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Abstract-Classification is one of the most common machine 
learning tasks. SVMs have been frequently applied to this 
task. In general, the values chosen for the hyper-parameters 
of SVMs affect the performance of their induced predictive 
models. Several studies use optimization techniques to find a 
set of hyper-parameter values that induces classifiers with good 
predictive performance. This paper investigates the hypothesis 
that a simple Random Search method is sufficient to adjust 
the hyper-parameters of SVMs. A set of experiments compared 
the performance of five tuning techniques: three meta-heuristics 
commonly used, Random Search and Grid Search. The experi­
mental results show that the predictive performance of models 
using Random Search is equivalent to those obtained using meta­
heuristics and Grid Search, but with a lower computational cost. 

I. INTRODUCTION 

Classification is one of the most common machine learning 
tasks, on Support Vector Machines (SVMs) have been suc­
cessfully used [1]. Despite their good predictive performance, 
SVMs are sensitive to the values of their hyper-parameters. 
Several studies investigate the use of optimization techniques 
to adjust these hyper-parameters in classification tasks [2]­
[4]. Most of these techniques investigate the employment of 
sophisticated meta-heuristics (MTHs), which usually present 
high computational costs. 

Recent studies suggest that a less complex optimization 
technique, such as a Random Search (RS) may be sufficient for 
SVM hyper-parameters optimization [5]. SVMs have relatively 
few hyper-parameters, associated with the kernel functions 
chosen. Thus, this optimization is a problem of low dimen­
sionality that could be addressed by simple techniques. These 
few hyper-parameters are often dependent on each other [6], 
allowing the existence of a optimal region instead of a single 
global optimal solution. As a result, a simple method that 
perform few evaluations may efficiently find a good solution. 

In this study, we investigate the use of the RS method for 
adjusting the hyper-parameters of SVMs. We perform several 
experiments to see how RS affects the predictive performance 
of the induced SVM models. We expect that the models 
induced by SVMs tuned by a simple technique, like RS, can 
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have a predictive accuracy similar to models induced by more 
sophisticated techniques, such as MTHs. We also compare 
RS with another simple optimization technique with a higher 
computational cost: Grid Search (GS). 

The experiments used a large number of data sets, and 
compared RS with three meta-heuristics conunonly used SVM 
hyper-parameter tuning: Genetic Algorithm (GA) [7], Particle 
Swarm Optimization (PSO) [8] and Estimation of Distribution 
Algorithms (EDA) [9]; and another optimization technique that 
uses a very simple heuristic, Grid Search (GS), as used by [10]. 

This paper is structured as follows: section II contextualizes 
the hyper-parameter tuning problem and cites some techniques 
explored by related work. Section III presents our experimental 
methodology and steps covered to evaluate these techniques. 
The results are discussed in section IV. The last section 
presents our conclusions and future work. 

II. HYPER-PARAMETER TUNING 

Obtaining a suitable configuration for the hyper-parameters 
of a ML algorithm requires specific knowledge, intuition and, 
often, trial and error. The tuning of these hyper-parameters is 
usually treated as an optimization problem [11], whose objec­
tive function captures the predictive performance of the model 
induced by the algorithm. For a given data set D, the optimal 
hyper-parameter configuration maximizes the performance of 
this algorithm in D. A common performance measure used 
in this context is the predictive accuracy. The tuning task has 
many aspects that can make it difficult: 

• Hyper-parameter values that lead to a model with high 
predictive performance for a given data set may not 
lead to good results for other data sets; 

• Hyper-parameter values often depend on each other. 
Hence, optimizing hyper-parameters independently is 
not a reasonable strategy; 

• Evaluation of a specific hyper-parameter configura­
tion, let alone many, can be very time consuming. 

Many deterministic and probabilistic approaches have been 
proposed for the optimization of hyper-parameters of classifi-



cation algorithms [12]. Among the deterministic approaches, 
GS is one of the most used due to its simplicity and good 
results in previous studies. However, GS is an exhaustive 
search method that requires a discretization of the hyper­
parameters space. Some authors have explored more robust 
deterministic approaches [S]. Nevertheless, GS is still the most 
used method in the literature, since its computational demands 
can be satisfied in several cases [3]. 

