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Abstract A fuzzy logic feedback control system was

developed for process monitoring and feeding control in

fed-batch enzymatic hydrolysis of a lignocellulosic bio-

mass, dilute acid-pretreated corn stover. Digested glucose

from hydrolysis reaction was assigned as input while doser

feeding time and speed of pretreated biomass were

responses from fuzzy logic control system. Membership

functions for these three variables and rule-base were

created based on batch hydrolysis data. The system

response was first tested in LabVIEW environment then the

performance was evaluated through real-time hydrolysis

reaction. The feeding operations were determined timely

by fuzzy logic control system and efficient responses were

shown to plateau phases during hydrolysis. Feeding of

proper amount of cellulose and maintaining solids content

was well balanced. Fuzzy logic proved to be a robust and

effective online feeding control tool for fed-batch enzy-

matic hydrolysis.

Keywords Fuzzy logic � Enzymatic hydrolysis �
Feedback control � Bioconversion � Biofuels

Introduction

The bioconversion of cellulosic biomass to ethanol is one

technology currently being assessed for its potential to sup-

plement the use of current fossil fuel-derived gas [1, 2]. In this

process, cellulosic biomass will be pretreated before enzy-

matic hydrolysis to allow easier access of enzyme to targeted

substrate. The monosaccharides (mostly glucose) derived

from hydrolysis will then be used for fermentation to produce

ethanol, which will be followed by distillation to get con-

centrated ethanol product. It has been noted that the enzyme

cost during hydrolysis process and energy cost during ethanol

distillation process are two of the highest major cost in the

whole work [3, 4]. It has been estimated that, by doubling the

ethanol concentration from 2.5 to 5 %, the energy required to

distill a fermentation broth to 93.5 % ethanol with conven-

tional distillation techniques can be reduced by about 33 %

[5]. Ethanol concentration in fermentation broth is strongly

correlated to the sugar concentration which is available for

fermentation [6]. Hence, higher sugar concentrations are

desirable. Fed-batch hydrolysis is a potential strategy to

achieve this while reducing the challenges associated with

high solid loadings during hydrolysis [7]. Fed-batch studies

have been shown to improve sugar yields in some previous

work [8] while some work has also suggested that the fed-

batch approach is no better than the traditional single batch

approach [9, 10]. The reported differences in the various fed-

batch hydrolysis results are likely due to the fact that, both the

quantities and timing of pretreated substrate and enzyme that

are added to the actively hydrolyzing reaction are critical.

These two factors have significant direct influence on the
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active enzyme transition between substrates and new

adsorption equilibrium [11].

Online monitoring and control technologies have been

studied to identify critical time points and proper feeding

operations, but ambiguity is always present in any realistic

process [12, 13]. Precise indexes such as active enzyme

quantity and resided substrate in system are challenging to

be obtained online to build feeding responses. The influ-

ence of added pretreated substrate and enzyme on the

actively hydrolysis reaction is hard to be perfectly pre-

dicted by existing models. Hence, adjusting the feeding

operation is not a trivial task due to ambiguity.

Fuzzy logic, which may be viewed as an extension of

classical logical systems, provides an effective conceptual

framework for dealing with the problem in an environment

of uncertainty and imprecision [14]. The logic underlying

mode of reasoning which is approximate rather than exact

provides a promising approach where ambiguity regarding

the system parameters is present. Linguistic variables are

often used to handle the concept of partial truth such as

‘‘warm’’ in the range between ‘‘cold’’ and ‘‘hot’’. It is one

technology that has been validated as a promising control

strategy in these practical ambiguity applications such as

continuous digestion process, dissolved oxygen control in

reactor, and waste water treatment [15–17]. With the

advantage of dealing with imprecision, relatively less

information may be needed for fuzzy logic control system

to generate reasonable control operations as responses.

In this study, a fuzzy logic control system was built to

monitor the enzymatic hydrolysis reaction and control

feeding operations for a fed-batch approach. Glucose

concentration from hydrolysis was initially analyzed online

and digested glucose was assigned as input while feeding

time and speed of biomass were responses in a fuzzy logic

control rule-base system. The performance of fuzzy logic

control was evaluated for fed-batch enzymatic hydrolysis.

