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Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topolog-
ical phases with fractionalized excitations. Here we propose a chiral spin-orbital liquid as a stable
phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana
fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Bril-
louin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection
and that the system exhibits dispersing surface states. We discuss some experimental signatures of
this state and compare them with properties of the spin liquid candidate Ba2YMoO6.

PACS numbers: 71.70.Ej, 75.10.Jm, 75.10.Kt

Quantum spin liquids (QSLs) are Mott insulators in
which quantum fluctuations prevent long-range magnetic
order down to zero temperature [1]. They have re-
ceived both experimental and theoretical attention due
to predictions of unusual phenomena such as spin-gapped
phases with topological order or gapless phases without
spontaneous breaking of continuous symmetries [2]. In
recent years the evidence for QSLs in nature has started
to look more auspicious thanks to the discovery of new
compounds that realize the Heisenberg model on frus-
trated lattices [3]. While frustration is a desirable ingre-
dient, seminal work by Kitaev [4] has demonstrated that
bond-dependent exchange interactions may provide an-
other route towards QSL ground states. The key idea is
that a spin-1/2 model on the (bipartite) honeycomb lat-
tice with judiciously chosen anisotropic interactions can
be rewritten in terms of free Majorana fermions hopping
in the background of a static Z2 gauge field. The result
is a QSL with exotic fractional excitations. The same
idea has been applied to construct other exactly solvable
models, including cases of higher spins [5–9].

From a broader perspective, Kitaev’s model is an in-
stance of a quantum compass model [10–12]. Although
Kitaev-type exactly solvable models are artificial, the
kind of anisotropic interactions they presuppose arises
naturally in Mott insulators with orbital degeneracy and
strong spin-orbit coupling [13, 14]. There is recent evi-
dence that bond-dependent interactions are dominant in
Na2IrO3 [15]. While this compound is in a zigzag-ordered
phase at low temperatures, the prospect of finding QSLs
in compass models suggests inspecting other families of
heavy-element transition metal oxides [16–18].

All the conditions leading to quantum compass mod-
els can be found in Mott-insulating rock-salt-ordered
double perovskites [19]. Given the chemical formula
A2BB′O6, particularly interesting properties are found
in compounds where the B′ magnetic ions have a 4d1

or 5d1 configuration. These ions are arranged in a face-
centered-cubic (fcc) lattice, which, unlike the honeycomb
lattice, is geometrically frustrated. The magnetic prop-
erties within this family are diverse [20–23], but the ma-
terial that stands out is Ba2YMoO6 [24–27]. Despite a
Curie-Weiss temperature Θcw ≈ −160 K [24], several ex-
periments point to the absence of long-range order down
to T ∼ 2 K. Moreover, there is no sign of structural tran-
sitions, implying that the lattice remains cubic at low
temperatures. Thus, the degeneracy of the t2g orbitals is
only partially lifted by the spin-orbit coupling, leading to
a low-lying j = 3/2 quadruplet [24]. The effective model
contains bond-dependent interactions between nearest-
neighbor j = 3/2 spins and is closely related to Γ-matrix
generalizations of Kitaev’s model [5, 7]. Remarkably, the
analysis in [19] revealed that, when antiferromagnetic
exchange is dominant, ordered phases become unstable
against quantum fluctuations, making this an interesting
point to look for QSLs.

In this Letter we investigate a QSL in a realistic model
for double perovskites with strong spin-orbit coupling.
Using a representation of j = 3/2 operators in terms of
six Majorana fermions, we start by showing that a hidden
SU(2) symmetry of the Hamiltonain becomes an explicit
SO(3) symmetry for three of these fermions, whereas
the other three exhibit a compass-model-type Z3 sym-
metry. As the model is not exactly solvable, we proceed
with a mean-field approach and propose a spin liquid
ansatz that preserves the SO(3) and Z3 symmetries. The
ansatz breaks inversion and time reversal symmetry, thus
describing a chiral spin liquid. Most interestingly, we
find that the excitation spectrum is gapless along nodal
lines which are vortices of a Berry connection in momen-
tum space. This feature makes this chiral spin liquid a
strongly correlated analogue of line-node semimetals and
superconductors discussed in the context of topological
phases of weakly interacting electrons [28–31] and pho-
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tonic crystals [32]. Going beyond the mean-field level, we
use variational Monte Carlo (VMC) techniques [33–35] to
show that our spin liquid state yields a remarkably low
energy and should be regarded as a competitive candidate
for the ground state of the spin-orbital model. Finally, we
argue that the vanishing density of states at low energies
predicted by our theory can account for some unusual
properties observed in Ba2YMoO6.

The spin-orbital model for cubic double perovskites
with d1 electronic configuration is given by [19]

H = J
∑

α,〈ij〉∈α

(
Si,α · Sj,α −

1

4
ni,αnj,α

)
− λ

∑
i

li · Si.

