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Abstract It is shown that analytically soluble bound states of theSchrödinger equation
for a large class of systems relevant to atomic and molecular physics can be obtained
by means of the Laplace transform of the confluent hypergeometric equation. It is
also shown that all closed-form eigenfunctions are expressed in terms of generalized
Laguerre polynomials. The generalized Morse potential is used as an illustration.
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1 Introduction

Some exactly soluble systems with importance in atomic and molecular physics
have been approached in the literature on quantum mechanics with a myriad of
methods. Among such systems is the Morse potential a(e−αx − 2e−2αx ) [1–19],
the pseudoharmonic potential a (x/b − b/x)2 [4,5,20–31], and the Kratzer–Fues
potential a

(
b2/x2 − 2b/x

)
and itsmodified version a

(
b2/x2 − b/x

)
[4,5,12,30–34].

B A. S. de Castro
castro@pq.cnpq.br

P. H. F. Nogueira
pedrofusconogueira@gmail.com

D. R. M. Pimentel
douglas.roberto.fis@gmail.com

1 Departamento de Física e Química, Universidade Estadual Paulista, Campus de Guaratinguetá,
Guaratinguetá, SP 12516-410, Brazil

2 Departamento de Física Experimental, Instituto de Física, Universidade de São Paulo,
São Paulo, SP 05508-090, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-016-0621-z&domain=pdf


1288 J Math Chem (2016) 54:1287–1295

More general exactly soluble systems have also been appreciated: the general-
ized Morse potential Ae−αx + Be−2αx [31,35–39], the singular harmonic oscillator
Ax2 + Bx−2 [3–5,19,36,40–52], the singular Coulomb potential Ax−1 + Bx−2

[2–5,36,40,48,50,51,53–57], and some ring-shaped potentials (see, e.g. [19] and ref-
erences therein).

The integral transform methods have proven to be useful and powerful for solving
ordinary differential equations because they can convert the original equation into
a simpler differential equation or into an algebraic equation. The Laplace transform
method applied to quantummechanics was used by Schrödinger into the discussion of
radial eigenfunction of the hydrogen atom [58], and later Englefield approached the
three-dimensional Schrödinger equation with diverse spherically symmetric poten-
tials [59]. More than twenty years later the hydrogen atom was reexamined with the
Laplace transform method [60]. Recently, some interest has been revived in searching
bound-state solutions of the Schr ödinger equation via Laplace transform method. For
some years now one-dimensional problems with the 1/x [61], Morse [17], generalized
Morse [62], Dirac delta [63] and harmonic oscillator [64] potentials, three-dimensional
problems with the singular harmonic oscillator, the singular Coulomb [51], some ring-
shaped [65] potentials, and the D-dimensional harmonic oscillator [66], have been
solved for the Laplace transform. With fulcrum on the relation mapping the behaviour
of the eigenfunction near infinity and the Laplace transform near isolated singular
points, Englefield [59] found the spectrum of three-dimensional problems by impos-
ing that the radial eigenfunction vanishes at the origin. Englefield’s recipe, spiced up
with the relation mapping the behaviour of the eigenfunction near the origin and its
corresponding transform near infinity, was used in Ref. [64] in order to obtain the com-
plete set of bound-state solutions for the one-dimensional harmonic oscillator without
using the closed-form solution for the Laplace transform. Furthermore, the class of
problems was enlarged to include eigenfunctions satisfying homogeneous Neumann
conditions at the origin.

In the present paper, the spiced Englefield’s recipe is followed with attention
restricted to systems that after factorizing the behaviour at the neighbourhood of spe-
cial points, the second-order differential equation for the eigenfunction can be reduced
to the confluent hypergeometric equation. Then is shown that all well-behaved eigen-
functions for that class of systems are expressed in terms of generalized Laguerre
polynomials. Exactly solvable problems in this category include all the potentials
mentioned in the first paragraph and the exactly soluble generalized Morse potential
is used as an illustration.

2 Laplace transform and a few of its properties

Let us beginwith a brief description of the Laplace transform and a few of its properties
[67]. The Laplace transform of a function � is defined by

F(s) = L {�} =
∫ ∞

0
dξ e−sξ� (ξ) . (1)
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If there is some positive constant σ such that � does not increase faster than eσξ

for sufficiently large ξ then � is said to be of exponential order σ . In this case, the
integral in Eq. (1) may exist for Re s > σ . Nevertheless, the Laplace transform may
fail to exist because of a sufficiently strong singularity in the function � as ξ → 0. In
particular, ξλ is of exponential order arbitrary and

L
{

ξλ

� (λ + 1)