Materials and methods

Materials

Corn stover was collected from Rogers Memorial Farm

(Lincoln, NE, USA) in 2012, it was air dried, milled,

screened through 2.36 mm sieve and homogenized in a

single lot. The enzyme preparation used in this work was

Cellic CTec2 which was kindly provided by Novozymes

North America Inc. (Franklinton, NC, USA).

Pretreatment

Corn stover samples were pretreated with 1.75 % (w/v)

sulfuric acid in sealed flasks in an autoclave at 135 �C for

160 min. Solid to liquid ratio was 1:10. The pretreated

biomass recovered by filtration through a porcelain Buch-

ner funnel was washed with distilled water until pH was 7.

The wet solids were completely transferred to a pre-

weighed plastic bag, weighed and stored sealed at 4 �C for

the enzymatic hydrolysis later. A small portion of the wet

pretreated biomass was weighed and dried for composition

analysis.

Enzymatic hydrolysis

Batch enzymatic hydrolysis experiments were conducted in

50 mL total volume in 125 mL screw-top Erlenmeyer

flasks with 10 % (w/v) dry substrate and 20 FPU/g cellu-

lose of enzyme [18, 19]. The activity of CTec2 enzyme was

determined by standard procedure developed by National

Renewable Energy Laboratory (NREL) [20]. 0.05 mol/L

sodium citrate buffer was used to maintain pH 5.0 and

tetracycline (0.004 %, w/v) and cycloheximide (0.003 %,

w/v) were added to the hydrolysis mixture to prevent

microbial growth. The hydrolysis was carried out at 50 �C
and 150 rpm for 72 h in a controlled environmental incu-

bator shaker (Model I26, New Brunswick Scientific, NJ,

USA). Aliquots of 0.3 mL were taken at specified time

intervals during hydrolysis and centrifuged at 10,000 rpm

for 10 min, the supernatant was used for sugar analysis.

Fed-batch enzymatic hydrolysis experiments were con-

ducted in a 1.3 L bioreactor (Model BioFlo115, New

Brunswick Scientific, NJ, USA) using fuzzy logic control.

The system setup is shown in Fig. 1. The hydrolysis started

with an initial loading volume of 300 mL. Hydrolysis

conditions were the same as in batch hydrolysis. Aliquots

of 3 mL were taken every 2 h using a SEG-FLOW auto-

mated online sampling system (Model 4800, Flownamics,

WI, USA), samples were then sent to a biochemistry ana-

lyzer (Model 2700, YSI, FL, USA) where the glucose

concentration was determined. The glucose concentration

results were then sent to a computer (Dell, TX, USA)

where the fuzzy logic control program was installed in a

LabVIEW environment (version 2012, National Instru-

ments, TX, USA). The feeding rate for pretreated substrate

based on the digested glucose was determined by the fuzzy

logic control system, while enzyme feeding rate was fixed

at 18.5 FPU/h, which was targeted to reach around an

average of 20 FPU/g cellulose at the end of hydrolysis.

Acid-pretreated biomass was dried at 50 �C overnight to be

used as pretreated feedings, feeding operation was con-

ducted by a doser (Lambda Lab Instruments, Brno, Czech

Republic) which can receive feeding commands from

LabVIEW. The enzyme preparation was diluted properly

so the feeding volume would be equal to the sample vol-

ume. It takes about 30 s to take the sample and about 60 s

for YSI to analyze. The signal communication time
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between each equipment and computer is less than 1 s.

Since the sampling interval is 2 h, the time needed for the

sample operation, analysis and communication is

negligible.

Composition and sugar analysis

Chemical composition of pretreated corn stover was ana-

lyzed using standard analytical procedures developed by

NREL [21, 22]. Sugars in the batch hydrolysate were

measured in a HPLC system (Model Ultimate 3000, Dio-

nex) with a Bio-Rad Aminex HPX-87P column

(300 mm 9 7.8 mm), a Bio-Rad de-ashing guard column,

and a refractive index detector. The mobile phase was

HPLC grade water at a flow rate of 0.6 mL/min and the

column temperature was 85 �C.