(1)
Here J > 0 is the antiferromagnetic exchange between
nearest-neighbor spins and λ > 0 is the atomic spin-orbit
coupling. The index α labels both planes (XY, YZ or XZ)
and t2g orbitals (dxy, dyz or dxz) [36]. The operators ni,α
and Si,α describe the number and the spin of electrons
occupying the α orbital on site i, with the constraint∑
α ni,α = 1, and li is the effective l = 1 orbital angular

momentum of the t2g states [37]. The total spin on site
i is Si =

∑
α Si,α.

In the regime λ� J , spin and orbital operators can be
projected into the low-energy subspace of total angular
momentum j = 3/2 [19]. The projected Hamiltonian
H̃ = P3/2HP3/2, where P3/2 is the projector, contains
multipolar interactions in terms of Ji = li+Si. Our first
step is to introduce operators s and τ at each site as

s =
1

2
(−Γ23,Γ13,Γ12), τ =

1

2
(Γ4,−Γ45,Γ5). (2)

The notation refers to five Dirac Γ matrices given explic-
itly by

Γ1 = σz ⊗ σy, Γ2 = σz ⊗ σx, Γ3 = σy ⊗ 1,
Γ4 = σx ⊗ 1, Γ5 = −Γ1Γ2Γ3Γ4, (3)

where σa, a ∈ {x, y, z}, are Pauli matrices, and 10 matri-
ces Γµν ≡ [Γµ,Γν ] /(2i) [5, 38]. The components of s and
τ satisfy the SU(2) algebra [sa, sb] = iεabcsc, [τa, τ b] =
iεabcτ c, and [sa, τ b] = 0. The relation between the ba-
sis of Jz and the basis |sz, τz〉, with sz, τz ∈ {+,−}, is∣∣Jz = ± 3

2

〉
= |∓,+〉,

∣∣Jz = ± 1
2

〉
= |±,−〉.

In the new representation the projected Hamiltonian
assumes a relatively simple form:

H̃ =
J

9

∑
〈i,j〉∈α

(
si · sj −

1

4

)
(1− 2ταi )(1− 2ταj ), (4)

where τα are given by τxy = τz, τyz(xz) =
1
2 (−τz ±

√
3τx). A few comments are in order. First,

Eq. (4) has the familiar form of a Kugel-Khomskii model
[39, 40]. However, here the Kugel-Khomskii coupling in-
volves pseudospins s and pseudo-orbitals τ defined in the
j = 3/2 subspace, where the original spins and orbitals

are highly entangled. Second, the Hamiltonian commutes
with stot =

∑
i si. This is a manifestation of the hidden

global SU(2) symmetry discussed in [19]. This continuous
symmetry is unexpected, given that spin-orbit coupling
breaks the conservation of Jtot =

∑
i Ji, but appears in

related models for t2g orbitals [41] and at special points
of the Kitaev-Heisenberg model [42]. Finally, the pseudo-
orbital coupling has the form of a 120◦ compass model
[12]. There is a Z3 symmetry generated by U3 = e−i

2π
3 τ

y
tot

followed by a C3 rotation of the α planes.
In analogy with the spin liquid in Kitaev’s model [4],

we now introduce a Majorana parton representation for
the generators of SU(4) (i.e. the basis of j = 3/2 opera-
tors). We write s and τ operators as [43–48]

saj = − i
4
εabcηbjη

c
j , τaj = − i

4
εabcθbjθ

c
j . (5)

The components of ηj and θj are Majorana fermions that
obey {γaj , γbl } = 2δjlδ

ab, where γ ∈ {η, θ}. As the signs of
the fermions can be changed (η → −η, θ → −θ) without
affecting the physical operators, this representation bears
a Z2 redundancy. To eliminate the extra states, one can
impose the local constraint [45]

Dj ≡ iη1
j η

2
j η

3
j θ

1
j θ

2
j θ

3
j , Dj = 1 ∀j. (6)

With this constraint we have saj τ bj = − i
4η
a
j θ
b
j , and Hamil-

tonian (4) becomes quartic in Majorana fermions:

H̃ = −NJ
6

+
J

36

∑
〈i,j〉∈α

[(∑
a<b

ηai η
a
j η
b
i η
b
j

)
+(η1

i η
2
i η

3
j + η2

i η
3
i η

1
j + η3

i η
1
i η

2
j )θ̄αj + (i↔ j)

+θ̄αi θ̄
α
j ηi · ηj − θαi θαj θ2

i θ
2
j

]
, (7)

where N is the number of sites and θα and θ̄α are defined
by θxy = θ1, θyz(xz) = 1

2 (−θ1 ∓
√

3θ3), and θ̄xy = θ3,
θ̄yz(xz) = 1

2 (−θ3 ±
√

3θ1).
Hamiltonian (7) is invariant under global SO(3) rota-

tions of the η vector. The couplings involving the com-
ponents of θ have only a discrete symmetry, namely the
octahedral point group symmetry Oh of the lattice. The
latter contains the Z3 that rotates θα and θ̄α by 120◦ in
the (θ1, θ3) plane. In addition, H̃ is invariant under time
reversal T = Ke−iπJ

y
tot , where K denotes complex conju-

gation. In terms of Majorana fermions, T = K
∏
j θ

1
j θ

3
j .

