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Abstract. Machine learning techniques have been actively pursued in
the last years, mainly due to the great number of applications that make
use of some sort of intelligent mechanism for decision-making processes.
In this work, we presented an improved version of the Optimum-Path
Forest classifier, which learns a score-based confidence level for each
training sample in order to turn the classification process “smarter”,
i.e., more reliable. Experimental results over 20 benchmarking datasets
have showed the effectiveness and efficiency of the proposed approach for
classification problems, which can obtain more accurate results, even on
smaller training sets.

Keywords: Optimum-Path Forest, Supervised learning, Confidence mea-
sures

1 Introduction

Pattern recognition techniques aim at learning decision functions that separate
a dataset in clusters of samples that share similar properties. Supervised tech-
niques are known to be the most accurate, since the amount of information
available about the training samples allows them to learn class-specific prop-
erties, as well as one can design more complex learning algorithms to improve
the quality of the training data. The reader can refer to some state-of-the-art
supervised techniques, such as Support Vector Machines (SVMs) [4], Artificial
Neural Networks (ANNs) [8], Bayesian classifiers, and the well-known k-nearest
neighbours (k-NN), among others. The reader can refer to Duda et al. [6] for a
wide discussion about such methods.

Although we have very sophisticated and complex techniques, it is always
important to keep an open mind for different approaches that may lead us to
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better results. Simple ideas can improve the effectiveness of some well-known
techniques. Ahmadlou and Adeli [1], for instance, proposed the Enhanced Prob-
abilistic Neural Networks, being the idea to avoid the influence of noisy samples
when computing the covariance matrix of each class. This simple idea has shown
to be very effective in some situations. Later on, Guo et al. [7] presented a simple
heuristic to reduce SVM computational load while maintaining its good gener-
alization over unseen data. Their approach is based on the computation of the
lowest margin instances, which are than used as support vector candidates.

Some years ago, Papa et al. [11,10] presented a graph-based supervised
pattern recognition technique called Optimum-Path Forest (OPF), which has
demonstrated interesting results in terms of efficiency and effectiveness, being
some of them comparable to the ones obtained by SVMs, but faster for training.
The idea of OPF is to model the pattern recognition task as a graph partition
problem, in which a set of key samples (prototypes) acts as being the rulers
of this competition process. Such samples try to conquer the remaining ones
offering to them optimum-path costs: when a sample is conquered, it receives
the label of its conqueror. An interesting property stated by Souza et al. [12]
concerns with OPF error bounds, which are the same as k&-NN when all training
samples are prototypes and a path-cost function that computes the maximum
arc-weight along a path is employed. Such statement is very interesting, since
a recent work by Amancio et al. [3] showed strong evidences that, in practice,
k-NN may perform so well as SVMs.

The approach proposed by Papa et al. [11,10] elects the prototype nodes as
being the nearest samples from different classes, which can be found out through
a Minimum Spanning Tree (MST) computation over the training graph: the
connected samples in the MST are marked as being the prototype nodes. In case
of multiple MSTs in large datasets, the current OPF implementation, although
the values of the possible optimum-paths that are going to be offered for a given
graph node may be the same from samples from different classes, the one which
reaches that node first will conquer it. The main problem concerns with the
“tie-regions”, i.e., the regions in which we have a set of training samples that
offer the same optimum-path cost to a given node. Therefore, this scenario may
lead OPF to be more prone to errors in the training set.

In this paper, we propose to consider not only the optimum-path value from
a given sample in the classification process, but also its confidence value, which
is measured by means of a score index computed through a learning process
over a validating set. The idea is to penalize the training samples that do not
have “reliable” confidence values. We have shown this approach can overcome
traditional OPF in several datasets, even when we learn on smaller training sets,
as well as it can perform training faster than its na ”ive version when using the
same amount of data.

The remainder of the paper is organized as follows. Sections 2 and 3 present
the OPF background theory and the proposed approach for score-based confi-
dence computation, respectively. Section 4 describes the methodology and the
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experimental results. Finally, conclusions and future works are stated in Sec-
tion 5.

2 Optimum-Path Forest

Let D(X,)) be a dataset, in which X and ) stand for the set of samples (feature
vectors) and the set of their labels, respectively. The OPF classifier models D
as being a weighted graph G(V, A, d), such that the set of samples are now the
graph nodes, i.e., V = X, and the arcs are defined by the adjacency relation .A.
In addition, the arcs are weighted by a distance function d: V x V — RT.

Similarly to the process of ordered communities generation, in which group of
individuals are originated based on the connectivity relations among their lead-
ers, the OPF classifier employs a competition process among some key samples
in order to partition the graph into optimum-path trees (OPTs) according to
a predefined path-cost function. Analogously, the population is partitioned into
communities, where each individual belongs to a group that has offered him the
best reward.