Fuzzy logic control

The objective of the feedback control in this work was to

develop an online control of enzymatic hydrolysis through

the action of feeding doser controller based on the signal of

glucose concentration in bioreactor. To achieve an efficient

control, solids content in system must be maintained and

high cellulose conversion rate has to be reached. Proper

feeding responses have to be adjusted once the cellulose

conversion rate decreases to different levels.

The fuzzy logic control system was built in three steps.

The first step was to partition the universe of interval

spanned by each variable into several fuzzy subsets with

appropriate linguistic labels (e.g., high, medium and low

for temperature). Next, a membership function was pos-

tulated for each fuzzy subset, followed by assigning the

fuzzy relationships between input fuzzy subsets and output

fuzzy subsets, thus forming rule-base [23]. In this study,

the input variable was digested glucose (g/h) from

hydrolysis while the output variables were doser feeding

time length (s) and feeding speed (%). The feeding speed

was set in a range of 0–999. The speed control was tested

to dose certain amount of biomass within a certain time

frame. The membership functions for the three variables

are shown in Fig. 2 and the rule-base between input and

output is shown in Table 1, which will be discussed in

Sect. 3.1.

The fuzzy logic control system was programmed in

LabVIEW environment (version 2012, National Instru-

ments, TX, USA) and part of the program was shown in

Fig. 3. When the system was operating, a crisp input of

digested glucose was calculated based on glucose con-

centration signal from biochemistry analyzer. This crisp

input is then delineated as to its membership in the input

fuzzy sets. With the rules defined between input and out-

put, the fuzzy output was then defuzzified to crisp control

values with the center of area method [23]. The numerical

Fig. 1 Setup of fed-batch

enzymatic hydrolysis with fuzzy

logic control system

Fig. 2 Membership functions for input and output variables in fuzzy

logic control system
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values of output were eventually sent to doser controller

which took action of feeding pretreated substrate.

Results and discussion

Most of the previous fed-batch hydrolysis studies can be

classified in three categories. The first category of studies

involves manual feeding operations, where pretreated

substrate or enzyme is fed manually at different time

intervals during hydrolysis based on offline detection and

observation [24, 25]; the second category of studies

involves model-based open loop control where the sub-

strate consumption rate is calculated based on kinetic

models before operation and a set of pre-determined

feeding operations at specified time points would be

implemented after hydrolysis starts. No feedback from

hydrolysis would be taken and no adjustment would be

applied to feeding operation during the actual hydrolysis

process [8, 10]; the third category, model-based closed

loop control involves feeding operations based on kinetic

models, but the process is being monitored online and

feedback signals from the hydrolysis are used to correct or

adjust feeding operations for optimum control [26].

Manual feeding operations apparently require more

labor work while the feeding responses could not be timely

enough because of the relatively long time intervals. While

model-based closed loop control is more favorable there

are still obstacles such as obtaining appropriate indexes in

hydrolysis system for model calculation and precise mod-

els to correctly reflect the influence of newly added pre-

treated feedings on active hydrolysis system. With the

drawbacks described above, fuzzy logic control provides

the advantages of a data-driven process combined with

timely adjustment of operations where glucose release rate

is sufficient to represent the hydrolysis system ongoing

situation, and the feeding operations are determined with

the consideration of pretreated feedings interference.

Analysis of membership functions and rules

Based on the batch enzymatic hydrolysis data, the input

membership functions of digested glucose were defined in

the range from 0 to 16 g/h (Fig. 2a). A sharp triangle type

membership was assigned to ‘‘Very Low’’ status with a

range from 0 to 2.5 g/h. Gaussian type membership was

assigned to ‘‘Low’’ and ‘‘Medium’’ with certain overlaps

with ‘‘Very Low’’ and ‘‘High’’ so the full membership

would cover wider ranges of 2–4.5 and 3.8–7.5 g/h,

respectively. The overlap between ‘‘Medium’’ and ‘‘High’’

is relatively bigger to give more flexibility to feeding

output. Not much feeding action would vary if the digested

glucose was high enough so the full membership for ‘‘Very

High’’ was set to cover the range of 11–16 g/h, which

means the substrate was being digested by enzyme very

fast and the hydrolysis was going well.