Next, we perform a mean-field decoupling of Hamilto-
nian (7). This is equivalent to neglecting fluctuations of
the Z2 gauge field and yields qualitatively correct results
as long as the system is in a QSL phase with deconfined
Majorana fermions [43]. Our choice of mean field ansatz
is guided by the condition of preserving the SO(3) and Z3

symmetries. This restricts the set of nonzero parameters
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Figure 1: (color online). (a) Two gauge-inequivalent hopping
configurations with the same flux of the Z2 gauge field on all
faces of a tetrahedron. (b) Four-sublattice ansatz on the fcc
lattice. The sign of the outward flux alternates between edge-
sharing tetrahedra (represented by different color fillings).

〈γai γbj 〉. We obtain

H̃MF = −NJ
6

+
J

36

∑
〈j,l〉∈α

[
i(2ujl + w̄αjl)ηj · ηl

+3iujlθ̄
α
j θ̄

α
l − iwαjlθ2

j θ
2
l − ivjlθαj θαl

+3u2
jl + 3w̄αjlujl − wαjlvjl

]
, (8)

where iujl = 〈ηaj ηal 〉, ivjl = 〈θ2
j θ

2
l 〉, iwαjl = 〈θαj θαl 〉, and

iw̄αjl = 〈θ̄αj θ̄αl 〉 play the role of imaginary hopping ampli-
tudes. Note that the symmetry implies decoupling of ηa
and θ2 fermions at the level of bilinear terms; yet, θ1 and
θ3 remain coupled.

Seeking a translationally invariant ansatz, we set the
order parameters to have uniform magnitude: uij = uσuij ,
vij = vσvij , w

xy
ij∈XY = wσwij , w̄

xy
ij∈XY = w̄σw̄ij , with

u, v, w, w̄ to be determined by self-consistent equations,
whereas the σ’s are chosen to be ±1 on each bond. Since
e.g. uij = −uji, the choice of σuij is equivalent to a choice
of bond orientation and determines the gauge-invariant
flux through elementary plaquettes. Noticing that the
fcc lattice can be viewed as a network of edge-sharing
tetrahedra, we obtain a symmetric ansatz by requiring
that the Z2 fluxes, e.g. χujkl ≡ iσujkσ

u
klσ

u
lj , be the same

on all faces of a given tetrahedron, with sites jkl on ev-
ery triangle oriented counterclockwise with respect to an
outward normal vector. This leads to the four-sublattice
ansatz illustrated in Fig. 1.

Let us discuss the symmetry of our ansatz. First, we
note that the Z2 gauge flux through triangles is odd un-
der time reversal and is related to the spin chirality or-
der parameter [49, 50]. The state also breaks inversion
P ; this can be seen from Fig. 1(b), since a mirror-plane
reflection exchanges tetrahedra with opposite chiralities.
Thus, our ansatz describes a chiral spin liquid with spon-
taneous breaking of P and T . However, PT is still a
symmetry. Similarly, a projective symmetry group anal-
ysis [2] shows that broken rotational symmetries can be
combined with the broken time reversal to restore an Oh
point group symmetry, ensuring the orbital degeneracy
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Figure 2: (color online). (a) Brillouin zone of the cubic sub-
lattice. (b) Bulk dispersion. The nodal lines along MR direc-
tions cross at the quadratic band touching point R.

assumed at the outset (see Supplemental Material [51]).
Having fixed the ansatz, we can calculate the resulting

spectrum of the Majorana fermions. For simplicity, first
we focus on the mean-field Hamiltonian for γ ∈ {ηa, θ2},
i.e., the flavors which are decoupled in Eq. (8). In this
case the Hamiltonian can be written in the form

H̃MF =
∑

k∈ 1
2BZ

γ†kH(k)γk = |t|
∑

k∈ 1
2BZ

γ†k(hk ·Σ)γk, (9)

where t = t(u, v, w, w̄) is the corresponding hopping
amplitude in Eq. (8), γ†k = (γ†kA, γ

†
kB, γ

†
kC, γ

†
kD) is

a spinor with components labeled by sublattice index,
hk = 4

(
cos kx2 cos

ky
2 , cos

ky
2 cos kz2 , cos kz2 cos kx2

)
, Σ =

(−Γ1,−Γ3,Γ13), and the sum is restricted to half Bril-
louin zone since γ−k = γ†k [44]. As the components of Σ

obey [Σa,Σb] = iεabcΣc, the spectrum is given simply by

ε±(k) = ±|t||hk|. (10)