For optimization of many hyper-parameters in large data 
sets, GS becomes computationally infeasible. In these sce­
narios, probabilistic optimization methods, such as GAs, are 
generally preferred. Some studies employ GAs to optimize 
hyper-parameters of Artificial Neural Networks (ANNs) or 
SVMs [13]. Other authors explored the use of Pattern Search 
(PS) [14] or techniques based on gradient descent [IS]. Several 
automated tools are also available in the literature, such as 
methods based on local search (ParamILS [16]), estimation of 
distributions (REVAC [17]) and Bayesian optimization (Auto­
Weka [18]). 

In [S], the authors use RS to tune Deep Belief Net­
works (DBNs), comparing RS with grid methods. The authors 
showed empirically and theoretically that RS are more effi­
cient for hyper-parameter optimization than trials on a grid. 
Their experiments performed had tuned over 20 DBN hyper­
parameters. Other recent works use a collaborative solution 
[19], or combine optimization techniques for tuning algorithms 
in computer vision problems [20]. 

A complete survey of RS methods for optimization prob­
lems can be found in [21]. The author reports several studies 
using RS algorithms (pure and adaptive) to solve discrete and 
continuous optimization problems. Theoretical results regard­
ing the convergence of these methods to a global optimum 
are also summarized. A limitation pointed out is that strong 
convergence to a global optimum requires strong assumptions 
on the structure of the problem. 

III. MATERIALS AND MET HODS 

As previously mentioned, we aim to investigate when 
a simple but faster technique, such as RS, should be used 
instead of a more sophisticated, but slower, approach for tuning 
SVM hyper-parameters. We employed simple search strategies 
(RS, GS) and MTHs (GA, PSO, EDA) to tune SVM hyper­
parameters for 70 different data sets. The accuracy was used to 
assess the predictive performance of the induced models and 
also to guide the search of the optimization techniques. 

In this paper, we consider only the Gaussian kernel for 
SVMs. The choice of this kernel is due to its flexibility in 
different problems compared to other kernels [22]. Therefore, 
the simple search strategies and the MTHs have to tune the 
parameter cost (C) and gamma (,). The former is a parameter 
of the SVMs and the latter is the a parameter of the Gaussian 
kernel. Table I shows the range of values for C and, explored 
in this work [23]. 

In the MTHs, each individual is a pair of real values for 
C and ,. The accuracy obtained by SVMs was used as the 
fitness value for all optimization techniques. Higher fitness 
values indicate more promising hyper-parameter values. 

TABLE I. SY M HYPER-PARAMETERS RANGE VALUES INVESTIGATED 

[23] .  

Hyper-parameter 
cost (C) 

gamma (,,) 

A. Experimental methodology 

Maximum 

A few experimental methodologies to repeatedly select and 
assess regression and classification models can be found in the 
literature [24]. When a rigorous model comparison/evaluation 
is required, a nested cross-validation (N-CV) methodology is 
usually recommended to assess the performance of models. In 
this experimental methodology, each data set is divided into 
kl partitions and each of these partitions is further divided 
into k2 partitions. The inner partition is used for assessing the 
average validation accuracy of each possible combination of 
values for C and, hyper-parameters (fitness value). The test 
accuracy is assessed for the data in the outer loop by using the 
best individual returned by the tuning technique for the inner 
loop. 

This design minimizes the bias of the data when induc­
ing models, but has a high computational cost, since each 
technique is executed kl x k2 times to obtain a performance 
estimate. If data are divided into 10-folds in two loops, 100 
models are induced to evaluate a single data set. The N­
CV design is used in a theoretical scenario, and may not be 
practical in real tasks, especially with hyper-parameter tuning. 
Thus, it is interesting to explore alternatives to minimize the 
bias in data sampling, and being faster than the N-CV. 