The corresponding output membership functions for

feeding time and feeding speed were defined to give proper

responses to different input statuses. The combination of

feeding time and speed was set to dose certain amount of

pretreated biomass into hydrolysis system. The difficulty of

determining how much pretreated biomass should be fed

into system lies in the compositions of pretreated biomass

and solids content of current system. Pretreated biomass

contains 52.99 % of cellulose which could be digested by

enzyme to glucose and 33.31 % lignin which cannot be

digested and would accumulate in system. The detailed

relationship between enzyme and compositions in pre-

treated biomass has been studied by Tai and Keshwani

[19]. When a certain amount of cellulose was digested

during a sample interval, which means the system would

have the ability to digest same or similar amount of cel-

lulose in the next sample interval, this amount of cellulose

should be fed into system. However, with the extra lignin

being fed with the biomass, solids content of current sys-

tem would not be able to maintain constantly at 10 %,

which in turn would decrease the ability of cellulose

digestion [27]. While if an equivalent amount of biomass

was chosen to be fed into the system to maintain solids

content, the addition of cellulose available for digestion

would be about 47.01 % less than what the reaction

needed.

Fuzzy logic control strategy successfully solved this

dilemma through the settings in membership functions and

rule-base. The range for feeding time was from 100 to

Table 1 Rule-base for input and output variables in fuzzy logic

control system

Input variable Output variables

Digested glucose (g/h) Feeding time (s) Feeding speed (%)

Very high Very long Fast

High Long Fast

High Very long Medium

Medium Medium Fast

Medium Long Medium

Low Short Fast

Low Short Medium

Low Long Slow

Very low Very short Fast

Very low Very short Medium

Very low Short Slow

False case Very short False case
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2700 s while the feeding speed was from 100 to 999

(Fig. 2b, c). Feeding time and speed were divided into five

and three categories, respectively. Every rule-base which

combines the full membership in feeding time and speed

would dose pretreated biomass which contains exactly

same amount of cellulose as digested, while every rule-

base which combines membership at cross points would

dose pretreated biomass whose weight is equal to the

digested cellulose in input.

The rule-base was created to build relationship between

input status and output responses (Table 1). The rule-base

was set in a way where multiple choices (‘‘OR’’ relation-

ship) for feeding time and speed would be available for

system. For example, when input digested glucose was

‘‘High’’, the doser feeding time could be ‘‘Long’’ and speed

could be ‘‘Fast’’, while feeding time could also be ‘‘Very

Long’’ and speed could be ‘‘Medium’’, where both of the

cases would dose the same amount of pretreated substrate,

but in a different time period. When a fuzzified input falls

in a certain category which leads to multiple choices of

output in rule-base, all choices are being triggered and an

average of them would be taken by the center of area

defuzzification method with each degree of support. In our

case, the degree of support for each rule is set to be 1 so no

choice is favored. False case of negative digested glucose

was created for the programming need.

Fig. 3 Block diagram (a) and
front panel (b) of fuzzy logic

control system in LabVIEW
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System performance in fed-batch enzymatic

hydrolysis

The system was tested using the ‘‘Control design and

simulation’’ tool in LabVIEW. The result of glucose

accumulation in real application was shown in Fig. 4 and

the accumulated cellulose conversion was shown in Fig. 5.

The fuzzy logic controlled hydrolysis started with an initial

solids loading of 10 %, the first sample was taken at 2 h,

where glucose concentration was 13.43 g/L, a little lower

than in batch hydrolysis. The fuzzy logic program

responded to this glucose concentration and 6.77 g of

biomass was gradually fed into system in 1084 s. With an

initial system volume of 300 mL, 13.43 g/L glucose means

3.63 g cellulose in substrate was digested, which further

means the system at that moment has a digestion ability of

3.72–7.01 g dried pretreated biomass with moisture content

of 2.38 % and cellulose content of 52.99 %. It was clear

that if 3.72 g biomass was added, the solids content of

system will remain 10 % while if 7.01 g biomass was

added, the exact 3.63 g cellulose would be brought into

system, but solids content would be up to 10.82 %. With

the settings in membership functions and rule-base, 6.77 g

appears to be a reasonable decision. The balance between

bringing in equivalent amount of cellulose and maintaining

solids content in system was considered in every decision

after sampling.