The dispersion relation is illustrated in Fig. 2. There
are two doubly degenerate bands [51]. Since {P, H̃MF} =
0, the Hamiltonian has a chiral symmetry [52, 53] and the
spectrum is symmetric between positive- and negative-
energy states. The defining feature of the band struc-
ture is the band touching along the edges of the Bril-
louin zone. These are nodal lines parametrized, e.g., by
k = (π, π, kz). Expanding k = (π + px, π + py, kz),
with px, py � 1, we obtain the effective Hamiltonian
on a plane perpendicular to a line node: H(k) ≈
2|t| cos kz2 (pxΣy + pyΣz). The latter is formally equiv-
alent to the Hamiltonian for graphene and yields lin-
ear dispersion at low energies with kz-dependent veloc-
ity ε±(k) ≈ ±2|t| cos kz2

√
p2
x + p2

y. These nodal lines
can be characterized as topological defects of an SU(2)
Berry connection [54] in reciprocal space (see Supple-
mental Material [51]). The three nodal lines related
by C3 symmetry cross at R = (π, π, π). Expanding
k = (π+px, π+py, π+pz), we find that R is a quadratic
band touching point [55, 56] with anisotropic dispersion
ε±(k) ≈ |t|

√
p2
xp

2
y + p2

yp
2
z + p2

xp
2
z.
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Figure 3: (color online). Surface-state spectrum projected in
the Brillouin zone of the triangular lattice for (111) surface.
The dispersion of the surface states corresponds to the thick
red line between points M and K.

Another feature of topologically nontrivial states of
matter is the presence of protected surface states. We
identify the surface states by calculating the spectrum
for H̃MF in a slab geometry with open boundary condi-
tions in the (111) direction (Fig. 3). There appear two
pairs of doubly degenerate bands separated from the con-
tinuum, with dispersion terminating at the projections of
the nodal lines. Remarkably, the positive-energy surface
states are spatially separated from the negative-energy
ones as their wave functions are localized at opposite sur-
faces (which surface depends on the sign of the hopping
parameter). This is a direct manifestation of the break-
ing of inversion symmetry.

We calculate the ground state energy Egs at mean-field
level by solving the self-consistent equations that deter-
mine the order parameters in Eq. (8). For this purpose
we had to diagonalize the Hamiltonian for coupled θ1 and
θ3 fermions in Eq. (8) and found that the spectrum again
displays nodal lines [51]. We obtain EMF

gs /NJ ≈ −0.248.
A better estimate of Egs can be obtained by implement-
ing a Gutzwiller projection according to Eq. (6) using
VMC [33, 45]. Considering a restrictive form of the wave
function which neglects variations in the population of
the fermionic flavors (see Supplemental Material [51]),
we obtain EVMC

gs /NJ = −0.40(1). This energy is al-
ready comparable to that of the best variational state
identified in Ref. [19], namely a valence bond solid with
EVBS/NJ ≈ −0.417. We expect the spin liquid to be
stable since small fluctuations of the Z2 gauge field only
induce weak short-range interactions [2], which are irrel-
evant in the renormalization group sense for topological
semimetals with point or line band touching in three di-
mensions [56].

The low-temperature thermodynamic properties are
governed by the density of states ρ(ε) ∝ √ε of the Majo-
rana fermions, which is due to the quadratic band touch-
ing point. It follows that the QSL has heat capacity
C ∝ T 3/2, magnetic susceptibility χ ∝ T 1/2, and thermal
conductivity κ ∝ T 3/2 for kBT � J . Another important
property is the correlation function G(r) = 〈Jj · Jj+r〉.

We find that G(r) vanishes when r connects sites on the
same sublattice. For vectors connecting different sub-
lattices along (100) directions in the form r = δ + rê,
where δ ∈ {( 1

2 ,
1
2 , 0), ( 1

2 , 0,
1
2 ), (0, 1

2 ,
1
2 )} and ê ∈ {x̂, ŷ, ẑ},

the correlation decays at large distances as G(r) ∼ 1/r4.
This power-law decay coincides with the result for a Dirac
point in two dimensions [45].

Finally, we address the comparison with available
experimental results for the spin liquid candidate
Ba2YMoO6. Aharen et al. [25] observed that both the
heat capacity and the magnetic susceptibility vanishes at
low temperatures and have attributed this behavior to a
gapped collective spin singlet. de Vries et al. [24] pro-
posed a picture of a valence bond glass, but noted that
the muon spin relaxation is comparable to that of QSLs
[27]. Here we propose that an alternative explanation
for the vanishing heat capacity and susceptibility at low
temperatures is the vanishing density of states of our gap-
less spin-orbital liquid with nodal lines. A comprehensive
study of the properties of this QSL in comparison with
experimental results will be presented elsewhere [57].