An alternative is to induce models in a single cross­
validation step (S-CV) separating data into training, validation 
and test partitions. The S-CV methodology is depicted in 
Figure 1. Whenever a tuning technique is executed, the data set 
is divided into k stratified partitions. SVM is trained with k - 2 
partitions (training folds) for each candidate solution found by 
the technique. One partition is separated to validate the model 
(validation fold) and the remaining partition is separated to test 
it (test fold). 

The test and validation accuracies are assessed through 
the model induced with the training partitions and the hyper­
parameters values found by the optimization technique. This 
process is repeated for all k permutations in S-Cv. The 
average validation accuracy is then used as the fitness value 
of an individual of the MTHs, which will guide the search 
process. In the end, the individual with the highest validation 
accuracy is returned (with its hyper-parameters values), and 
the technique performance is the average test accuracy of this 
individual. We used this S-CV experimental methodology in 
this paper. 

B. Data sets 

Seventy data sets from the VCI repository [2S] were 
used in the experiments. All of them were preprocessed and 
standardized with f..l = 0 e (J = 1 internally when running in 
SVMs, since this can reduce the time to find support vectors. 
This internal data normalization is performed by package 
'el071' (R interface for 'LIBSVM' library), employed here 
to train SVMs. 
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Fig. 1. Single cross-validation (S-CV ) experimental methodology for hyper-parameter tuning. 

In terms of data complexity, data sets may be categorized 
in two classes of problems: 

• Low complexity: a data set that has less than 50 
attributes. Most of the datasets are in this category 
(65 of 70); 

• High complexity: a data set that has 50 or more 
attributes. Only 5 of the all data sets are included here. 

The average number of features per data sets is 15, with a 
standard deviation of 17. As such, it should be noted that, in 
this work, optimization techniques are assigning solutions to 
problems of relatively low complexity. 

C. Tuning techniques 

The MTHs, namely GA, PSO and EDA were implemented 
in R using packages available on CRANI: "GA", "pso", and 
"copulaedas", respectively. The parameter values for GA and 
PSO were the same used in [23]. 

The GA uses: a uniform random mutation operator with a 
rate value of 0.05; a selection method by tournament (with 
k=3); and a local arithmetic crossover methodology. The 
chosen EDA was a Gaussian Copula EDA (GCEDA) with the 
default parameters provided by the package. GCEDA assumes 
that there are dependence relationship between variables. 

The simpler search techniques, GS and RS, were im­
plemented. Moreover, we compared SVMs with the hyper­
parameter default values (DF) provided by the package 'e1071' 
[26]. Each technique was run 30 times for each data set, 
because all techniques are stochastic (except GS). For each 
candidate solution, we calculated the mean validation and test 
predictive accuracy, together with the standard deviation. 

IV. EXPERIMENT S 

The first step in the experiments was the definition of 
how many hyper-parameter settings should be analyzed by 
the techniques. As such, we investigated whether increasing 
the number of evaluations (individuals in the case of MTHs) 
leads to a higher accuracy of the induced models. 

I http://cran.r-project.org/ 

TABLE II. SV M HYPER-PARAMETERS SCENARIOS INVESTIGATED. 

Scenario Evaluations Pop Size Generations 
sc-200 200 20 10 

sc-2.Sk 2S00 100 2S 

sc-Sk SOOO 100 50 

sc-IOk 10000 100 100 

Since we just want a simpler estimate, we used only 22 
data sets (a heterogeneous control group) and the GA. Four 
combinations of numbers of individuals in the population and 
maximum number of generations were considered, which are 
illustrated in Table II. 

The experimental results are summarized in Table III. The 
first column presents the data sets used in this experiment. The 
next columns are the validation and test accuracies for each 
combination, including the bias (the difference between these 
accuracies). These values are averaged over 30 runs, with the 
standard deviation in parenthesis. 

According to these results, the evaluation of a larger num­
ber of individuals with more generations did not improve the 
predictive accuracy. Similar accuracy values (both validation 
and test) were obtained in all combinations, with a low 
standard deviation associated with the induced models. The 
biases calculated are also very small even in combinations with 
fewer evaluations. A possible reason is the small number of 
hyper-parameters in this study and the simple landscape of the 
solutions. Therefore, we decided to use the smallest number 
of evaluations in the next experiment. 

