L. P. do Carmo, C. C. Benatti, and M. C. Monard, "A note on
parameter selection for support vector machines," in Advances in Soft
Computing and Its Applications, ser. LNCC, F. Castro, A. Gelbukh, and
M. Gonzalez, Eds. Springer Berlin Heidelberg, 2013, vol. 8266, pp.
233-244.

[4] c. Soares, P. B. Brazdil, and P. Kuba, "A meta-learning method to
select the kernel width in support vector regression," Machine Learning,
vol. 54, no. 3, pp. 195-209, 2004.

[5] 1. Bergstra and Y. Bengio, "Random search for hyper-parameter opti­
mization," 1. Mach. Learn. Res., vol. 13, pp. 281-305, Mar. 2012.

[6] A. Ben-Hur and 1. Weston, in Data Mining Techniques for the Life
Sciences, ser. Methods in Molecular Biology. Humana Press, 2010,
vol. 609, pp. 223-239.

[7] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Addison Wesley, 1989.

[8] 1. Kennedy, "Particle swarms: optimization based on sociocognition,"
in Recent Development in Biologically Inspired Computing, L. Castro
and F. V. Zuben, Eds. Idea Group, 2005, pp. 235-269.

[9] M. Hauschild and M. Pelikan, "An introduction and survey of estimation
of distribution algorithms," Swarm and Evolutionary Computation,
vol. 1, no. 3, pp. III - 128, 201l.

[10] c.-w. Hsu and c.-J. Lin, "A comparison of methods for multiclass
support vector machines," Neural Networks, IEEE Transactions on,
vol. 13, no. 2, pp. 415-425, Mar 2002.

[11] F. Hutter, H. H. Hoos, and T. Stlitzle, "Automatic algorithm config­
uration based on local search," in Proceedings of the 22nd national
conference on Artificial intelligence - Volume 2, ser. AAAI'07. AAAI
Press, 2007, pp. 1152-1157.

[I2] N.-E. Ayat, M. Cheriet, and C. Y. Suen, "Optimization of the svm
kernels using an empirical error minimization scheme," in Proceedings
of the First Internat. Workshop on Pattern Recog. with SVMs.

[13] F. Friedrichs and C. Igel, "Evolutionary tuning of multiple svm param­
eters," Neurocomput., vol. 64, pp. 107-117, 2005.

[14] T. Eitrich and B. Lang, "Efficient optimization of support vector
machine learning parameters for unbalanced datasets," Journal of Compo
and Applied Mathematics, vol. 196, no. 2, pp. 425-436, 2006.

[I5] O. Chapelle, Y. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing
multiple parameters for support vector machines," Machine Learning,
vol. 46, no. 1-3, pp. 131-159, Mar. 2002.

[16] F. Hutter, H. Hoos, K. Ley ton-Brown, and T. Sttitzle, "Paramils: an
automatic algorithm con- figuration framewor," Journal of Artificial

Intelligence Research, no. 36, pp. 267-306, 2009.

[17] Y. Nannen and A. E. Eiben, "Relevance estimation and value calibration
of evolutionary algorithm parameters;' in Proc. of the 20th Intern. Joint
Conf. on Art. Intelligence, ser. !JCAr07, 2007, pp. 975-980.

[18] C. Thornton, F. Hutter, H. H. Hoos, and K. Ley ton-Brown, "Auto­
WEKA: Combined selection and hyperparameter optimization of clas­
sification algorithms," in Proc. of KDD-2013, 2013, pp. 847-855.

[19] R. Bardenet, M. Brendel, B. Kegl, and M. Sebag, "Collaborative hyper­
parameter tuning," in Proceedings of the 30th International Conference
on Machine Learning (ICML-13), S. Dasgupta and D. McaUester, Eds.,
vol. 28, no. 2. JMLR Workshop and Conference Proceedings, 2013,
pp. 199-207.

[20] J. Bergstra, D. Yamins, and D. D. Cox, "Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures," in Proc. 30th Intern. Conf. on Machine Learning,
2013, pp. 1-9.

[21] S. Andradottir, "A review of random search methods," in Handbook
of Simulation Optimization, ser. International Series in Operations
Research & Management Science, M. C. Fu, Ed. Springer New York,
2015, vol. 216, pp. 277-292.

[22] T. A. F. Gomes, R. B. C. Prudencio, C. Soares, A. L. D. Rossi, and
nd Andre C. P. L. F. De Carvalho, "Combining meta-learning and
search techniques to select parameters for support vector machines,"
Neurocomput., vol. 75, no. 1, pp. 3-13, Jan. 2012.

[23] A. L. D. Rossi and A. C. P. L. F. Carvalho, "Bio-inspired optimization
techniques for svm parameter tuning," in Proceed. of 10th Brazilian
Symp. on Neural Net. IEEE Computer Society, 2008, pp. 435-440.

[24] D. Krstajic, L. 1. Buturovic, D. E. Leahy, and S. Thomas, "Cross­
validation pitfalls when selecting and assessing regression and clas­
sification models." Journal of cheminformatics, vol. 6, no. 1, 2014.

[25] K. Bache and M. Lichman, "VCI machine learning repository," 2013.
[Online] . Available: http://archive.ics.uci.edu/ml

[26] C.-c. Chang and c.-J. Lin, UBSVM: a Library for
Support Vector Machines, 2001, software available at
http://www.csie.ntu.edu.tw/ cjlin/Jibsvm.

[27] 1. Vanschoren, 1. N. van Rijn, B. Bischl, and L. Torgo, "OpenML: Net­
worked science in machine learning," SIGKDD Explorations, vol. 15,
no. 2, pp. 49-60, 2013.

[28] J. van Rijn, B. Bischl, L. Torgo, B. Gao, Y. Vmaashankar, S. Fischer,
P. Winter, B. Wiswedel, M. Berthold, and J. Vanschoren, "OpenML: A
collaborative science platform," in Proceedings of ECMLPKDD 2013,
ser. Lecture Notes in Computer Science, 2013, vol. 8190, pp. 645-649.