To summarize, we have studied a realistic model for
double perovskites in the regime of strong spin-orbit
coupling. We proposed a new spin liquid ansatz that
gives rise to nodal lines in the spectrum of Majorana
fermions. We argued that some experimental results for
Ba2YMoO6 can be interpreted in terms of the vanish-
ing density of states predicted by our theory. We hope
this work will stimulate the search for strongly correlated
materials hosting fractional excitations with nontrivial
momentum-space topology [48, 58].

This work was supported by Brazilian agencies
FAPESP (W.M.H.N., E.C.A.) and CNPq (E.M., R.G.P.).
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Supplemental Material

1. Symmetry of the spin liquid ansatz

Time reversal T = Ke−iπJ
y
tot = K

∏
j(iΓ

13
j ) acts on peudospins and pseudo-orbitals as

T−1sjT = sj , T−1τx,zj T = τx,z, T−1τyj T = −τyj . (11)

In the Majorana fermion representation for s and τ this transformation can be implemented by T = K
∏
j θ

1
j θ

3
j . This

is equivalent to complex conjugation combined with the operation θ1
j → −θ1

j and θ3
j → −θ3

j . Thus, if we focus on the
decoupled flavors γ ∈ {ηa, θ2}, we can take time reversal to be represented simply by complex conjugation.

Let γj` denote a Majorana fermion on site j belonging to sublattice ` = A,B,C,D. The operators γk` in momentum
space are defined by

γj` =

√
8

N

∑
k∈ 1

2BZ

[γk`e
ik·Rj + γ†k`e

−ik·Rj ], (12)

γk` =

√
2

N

∑
j∈`

γj`e
−ik·Rj , (13)

and γk` are normalized such that {γk`, γ
†
k′`′} = δkk′δ``′ . For each flavor of Majorana fermion we combine the four

sublattice modes into a single “spinor” γk = (γkA, γkB, γkC, γkD)t.
In momentum space, time reversal takes k→ −k. Up to a hopping amplitude (determined by self-consistent equa-

tions, see next section), the mean-field Hamiltonian for a decoupled flavor is of the form H̃MF =
∑

k∈ 1
2BZ γ

†
kH(k)γk

with

H(k) = i


0 f(kx, ky) f(ky, kz) f(kx, kz)

−f(kx, ky) 0 −f(kx, kz) f(ky, kz)
−f(ky, kz) f(kx, kz) 0 −f(kx, ky)
−f(kx, kz) −f(ky, kz) f(kx, ky) 0

 , (14)

where f(ka, kb) = 4 cos(ka/2) cos(kb/2). Notice the factor of i. It follows that

T−1H(k)T = H∗(−k) = −H(k). (15)

We define inversion P as the reflection by the mirror plane that exchanges A and C sublattices (plane perpendicular
to δyz = (0, 1

2 ,
1
2 )). In momentum space, P : kx → kx, ky → −kz, kz → −ky. In addition, we have the action in the

internal (sublattice) space given by the matrix (with determinant -1)

P =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 . (16)

We also define the Z2 gauge transformation that changes the sign of fermions on the B sublattice:

GP =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 . (17)

It is easy to check that inversion anticommutes with the mean-field Hamiltonian:

(PGP )−1H(Pk)PGP = −H(k). (18)

It follows that the combined transformation PTGP is a symmetry of the Hamiltonian:

(PTGP )−1H(Pk)PTGP = H(k). (19)
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The C3 rotation about a (111) axis that leaves an A site invariant is represented by

C3 =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 , (20)

and the rotation in momentum space takes R3 : kx → kz, ky → kx, kz → ky. In this case a gauge transformation is
not required; we obtain immediately that

C−1
3 H(R3k)C3 = H(k). (21)

The C2 rotation along the z axis that exchanges A↔B, C↔ D is represented by

C2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , (22)

and in momentum spaceR2 : kx → −kx, ky → −ky. We need to combine the C2 rotation with the gauge transformation

G2 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (23)

We then have

(C2G2)−1H(R2k)(C2G2) = H(k). (24)

Translation by δxy = ( 1
2 ,

1
2 , 0), which we denote by Txy, has the same effect of exchanging sublattices as the above

C2 rotation. Thus, conjugation by TxyG2, together with Rj → Rj + δxy in real space, is also a symmetry of the
Hamiltonian (and likewise for the equivalent translations in yz and xz planes).

Now consider a C4 rotation along the z axis going through an A site, which exchanges C and D sublattices. This
can be represented in sublattice space by

Ĉ4 =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 . (25)

In momentum space, R4 : kx → ky, ky → −kx. Combining with the gauge transformation:

Ĝ4 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , (26)

we find

(C4G4)−1H(R4k)(C4G4) = −H(k). (27)

Thus, like P and T , the C4 rotation inverts the chirality of the ansatz. It is then easy to see that C4G4T is a symmetry
of the Hamiltonian.

The C4 rotation can be used to construct a symmetry transformation that accounts for the twofold degeneracy of
the Majorana fermion bands.