}
= 1

sλ+1 , Re λ > −1, Re s > 0, (2)

where � is the gamma function. Derivative properties involving the Laplace trans-
form are convenient for solving differential equations. In this paper we shall use the
following properties:

L
{
d�

dξ

}
= sF (s) − �|ξ=0

L
{
d2�

dξ2

}
= s2F (s) − s �|ξ=0 − d�

dξ

∣∣∣
∣
ξ=0

L {ξ�} = −dF (s)

ds
. (3)

More than this, we shall use a pair of relations mapping limiting forms. If near an
isolated singular point s0 the Laplace transform behaves as

F (s) ∼
s→s0

1

(s − s0)ν
, ν > 0, (4)

then

�(ξ) ∼
ξ→∞

1

� (ν)
ξν−1 es0ξ . (5)

On the other hand,

lim
s→∞sF (s) = �(0) , (6)

an result known as initial value theorem.

3 The generalized Morse potential

The time-independent Schrödinger equation is an eigenvalue equation for the charac-
teristic pair (E, ψ) with E ∈ R. For a particle of massm embedded in the generalized
Morse potential it reads

d2ψ (x)

dx2
+ 2m

h̄2

(
E − V1e

−αx − V2e
−2αx

)
ψ (x) = 0, (7)
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where h̄ is Planck’s constant, α > 0, and
∫ +∞
−∞ dx |ψ |2 = 1 for bound states. The

substitution

ξ = 2
√
2mV2 e−αx

h̄α
(8)

and the definitions

S =
√−2mE

h̄α
, a = mV1

h̄α
√
2mV2

+ S + 1

2
(9)

convert Eq. (7) into

d2ψ (ξ)

dξ2
+ 1

ξ

dψ (ξ)

dξ
+

(
−1

4
+ S − a + 1/2

ξ
− S2

ξ2

)
ψ (ξ) = 0, (10)

whose solutions have asymptotic limits expressed asψ (ξ) →|ξ |→0
ξ±S andψ (ξ) →|ξ |→∞

e±ξ/2 . On account of the normalization condition,
∫ ∞
0 d|ξ | |ψ (ξ) |2/|ξ | = α, one has

that ψ behaves like ξ S as |ξ | → 0 and like e−ξ/2 as |ξ | → ∞ with ξ ∈ R (V2 > 0)
and S > 0 (E < 0). The substitution

ψ (ξ) = e−ξ/2ξ S�(ξ) (11)

transforms Eq. (10) into

ξ
d 2�(ξ)

dξ2
+ (b − ξ)

d�(ξ)

dξ
− a �(ξ) = 0, (12)

with b = 2S + 1 > 1. Eq. (12) is the standard form of the confluent hypergeometric
equation [68]. Notice that� is a nonzero constant at the origin and tends to infinity no
more rapidly than exp (σ1ξ

σ2), with σ2 < 1 and arbitrary σ1, for sufficiently large ξ .
This occurs because σ1ξ

σ2 − ξ/2 → −ξ/2 as ξ → ∞. The regular behaviour of � at
the origin plus its behaviour for large ξ ensure the existence of its Laplace transform.
In this case� is of exponential order arbitrary and consequently its Laplace transform
exists for Re s > 0.

4 Laplace transform of the confluent hypergeometric equation

Using the derivative properties of the Laplace transforms given by (3 ), the confluent
hypergeometric equation is mapped onto

s (s − 1)
dF (s)

ds
+ [(2 − b) s + a − 1] F (s) = (1 − b) � (0) , Re s > 0. (13)

Note that this first-order differential equation has regular (nonessential) singularities at
s = 0 and s = 1. Therefore, F (s) is either analytical, or possess a pole or branch point,
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at the regular singular point (Fuchs theorem). The relation connecting the behaviour
of F near an isolated singular point and the behaviour of � for large ξ dictates that
� behaves like ξν−1 or ξν−1eξ , depending on where the isolated singularity of F is,
whether near s = 0 or s = 1, respectively. Due to the asymptotic behaviour prescribed
for � at the end of the previous section, one sees that F behaves like s−ν as s → 0,
and (13) enforces

ν = 1 − a. (14)

On the other hand, using the initial value theorem one sees that F behaves like�(0) /s
as s → ∞. Thus, we seek a particular solution of (13), regular at s = 1, in the form
of a polynomial in inverse powers of s:

F (s) =
n∑

j=0

c j s
j−ν = c0

sν
+ · · · + cn

s
, (15)

with c0 �= 0 and

ν = n + 1, (16)

in such a way that s = 0 is a pole of order n + 1 and F (s) is the principal part of a
finite Laurent series with residue cn = �(0) at s = 0. Comparing (14) with (16), one
sees that

a = −n. (17)