Besides, the dataset D can be partitioned in two or three subsets according
to the set of possible approaches. In the situation we need two subsets, we have
that D = Dy U D, in which D; and D, stand for the training and testing sets,
respectively. Therefore, the graph-based formulations of the training and testing
sets are given by G1(V1, Ay, d) and Go(Va, Az, d), respectively. However, without
loss of generality, OPF usually uses the same adjacency relation for both sets.
Thus, we can redefine both graphs as G1(V1, A, d) and G2(Vs, A, d). Notice the
standard OPF classifier uses a complete graph, which means all pairs of nodes
are connected.

Let 75 be a path in the graph G; with terminus in the sample s € Dy, and
(7s - (s,t)) be the concatenation between 75 and the arc (s, t), such that t € Dj.
Let S C V; be the set of prototype nodes from all classes. Roughly speaking, the
idea of OPF is to minimize f(m;), Vt € Dy, where f(-) is defined as the path-cost
function given by:

F((s)) = {E)i—oo i)ftflefvfise,
f(ﬂ-s ’ <Svt>) = max{f(ﬂs),d(s,t)}, (1)

in which d(s,t) denotes the distance between nodes s and ¢. Particularly, an
optimal set of prototypes S* can be found exploiting the theoretical relation
between the MST and the minimum spanning forest generated by OPF using
f(-), as stated by Alléne et al. [2]. By computing an MST in Gy, we obtain an
acyclic graph whose nodes are the samples in D; and the arcs are non-directed
and also weighted by the distance function d. Besides that, every pair of nodes
in the MST is connected by a simple path, which is optimum with respect to
f(-). In addition, this minimum spanning tree encodes an optimum-path tree for
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each root (prototype) node. Thus, the optimum prototypes are defined as the
nearest elements in the MST with different labels in D;.

In the classification phase, for each sample r € Ds, we consider all arcs
connecting r to every s € D;. If we take into account all possible paths from
S* to r, we can find the optimum path 7%, i.e., the one that minimizes f(r) as
follows:

7(r) = guin {max{f(s),d(s, )}, @)
Let s* € Dy be the sample that satisfies Equation 2. The OPF classification
step simply assigns the label of s* as being that of r.

3 Learning Score-based Confidence Levels

The classification using the confidence level supports the idea of assigning a
score to all training nodes by means of a learning process over a validation set.
In order to extract the confidence level, we need to partition the dataset D in
three subsets, say that D = D; UD,, UDs, in which Dy, D,, and D5 stand for the
training, validation and testing sets, respectively.

The proposed approach for learning scores aims at training OPF classifier
over Dy for further classification of D,, using the same methodology described
in Section 2. The main difference now is that we associate to each training sample
a reliability level ¢(-), which is computed by means of its individual performance
in terms of its recognition rate over the validation set. However, considering the
aforementioned approach, a sample ¢ € D; that did not participate from any
classification process, would be scored as ¢(t) = 0, and may be penalized, since
the higher the score the most reliable that sample is. Therefore, for such samples
we have set ¢(t) — 1 to give them a chance to perform a good job during the
classification over the unseen (test) data. Thus, at the and of the classification
process over the validation set D,,, we have a score measure ¢(s) € [0, 1], Vs € Dy,
which can be used as a confidence level of that sample. In short, there are three
possible confidence levels:

— ¢(s) = 0: it means sample s did not perform a good work on classifying
samples, since it has misclassified all samples. Therefore, samples with score
equals to 0 may not be reliable;

— 0 < ¢(s) < 1: it means sample s has misclassified samples, as well as it has
also assigned correct labels to some of them. Notice the larger the errors,
the lower is a sample’s reliability. Samples with scores that fall in this range,
may be reliable; and

— ¢(s) = 1: it means either sample s did not participate in any classification
process, or s assigned the correct label to all its conquered samples, which
means s is a reliable sample according to our definition.
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After learning the confidence levels for each training sample, one needs to
modify the naive OPF classification procedure in order to consider this informa-
tion during the label assignment. In order to fulfill this purpose, we proposed a
modification in the OPF classification procedure (Equation 2) as follows:

1
r) = min —— | *xmax{f(s),d(s,r , 3
1) = g { (5755 ) *mextren sy | Q
where € = 107% is employed to avoid numerical instabilities. Therefore, the idea
of the first term in the above equation is to penalize samples with low confidence
values by increasing their costs. In short, the amount of penalty is inversely
proportional to a sample’s confidence level.

4 Methodology and Experimental Results

In order to evaluate the efficiency and effectiveness of the proposed confidence-
based approach for OPF classifier, we perform experiments over 20 classification
datasets (real and synthetic datasets)*®57. Due to the lack of space, instead of
showing characteristics individually for these datasets, we append in Table 1
which also presents the mean accuracies. The choice of these datasets was mo-
tivated by their level of complexity (overlapped samples), which turns the clas-
sification process more sensible to misclassification. The experiments were con-
ducted on a computer with a Pentium Intel Core i3® 3.07Ghz processor, 4 GB of
memory RAM and Linux Ubuntu Desktop LTS 12.04 as the operational system.