It is also interesting to consider the C4 rotation that exchanges A and B sublattices, given by

Ĉ ′4 =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 . (28)
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If we define this to be a rotation around z axis in the opposite direction than the one in Eq. (25), the transformation
in momentum space is R′4 = (R4)−1, i.e., R′4 : kx → −ky, ky → kx. It is easy to check that the compositionM = Ĉ4Ĉ

′
4

commutes with the Hamiltonian, M−1H(k)M = H(k), and obeys M2 = −1. Thus, we can block diagonalize H(k)
by sectors labeled by the eigenvalue ±i of the matrix M :

U†MH(k)UM =

(
σ̃ · hk 0

0 −σ̃ · hk

)
, (29)

where σ̃ ≡ (−σz, σy, σx) and UM is the unitary matrix that diagonalizes M . It is then clear that the spectrum of
H(k) is twofold degenerate with eigenvalues ±|hk|. Two degenerate states can be distinguished by the eigenvalue ±1
of the Hermitean matrix iM (which is analogous to the chirality of Weyl fermions in the massless Dirac equation).

In summary, the chiral spin-orbital liquid ansatz lowers the symmetry of the Hamiltonian from Oh×Z2 (where Z2 is
time reversal) to Oh (where the new group contains combinations of broken point group symmetries with the broken
time reversal).

2. Berry connection

The nodal lines can be characterized as topological defects of a Berry connection in reciprocal space. In our case,
the Berry connection has to be non-Abelian due to the double degeneracy of the bands. Away from the nodal lines,
we define the SU(2) connection

Aamn(k) = i〈ψm(k)|∂kaψn(k)〉, (30)

where |ψm(k)〉 and |ψn(k)〉, m,n ∈ {1, 2}, are degenerate eigenstates of H(k) (say with energy ε+(k)) chosen so as
to obey 〈ψm(k)|ψn(k)〉 = δmn and to diagonalize Az(k). The generalized Berry phase is the Wilson loop

U = P exp[−i
∮
dkaA

a(k)], (31)

where P denotes path ordering. The calculation of U is simplified if we consider a path around the line node
parametrized by k ≈ (π + ε cosα, π + ε sinα, kz), with α ∈ [−π, π). For infinitesimal radius ε� 1, we obtain

Ax = − 1

2ε
sinασy +O(ε0), Ay =

1

2ε
cosασy +O(ε0), (32)

which is precisely the singular ε dependence of a vortex line. We then find U = −1, equivalent to a π Berry phase.

3. Solving the mean-field Hamiltonian

In this section we outline the steps required to diagonalize the mean-field Hamiltonian and calculate the ground
state energy.

Using the mode expansion Eq. (12), we can rewrite the various hopping terms for Majorana fermions in terms of
operators in reciprocal space. For instance,

i
∑

〈j,l〉∈XY

γjAγlB = 2i
∑

k∈ 1
2BZ

h1
k(γ†kAγkB − γ

†
kBγkA), (33)

where h1
k = 4 cos(kx/2) cos(ky/2) is the first component of hk. The mean-field Hamiltonian becomes

H̃MF =
J

18

∑
k∈ 1

2BZ

[
(2u+ w̄)

3∑
a=1

(ηak)
†H1(k)ηak − w

(
θ2
k
)†H1(k)θ2

k + (Θk)
†H2(k)Θk

]

−NJ
6

+
J

36

∑
〈i,j〉∈α

(
3u2

ij + 3w̄αijuij − wαijvij
)
, (34)

where H1(k) is the 4 × 4 matrix in Eq. (14), Θk = (θ1
kA, . . . , θ

3
kD)t is an eight-component spinor that combines θ1

and θ3 fermions and H2(k) is an 8× 8 matrix to be specified below.
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First consider the fermions ζ ∈ {ηa, θ2}, whose spectrum is determined by H1(k). Let Uk be the unitary transfor-
mation that diagonalizes H1(k):

U†kH1(k)Uk = Λ1(k), (35)

where Λ1(k) = diag{−|hk|,−|hk|, |hk|, |hk|} is a diagonal matrix. The operators that annihilate fermions in eigen-
states of H1(k) are

γ̃kλ =
∑

`=A,...,D

(U†)λ`γk`, (36)

γk` =

4∑
λ=1

(U)`λγ̃kλ, (37)

where λ = 1, . . . , 4 is the band index. The mean-field ground state |GS〉 is the state in which all single-fermion states
with negative energy are occupied. This leads to the self-consistent equation for expectation values, e.g.