Substituting (15) into (13) one obtains the following two-term recursive relation for
the coefficients

c j+1 = c j
1 + j − n − b

j + 1
, j ≥ 0. (18)

Inspection and induction yields

c j = c0
(−1) j

j !
� (n + b)

�(n + b − j)
, 0 ≤ j ≤ n. (19)

This means that

F (s) = c0

n∑

j=0

(−1) j

j !
� (n + b)

� (n + b − j)
s j−n−1. (20)
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Using (2), the termwise inverse transformation of (20) leads to the polynomial solution
for �:

�(ξ) = c0

n∑

j=0

(−1) j

j !
� (n + b)

� (n + b − j) (n − j)!ξ
n− j . (21)

Then, using Leibniz’s formula for the generalized Laguerre polynomials [68]

L(b−1)
n (ξ) =

n∑

j=0

� (n + b)

� ( j + b)

(−ξ) j

j ! (n − j)! , b > 0, (22)

one obtains

�n (ξ) = c0 (−1)n L(b−1)
n (ξ) . (23)

Actually, condition (17) transforms the confluent hypergeometric equation into gen-
eralized Laguerre’s equation in such a way that the succeeding process involving the
inversion of the Laplace transform is not surprising.

For systemswhose eigenfunctions can be expressed in terms of a particular solution
of the confluent hypergeometric equation, Eqs. (17) and (23) summarize all we need
to determine the complete set of bound-state solutions.

5 Bound states in a generalized Morse potential

We now turn our attention to the generalized Morse potential. Substitution of (17) into
(9) leads to the quantization condition

n + S + 1

2
= − mV1

h̄α
√
2mV2

. (24)

Hence, V1 < 0 so that the generalized Morse potential is able to hold bound states
only if it has a well structure (V1 < 0 and V2 > 0). Furthermore, because E < 0 one
gets

n <
m|V1|

h̄α
√
2mV2

− 1

2
. (25)

This restriction on n limits the number of allowed states and requires m|V1|/(
h̄α

√
2mV2

)
> 1/2 to make the existence of a bound state possible. Finally, we

use the quantization condition (24) to write

En = − V 2
1

4V2

[
1 − h̄α

√
2mV2

m|V1|
(
n + 1

2

)]2
. (26)
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With the generalized Laguerre polynomial standardized as [68]

L(μ)
n (z) =

n∑

j=0

� (n + μ + 1)

� ( j + μ + 1)

(−z) j

j ! (n − j)! (27)

and the integral [69]

∞∫

0

dz e−z zγ−1L(μ)
n (z) = � (γ ) � (1 + μ + n − γ )

n! � (1 + μ − γ )
, Reγ > 0, (28)

one can show that

∞∫

0

dz e−z zμ−1
[
L(μ)
n (z)

]2 = � (μ + n + 1)

μ n! , Re μ > 0. (29)

Therefore, the normalization condition yields the normalized eigenfunction (firstly
obtained in Ref. [7] for V2 = −2V1):

ψn (ξ) =
√

2αS n!
� (2S + n + 1)

ξ Se−ξ/2L(2S)
n (ξ) . (30)

6 Concluding remarks

Bessel’s equation as well as differential equations with linear coefficients can be
mapped onto simpler homogeneous first-order differential equations for the Laplace
transformwhen the original functions are subject to special boundary conditions at the
origin (see, e.g. [67]). Following the spiced Englefield’s recipe, we have shown that the
bound-state solutions of the Schrödinger equation whose eigenfunctions are expressed
in terms of particular solutions of the confluent hypergeometric equation, including
the large class of systems with potentials relevant to atomic and molecular physics
such as the generalized Morse, singular harmonic oscillator, and singular Coulomb
potentials, beyond the ring-shaped potentials approached in Ref. [65], can be obtained
by using the Laplace transform of the confluent hypergeometric equation. In those
cases, the Laplace transform maps the confluent hypergeometric equation onto a non-
homogeneous first-order differential equation. The source of nonhomogeneity is just
the particular solution of the confluent hypergeometric equation at the origin but this
fact does not represent a less favourable position because it is related asymptotically
to the residue of the Laplace transform at the origin via the initial value theorem. It is
worthwhile recall that the eigenfunction for the generalized Morse potential does not
have values prescribed at the origin. The spiced Englefield’s recipe allows searching
for a particular solution of the transformed equation with a well-defined singular-
ity and a well-defined asymptotic behaviour, and such as presented in this paper the

123



1294 J Math Chem (2016) 54:1287–1295

exact-closed form of the Laplace transform does not have relevance to determinate
the complete set of bound-state solutions.
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