For each dataset, we conducted a cross-validation procedure with 15 run-
nings, being each of them partitioned as follows: 30% of the samples were used
to compose the training set, being the validation and testing sets ranged from
10% — 60%,20% — 50%, . ..,50% — 20%. These percentages have been empiri-
cally chosen, being more intuitive to provide a larger validation set for confidence
learning.

In Table 1 is included average accuracy over all datasets. In order to pro-
vide a robust analysis, we performed the non-parametric Friedman test, which is
used to rank the algorithms for each dataset separately. In case of Friedman test
provides meaningful results to reject the null-hypothesis (hg: all techniques are
equivalent), we can perform a post-hoc test further. For this purpose, we con-
ducted the Nemenyi test, proposed by Nemenyi [9] and described by Demsar [5],
which allows us to verify whether there is a critical difference (CD) among tech-
niques or not. Due to the lack of space, instead of showing all diagrams for each
dataset, we highlighted the best techniques in bold according to Nemenyi test.

We can observe OPFc has obtained the best results in 7 out 20 datasets,
and with results very close to the best ones in other 7 datasets. The very worst

* http://mldata.org

® http:/ /archive.ics.uci.edu/ml

5 http://pages.bangor.ac.uk/ mas00a/activities/artificial_data.htm
" http://Irs.icg.tugraz.at /research/aflw
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Table 1. Mean accuracy results: the bold values stand for the most accurate techniques.
The recognition rates were computed according to [11], which consider unbalanced
datasets.

Dataset OPF OPF* OPFc # samples # features # classes
ala 65.74 65.59 69.05 32,561 123 2
aloi 95.31 96.92 95.09 108, 000 128 1,000
connect-4 63.32 63.05 63.10 67,557 126 3
syntheticl 50.69 50.78 50.72 100, 000 100 1,000
synthetic2 85.29 85.56 87.33 100,000 4 4
synthetic3 89.55 89.70 91.14 100, 000 4 4
synthetic4 53.05 52.44 56.14 500 2 2
dmoz-web-directory-topics 59.16 62.06 56.72 1,329 10, 629 5
dna 83.80 88.99 85.02 5,186 180 3
duke-breast-cancer 80.37 91.15 79.46 86 7,129 2
ijennl 93.78 96.46 94.13 191, 681 22 2
Statlog-Letter 97.31 98.58 97.58 35,000 16 26
Leukemia 71.47 76.90 69.63 72 7,129 2
mushrooms 93.68 92.61 96.93 8,124 112 2
scene-classification 66.04 67.78 66.60 2,407 294 15
shuttle 94.48 97.25 95.09 101, 500 9 7
usps 97.24 97.93 97.28 9, 298 256 10
wla 80.54 80.15 80.68 49,749 300 4
yahoo-web-directory-topics 50.54 51.77 56.36 1,106 10, 629 4
aflw 88.00 89.48 88.93 8,193 4,096 2

results were obtained over “duke-breast-cancer” and “Leukemia”, since these
are small datasets, thus providing a validation set that was not enough to learn
good confidence levels. However, even in these datasets, OPFc recognition rate
was close to standard OPF one. As OPF* has employed bigger datasets, it was
expected more accurate results.

It was not possible to establish some specific situation (considering the dataset
configuration, such as the number of classes and the number features, for in-
stance) in which OPFc¢ might be better than OPF and OPF*, although it seems
the proposed approach has obtained the top results in high-dimensional datasets,
except for “dmoz-web-directory-topics”. If we consider an error margin of around
3%, the proposed approach obtained similar results in 17 out 20 datasets, thus
being considered a very suitable approach to improve OPF classifier.

The above assumption can be strengthened if we consider the computational
effort of the techniques. As expected, standard OPF has been faster than OPFc
and OPF* with respect to the training (training+learning scores) step, since it
does not need to compute the confidence level for every training sample. However,
the Nemenyi statistical test pointed out OPFc has been faster than OPF* for
training (Figure la), being similar to it with respect to the classification step,
as displayed in Figure 1b. On average, i.e., considering all 20 datasets, standard
OPF has been about 2.108 times faster than OPFc and OPF*.
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= CD=0.7411
CD=0.7411
3 2 1 3 2 1
OPF* J L OPF  OPF* J L OPF
OPFc ——— OPFc
(a) (b)

Fig. 1. Nemenyi statistical test regarding the (a) training (training + learning scores)
and (b) testing computational load. Groups of similar approaches are connected to
each other.

5 Conclusions and future works

In this work, we introduced a confidence-based learning algorithm to improve
OPF classification results. The idea is to penalize training samples that mis-
classify others in a classification process over a validation set. The proposed
algorithm aims at learning confidence levels for each training sample to be fur-
ther used in a modified version of the standard classification procedure employed
by OPF.

Experiments over 20 datasets showed the robustness of the proposed ap-
proach, which obtained the best results in 7 datasets, as well as very close recog-
nition rates in other 7 datasets. Additionally, OPFc can improve standard OPF
results even with smaller training sets, being also faster than OPF trained over
training+validation sets.
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