〈γj,Aγj+δxy,B〉 =
8

N

∑
k∈ 1

2BZ

[eik·δxy 〈γ†kAγkB〉+ e−ik·δxy 〈γkAγ
†
kB〉]

= iIm

16

N

∑
k∈ 1

2BZ

∑
λ

(U†)λAUBλe
ik·δxy 〈γ̃†kλγ̃kλ〉


=

i

2π3
Im

 ∑
λ (ελ<0)

∫
1
2BZ

d3k (U†)λAUBλ

 , (38)

where in the last line the sum is over bands with negative energy and we took the thermodynamic limit to replace∑
k → N

32π3

∫
d3k (corresponding to N/4 states in the Brillouin zone of the cubic sublattice).

Since H1(k) determines the spectrum of ηa and θ2 fermions, the self-consistent equations for uij = −i〈ηai ηaj 〉 and
vij = −i〈θ2

i θ
2
j 〉 are the same up to an overall minus sign, depending on the relative sign of the hopping amplitudes

2u+w̄ and −w in Eq. (34) We then have the constraint |u| = |v|, but must analyze two possibilities, namely u = v and
u = −v. Without loss of generality (by choosing one of the two degenerate ground states with opposite chiralities),
we can set u > 0. Numerical evaluation of the integral in Eq. (38) then yields u ≈ 0.258.

The relation between u and v determines the 8× 8 matrix for Θk. For v = u, we obtain

H2(k) = uhk ·Σ′, (39)

where Σ′ = (2Kz ⊗ σy,−2Ky ⊗ 1,−2Kx ⊗ σy), with

Kx =
1

2


0 2 0

√
3

2 0
√

3 0

0
√

3 0 0√
3 0 0 0

 , Ky =
i

2


0 −2 0

√
3

2 0 −
√

3 0

0
√

3 0 0

−
√

3 0 0 0

 , Kz =
1

2


1
−1
−3

3

 . (40)

The components of the matrix vector K satisfy the SU(2) algebra. We then obtain the spectrum of H2(k) and use
it to solve the self-consistent equations for wij = −i〈θαi θαj 〉 and w̄ij = −i〈θ̄αi θ̄αj 〉 analogous to Eq. (38). In this case
of u = v we find a self-consistent solution with w ≈ −0.081 and w̄ ≈ 0.317. Having fixed the order parameters, we
obtain the mean-field ground states energy EMF(v = u) = 〈H̃MF〉 ≈ −0.244NJ .

For v = −u we obtain

H
(2)
k = uhk ·Σ′′, (41)

where Σ′′ =
(
(2− σxy)⊗ Σ1, (2− σyz)⊗ Σ2, (2− σxz)⊗ Σ3

)
, with Σ the matrix vector defined in the main text, and

the 2 × 2 matrices σα given by σxy = σz, σyz(xz) = 1
2 (−σz ±

√
3σx). In this case we find a self-consistent solution

with w ≈ 0.161 and w̄ ≈ 0.318. The ground state energy is EMF(v = −u) ≈ −0.248NJ , slightly lower than the result
for u = v. This is the value quoted in the main text. We note that the small difference between the two energies may
change beyond the mean-field level. However, we have verified that both solutions give rise to a spectrum with nodal
lines along MR directions, qualitatively similar to the spectrum for ηa and θ2 fermions. Therefore, the properties
derived from the low-energy density of states ρ(ε) ∝ √ε are generic.
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4. Variational Monte Carlo

To check the viability of the proposed chiral spin-orbital liquid beyond the mean-field level, we now enforce the
local constraint exactly by considering a Gutzwiller projection of the mean-field wave function [33] by means of a
variational Monte Carlo calculation [34].

We begin by rewriting the Majorana fermions in terms of three Dirac fermions, closely following the representation
used in Ref. [45]

c†i =
1

2

(
η2
i + iθ2

i

)
, d†i =

1

2

(
η1
i + iη3

i

)
, f†i =

1

2

(
θ1
i + iθ3

i

)
. (42)

In terms of this representation, the local constraint is now translated into the fact that a given site may either have
no Dirac fermions, a state denoted by |0〉, or two Dirac fermions, in which case there are three possible states at each
site defined as

|xi〉 = c†id
†
i |0〉 , |yi〉 = d†if

†
i |0〉 , |zi〉 = f†i c

†
i |0〉 . (43)

Given a real space configuration specified by the locations of the doubly occupied sites, X ≡ {xi} , Y ≡ {yi} , Z ≡ {zi},
the wave function assigns an amplitude Ψ ({xi} , {yj} , {zm}) to it. Notice that the locations of the |0〉 states are
automatically specified. We point out that the local constraint only fixes the parity of the number of fermions but
not the number itself. Moreover, our Hamiltonian contains terms which not only create/annihilate two particles, e.g.
|xi〉� |0〉, but also terms which preserve the total number of fermions while changing the number of each of the three
individual fermionic flavors, e.g. |xi〉 � |yi〉. Although it is possible to write down a projected wave functions with
varying particle number [35], we refrain from doing so in this work for the sake of computational simplicity. Instead,
we consider a restrictive form for the ground state wave function: each one of the four states is equally distributed
over N/4 distinct sites, with {xi} =

{
x1, x2, . . . , xN/4

}
, etc.