A. Comparison of tuning strategies 

In order to illustrate the behaviour of the tuning in these 
different scenarios, we generated graphics for all data sets from 
control group. Figure 3 show graphics of the 'led7digit' data 
set. These pictures illustrate the area covered by the GA for the 
SVM hyper-parameter search space, and the histogram of the 
accuracies of the induced models during the search process. 

Figures left-sided (3a, 3c, 3e, 3g) show the heat map of 
the individuals found during the GA execution. Each point 
represents a solution in the hyper-parameter space. Red points 
represent better predictive accuracy, while yellow represent 
lower accuracy. The black point represents hyper-parameter 
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GA - 200 evaluations GA - 2500 evaluations GA - 5000 evaluations 
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Fig. 2. Average generation that the best solution was found by data set 

GA - 10000 evaluations 
Bias Val ace (sd) Test ace (sd) 
0.04 0.60 (0.02) 0.56 (0.03) 
0.05 0.59 (0.02) 0.53 (0.04) 
0.06 0.46 (0.02) 0.42 (0.04) 
0.02 0.75 (0.01) 0.74 (0.01) 
0.01 0.88 (0.01) 0.88 (0.01) 
0.02 0.67 (0.01) 0.65 (0.02) 
0.03 0.73 (0.01) 0.70 (0.02) 
0.02 0.89 (0.01) 0.87 (0.02) 
0.01 0.39 (0.02) 0.36 (0.02) 
0.01 0.90 (0.01) 0.89 (0.01) 
0.02 0.87 (0.01) 0.84 (0.02) 
0.01 0.95 (0.01) 0.94 (0.01) 
0.01 0.99 (0.01) 0.99 (0.01) 
0.01 0.97 (0.01) 0.95 (0.01) 
0.01 0.86 (0.01) 0.84 (0.01) 
0.05 0.52 (0.03) 0.48 (0.03) 

0.01 0.98 (0.01) 0.97 (0.01) 
0.01 0.93 (0.01) 0.92 (0.01) 
0.01 0.87 (0.01) 0.86 (0.01) 
0.01 0.95 (0.01) 0.94 (0.01) 
0.01 0.92 (0.01) 0.91 (0.01) 
0.01 0.99 (0.01) 0.99 (0.01) 
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default values. We can see that increasing the number of 
evaluations is possible to have a better idea of the search space 
and where the best solutions to the problem are located. 

In Figure 2 are depicted the average generation where the 
best solutions were found by GA in the scenario with 10 
thousand evaluations. The figure shows the values for each 
data set in the control group. It may be observed that, in some 
cases, the GA quickly found good solutions (about 3 to 5 
generations). In other data sets, GA spent around 30 iterations 
to find the best solutions. However, most data sets can have 
a good convergence up to 25 generations (indicated by the 
dashed line). Therefore, we have chosen a maximum of 25 
iterations for the tuning tasks. 

The graphics on the right (3b, 3d, 3f, 3h) depict the 
accuracies obtained in validation and test sets. Bars in pink 
indicate the amount of individuals of the test set that reached 
a certain level of accuracy. The light blue bars denote those 
from the validation set. The region in gray is where the 
two distributions overlap. The more overlap, the lower the 
bias technique to estimate the performance of models in both 
evaluation sets. 

When increasing the number of evaluations, the distribu­
tions of the accuracies tend to overlap and the bias in a S-CV 
decreases. However, there is a greater number of points that 
achieve the same accuracy. This can be observed mainly in 
executions up to 2000 evaluations. This behaviour can be seen 
by both the density of dots in the heatmaps and the amount 
of individuals with the same accuracy in histograms. 