With the feedings coming into system, as we can see in

Fig. 4, the hydrolysis rate decreased compared to batch

hydrolysis, indicating possible deficiencies in mass transfer

and/or enzyme transition from partially degraded cellulose

to new substrate. Even though there is new enzyme being

fed into system, lignin is being accumulated in the system.

Since lignin is a barrier to hydrolysis, its inhibition effect

would accumulate over the hydrolysis time [24]. Yang

et al. [28] showed fed-batch hydrolysis performance would

be much better if multiple pretreatment methods have been

used, where a major part of both xylan and lignin has been

removed from substrate. There are also certain plateau

phases during hydrolysis, such as 18–26 and 44–48 h,

where cellulose digestion rate was very low and little

glucose was released. These phases are probably caused by

a feeding of relatively large amount of biomass which

made solids content much higher and mass transfer not

sufficient enough.

A total of 1554 FPU of enzyme and 150.48 g of pre-

treated biomass have been fed into system through 2–86 h.

19.96 FPU/g cellulose of enzyme has been maintained as

average for feedings. As we can see in Fig. 5, 20 FPU/g

cellulose of enzyme with 10 % solids loading in batch

hydrolysis would hydrolyze 59.29 % of cellulose in sub-

strate, while the accumulated cellulose conversion in fuzzy

logic controlled fed-batch was 11.10 % higher at 100 h.

Accumulated cellulose conversion was calculated based on

NREL procedure [29] which involves determining the total

grams of cellulose digested (based on glucose concentra-

tion in the hydrolysis supernatant) and dividing that by the

grams of cellulose present in the total biomass. With pre-

treated biomass feeding into system, the accumulated cel-

lulose conversion was not increasing sharply until the end

of feeding at 86 h. There were also certain times where the

conversion was lower than the one before because of the

relatively large amount of pretreated biomass fed into

system at that time point.

Fuzzy logic controlled fed-batch enzymatic hydrolysis

appeared to perform well in response to glucose concen-

tration detected online. The system provides a feasible real-

time monitor and control strategy for hydrolysis processes

where information about reaction mechanisms and control

indices are difficult to obtain and/or are ambiguous. Using

a single online parameter (glucose concentration) and a

rule-base derived from batch hydrolysis experiment, the

system was able to make effective decisions on feeding

substrate to maintain desirable performance in the fed-

batch hydrolysis process. With the consideration of certain

plateau phases, a more suitable rule-base or more detailed

membership functions could be created to avoid feeding of
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excess pretreated biomass at some time points. Addition-

ally, online determination of system viscosity would help

to identify undigested substrate and lignin in the system,

which would further improve the knowledge of input

membership functions and the rule-base.

Conclusions

A fuzzy logic control system has been developed for online

feeding controls in fed-batch enzymatic hydrolysis of

dilute acid-pretreated corn stover. Compared to traditional

controls, fuzzy logic provides the advantages of less input

information and efficient real-time responses. Difficult

model prediction for interference of added pretreated

feedings was successfully avoided. The feeding operations

were determined timely by fuzzy logic control system and

effective responses were shown to properly deal with pla-

teau phases during hydrolysis. Feeding of a proper amount

of cellulose in biomass and maintaining solids content in

system were well balanced. Fuzzy logic proved to be a

robust and effective online feeding control tool for fed-

batch enzymatic hydrolysis.
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16. Traoré A, Grieu S, Puig S, Corominas L, Thiery F, Polit M,

Colprim J (2005) Fuzzy control of dissolved oxygen in a

sequencing batch reactor pilot plant. Chem Eng J 111(1):13–19.

doi:10.1016/j.cej.2005.05.004

17. Wan J, Huang M, Ma Y, Guo W, Wang Y, Zhang H, Li W, Sun X

(2011) Prediction of effluent quality of a paper mill wastewater

treatment using an adaptive network-based fuzzy inference sys-

tem. Appl Soft Comput 11(3):3238–3246. doi:10.1016/j.asoc.