The mean-field Hamiltonian in the main text may be rewritten, in terms of the three Dirac fermions in Eq. (42), as

HMF = −NJ
6

+
J

36

∑
〈jl〉∈α

[(
3u2

jl + 3w̄αjlujl − wαjlvjl
)

+ i
(
4ujl + 2w̄αjl

)
d†jdl

+ i
(
2ujl + w̄αjl − wαjl

)
c†jcl + i

(
2ujl + w̄αjl + wαjl

)
c†jc
†
l + i (3ujl − vjl) f†j fl + h.c.

]
− J

36

∑
〈jl〉∈XY

[
i (3ujl + vjl) f

†
j f
†
l + h.c.

]
+
J

36

∑
〈jl〉∈Y Z

[
i
(

3ujle
iπ/3 + vjle

−2iπ/3
)
f†j f

†
l + h.c.

]
+
J

36

∑
〈jl〉∈XZ

[
i
(

3ujle
iπ/3 − vjle−2iπ/3

)
f†j f

†
l + h.c.

]
. (44)

The three fermion flavors are decoupled and we may thus write the mean-field wave function as a product of three
Slater determinants. Thus, after the Gutzwiller projection, we obtain

Ψ ({xi} , {yj} , {zm}) = Φd ({xi} , {yj}) · Φf ({yj} , {zm}) · Φc ({zm} , {xi}) . (45)

The d-fermion sector of the Hamiltonian in Eq. (44) corresponds to free fermions and thus their mean-field ground
state is obtained by filling up the states with negative energy. For the c and f -fermions we have a BCS-like Hamiltonian
instead and their ground state is given by the vacuum of their respective Bogoliubov quasiparticles [33]. The different
status of the d fermion is expected from symmetry: the hidden global SU(2) symmetry of the original Hamiltonian
implies the global U(1) symmetry corresponding to the conservation of the total number of Dirac fermions defined
by a combination of η Majorana fermions. On the other hand, there is no continuous symmetry associated with
θ Majorana fermions; as a result, the total number of c and f fermions is not conserved. The need to work with
BCS-type wave functions in our case should be contrasted with the case of SU(4) symmetric models [45], where the
SU(4) symmetry implies the conservation of the numbers of all three flavors of Dirac fermions.

After constructing the mean-field wave function, we then implemented a variational Monte Carlo calculation of the
Gutzwiller-projected ground state energy EVMC

gs . We started by generating an initial state in which we populate N/4
randomly chosen sites with the x-state ({xi}), then N/4 of the remaining sites with the y-state ({yi}), and finally
N/4 of the further remaining sites with the z-state ({zi}). Our Monte Carlo moves consist in exchanging random
pairs of sites containing distinct states. We allow for moves involving widely separated sites — and which would not
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be connected by the Hamiltonian — because this improves the sampling over the space of configurations. We accept
or reject these moves according to the usual Metropolis algorithm. After N such exchange attempts, we are said
to have performed one Monte Carlo sweep and after every sweep we compute EVMC

gs . Nwarm sweeps are performed
before measurements of physical quantities for “thermalization”. Averages are then performed over Nsweep sweeps.
We typically considered Nwarm = Nsweep ∼ 104. The results were obtained for lattices of size N = 4L3 with L = 4,
6, and 8. We find that the change in the ground state energy with N is smaller than the Monte Carlo error bars for
the system sizes considered here. Thus, we quote the results for L = 8 as the converged ones.

We computed the ground state energy for the two sets of mean-field parameters quoted in this supplemental material.
For u = v = 0.258, w̄ = 0.317, and w = −0.081 we obtain EVMC

gs = −0.39 (1)NJ . As for u = −v = 0.258, w̄ = 0.318,
and w = 0.161 we obtain EVMC

gs = −0.40 (1)NJ . Clearly, the Gutzwiller projection decreases significantly the mean-
field energy down to values which are already comparable to that obtained, for instance, for a valence-bond covering
of the lattice (EVBS = −0.417NJ) [19], thus showing that the proposed chiral spin-orbital liquid is a competitive
ground state candidate.

In light of this favorable energy of our proposed ansatz, we conclude by pointing out two important restrictions in
our variational Monte Carlo calculation that, once lifted, should further decrease the value of the ground state energy
EVMC

gs :

1. For the quoted values of EVMC
gs , we considered the optimal values for the mean-field amplitudes v, w̄ and w

obtained before the Gutzwiller projection, i.e., at the mean-field level;

2. The restrictive form of the considered wave function neglects variations both in the populations of the fermionic
flavors and in the total number of fermions.

We stress that these restrictions were important for this first calculation beyond mean field due to the complexity of
the chiral spin-orbital liquid ansatz considered here. We leave a more detailed investigation, together with a more
precise estimate for the variational energy of our spin liquid ansatz, for future work.
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