To perform well, EDAs need a population with at least 
100 individuals [9]. So, we set the initial population of all 
optimization techniques to 100 individuals. Doing this leads 
to a total of at most 25 x 100 = 2500 evaluations of hyper­
parameter values during the search. This value is in line with 
what was done in [1], where the authors executed a Genetic 
Prograrmning algorithm to adjust SVM hyper-parameters with 
a budget of 2000 evaluations. 
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Fig. 3. Heat maps of tuning techniques when searching for solutions. Data set: 'Zed7digits' 
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B. SVM hyper-parameter tuning 

Based on the previous results, the parameter tuning tech­
niques were applied to each data set using the S-CV method­
ology. The maximum number of evaluations for each opti­
mization technique was fixed to 2500. Figure 4 summarizes 
the results for 70 data sets. The first bar shows the predictive 
accuracy when default values are used. Subsequent columns 
show the improvement in predictive performance when the 
tuning techniques are applied. Larger bars indicate a gain in 
performance. Results are averaged over 30 executions. 

It should be noted that there are some cases where the 
tuning does not provide significant improvements. This oc­
cured in the data sets monks}, iris, and others originating 
from simple classification tasks. The data sets wpbc and 
habermans-survival have shown no improvement. However, in 
most data sets the adjustment improves the performance of the 
models. The most characteristic cases are perhaps the data sets 
audiology, leukemia-haslinger, statlog-heart and wine. 

TABLE IV. WIN-TIE-Loss OF THE OPTIMIZATION TECHNIQUES FOR 

70 DATA SETS. 

Technique Win Tie Loss 
GA 1 44 25 

pso 3 47 20 

EDA I 41  28 

RS 2 44 24 

GS 2 43 25 

OF 2 4 64 

These results also allow us to observe that no technique was 
the best on all data sets. Table IV corroborates this showing a 
high number of ties between the techniques. The experiments 
have shown that, in general, the DF values are good initial 
values for the SVM hyper-parameters, but in most cases tuning 
the hyper-parameters resulted in a substantial improvement in 
the accuracy of the induced models. 

Additionally, we observe that a considerable number of 
tuning steps lead to good solutions (compared with DF) and 
allow RS to obtain an average accuracy similar to the MTHs. 
The comparison of the results obtained by GS compared to 
those obtained by RS allows us to observe that the latter is 
able to generate models that are better than the former with 
the same number of evaluations, a behavior already observed 
in the literature with other classifiers [5]. 

The Friedman statistical test with the Nemenyi post-hoc 
test and confidence level of 95% was applied for the exper­
imental results to compare the predictive performance of the 
optimization effect for all data sets. Table V presents when 
significant differences occurred. An asterisk means that the 
technique in the line is statistical different from the technique 
in the column with 95% confidence. According to the test, 
all the tuning techniques found better hyper-parameter values 
than the default values (DF). They also showed no difference 
in the predictive performance between the tuning techniques. 
These results support the claim that, for SVMs, a simple and 
faster technique such as RS is able to obtain similar results 
compared to more sophisticated techniques (e.g. MTH), and 
traditional techniques (e.g. GS). These results could be due to 
the low dimensional space Gust 2 hyper-parameters) and with 
a higher hyper-space the RS might no be so effective. 

TABLE V. FRIEDMAN-NEMENYI TEST RESULT 

Technique 

GA 

pso 

EDA 

RS 

GS 

OF 

V. CONCLUSION 

This work investigated the use of the Random Search 
(RS) method for adjusting hyper-parameters of Support Vector 
Machines (SVMs). Experiments were carried out with MTHs, 
RS and GS over 70 data sets from VCI, mostly of low 
dimensionality. The experiments corroborated our hypothesis 
for the datasets and techniques used: RS, a simple tuning 
technique hyper-parameter values, can generate SVM models 
with predictive accuracy similar to the models generated by 
meta-heuristics. 

RS also obtained better solutions than DF, and as good as 
GS. It must be observed that statistical tests showed no signif­
icant difference between the MTHs and the other techniques 
for the optimization of SVM hyper-parameters. 

As future work, we intend to add pre- and post-processing 
hyper-parameters that may increase the complexity of the tun­
ing problem being addressed, and expand the experiments to 
include harder problems (datasets), and other ML algorithms, 
mainly those with a larger number of hyper-parameters. We 
also aim to build on, and make all our experiments available 
in OpenML [27], [28] for reproducibility and further study. 
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