2010.12.026

18. Tai C, Arellano MG, Keshwani DR (2014) Epidemic based

modeling of enzymatic hydrolysis of lignocellulosic biomass.

Biotechnol Prog 30(5):1021–1028

19. Tai C, Keshwani DR (2014) Enzyme adsorption and cellulose

conversion during hydrolysis of dilute-acid-pretreated corn

stover. Energy Fuels 28(3):1956–1961

20. Adney B, Baker J (1996) Measurement of cellulase activities.

Laboratory analytical procedure, vol 6. National Renewable

Energy Laboratory (NREL), Golden

21. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C,

Sluiter J, Templeton D, Wolfe J (2008) Determination of total

solids in biomass and total dissolved solids in liquid process

samples. National Renewable Energy Laboratory (NREL),

Golden

22. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D,

Crocker D (2011) Determination of structural carbohydrates and

lignin in biomass. National Renewable Energy Laboratory

(NREL), Golden

23. Ross TJ (2009) Fuzzy logic with engineering applications. Wiley,

New York

24. Kuhad RC, Mehta G, Gupta R, Sharma KK (2010) Fed batch

enzymatic saccharification of newspaper cellulosics improves the

sugar content in the hydrolysates and eventually the ethanol

Bioprocess Biosyst Eng (2016) 39:937–944 943

123

http://dx.doi.org/10.1016/S0959-3780(02)00040-7
http://dx.doi.org/10.1016/S0959-3780(02)00040-7
http://dx.doi.org/10.1016/j.biortech.2006.09.003
http://dx.doi.org/10.1007/s12010-008-8217-0
http://dx.doi.org/10.1007/s12010-008-8217-0
http://dx.doi.org/10.1007/s12010-007-0028-1
http://dx.doi.org/10.1016/j.procbio.2011.10.018
http://dx.doi.org/10.1002/btpr.508
http://dx.doi.org/10.1016/j.asoc.2013.01.019
http://dx.doi.org/10.1016/S1568-4946(01)00011-4
http://dx.doi.org/10.1016/S1568-4946(01)00011-4
http://dx.doi.org/10.1002/bit.22108
http://dx.doi.org/10.1016/j.cej.2005.05.004
http://dx.doi.org/10.1016/j.asoc.2010.12.026
http://dx.doi.org/10.1016/j.asoc.2010.12.026


fermentation by Saccharomyces cerevisiae. Biomass Bioenergy

34(8):1189–1194. doi:10.1016/j.biombioe.2010.03.009

25. Wanderley MCdA, Martı́n C, Rocha GJdM, Gouveia ER (2013)

Increase in ethanol production from sugarcane bagasse based on

combined pretreatments and fed-batch enzymatic hydrolysis.

Bioresour Technol 128:448–453. doi:10.1016/j.biortech.2012.10.

131

26. Morales-Rodrı́guez R, Capron M, Huusom JK, Sin G (2010)

Controlled fed-batch operation for improving cellulose hydrolysis

in 2G bioethanol production. Comput Aided Chem Eng

28:1497–1502

27. Kristensen J, Felby C, Jorgensen H (2009) Yield-determining

factors in high-solids enzymatic hydrolysis of lignocellulose.

Biotechnol Biofuels 2(1):11

28. Yang M, Li W, Liu B, Li Q, Xing J (2010) High-concentration

sugars production from corn stover based on combined pretreat-

ments and fed-batch process. Bioresour Technol

101(13):4884–4888

29. Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of

lignocellulosic biomass. National Renewable Energy Laboratory

(NREL), Golden

944 Bioprocess Biosyst Eng (2016) 39:937–944

123

http://dx.doi.org/10.1016/j.biombioe.2010.03.009
http://dx.doi.org/10.1016/j.biortech.2012.10.131
http://dx.doi.org/10.1016/j.biortech.2012.10.131

	Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass
	Abstract
	Introduction
	Materials and methods
	Materials
	Pretreatment
	Enzymatic hydrolysis
	Composition and sugar analysis
	Fuzzy logic control

	Results and discussion
	Analysis of membership functions and rules
	System performance in fed-batch enzymatic hydrolysis

	Conclusions
	Acknowledgments
	References




