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a b s t r a c t 

In this work a new two-phase solver is presented and described, with a particular interest in the solu- 

tion of highly elastic flows of viscoelastic fluids. The proposed code is based on a combination of classical 

Volume-of-Fluid and Continuum Surface Force methods, along with a generic kernel-conformation ten- 

sor transformation to represent the rheological characteristics of the (multi)-fluid phases. Benchmark test 

problems are solved in order to assess the numerical accuracy of distinct levels of physical complexities, 

such as the interface representation, the influence of advection schemes, the influence of surface tension 

and the role of fluid rheology. In order to demonstrate the new features and capabilities of the solver in 

simulating of complex fluids in transient regime, we have performed a set of simulations for the problem 

of a rotating rod inserted into a container with a viscoelastic fluid, known as the Weissenberg or Rod- 

Climbing effect. Firstly, our results are compared with numerical and experimental data from the litera- 

ture for low angular velocities. Secondly, we have presented results obtained for high angular velocities 

(high elasticity) using the Oldroyd-B model which displayed very elevated climbing heights. Furthermore, 

above a critical value for the angular velocity, it was observed the onset of elastic instabilities driven by 

the combination of elastic stresses, interfacial curvature and secondary flows, that to the authors best 

knowledge, were not yet reported in the literature. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Direct numerical simulations of multiphase flows, in which the

full continuum equations are solved on a sufficiently refined com-

putational mesh to resolve all continuum scales, date back to the

origin of computational fluid dynamics. During the last decades,

however, major progresses have been made, by employing a vari-

ety of numerical techniques for modeling two-phase flows, either

using Lagrangian, Eulerian or Arbitrary Lagrangian–Eulerian (ALE)

methodologies. Lagrangian and ALE methods usually represent in-

terfaces accurately, but are rather complex to implement using

mesh-dependent discretizations, due to the large mesh distortions

involved in fluid flows ( Quan, 2011; Montefuscolo et al., 2014 ). In

the ALE method, the mesh follows the interface between the fluid

and the solid boundary and the governing equations are discretized
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n a moving mesh. ALE algorithms require a mesh deformation

trategy as the boundaries of the computational domain translate,

otate and deform in order to maintain mesh quality and validity.

n the other hand, Eulerian methods are faster and easily paral-

elizable, but suffer from inherent difficulties for the accuracy of

he interface representation, that has to be immersed on the fixed

rid. One of the issues of these Eulerian techniques is the increased

mportance of surface effects (surface tension, Marangoni effects,

tc.), quantified by very low capillary ( Ca ) or Weber ( We ) num-

ers. In such cases, the inaccuracies in representing the exact posi-

ion of the immersed interface generate approximations that are

nbalanced, usually between surface, inertial and viscous forces,

esulting in the so-called “parasitic currents”, a phenomenon that

s well documented in the literature Raessi et al. (2009) . Addition-

lly, time-step restrictions are a major concern. Since most of inter-

ace representations in Eulerian formulations are explicit in time,

hese restrictions prevent the simulation of real material proper-

ies, to the point that recent multiphase codes cannot simulate

ows with Reynolds number ( Re ) and Ca much lower than O (10 −2 )

 Hoang et al., 2013; Denner and van Wachem, 2015 ). Existing
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c  
ulerian approaches to multiphase flows involve either marker par-

icles, like in Front-tracking techniques ( Tryggvason et al., 2001;

ivello et al., 2014 ), or marker functions as in the Level-set (LS)

 Sussman et al., 1994; Scardovelli and Zaleski, 1999; Osher and

edkiw, 2001; Sussman et al., 1998; Van der Pijl et al., 2005 ) and

olume-of-Fluid (VOF) ( Hirt and Nichols, 1981; Pilliod and Puck-

tt, 2004 ) approaches. In order to obtain improved interface posi-

ion and geometric properties such as curvature and normal vector

needed to compute surface tension), hybrid techniques are also

vailable in the literature ( Sussman and Puckett, 20 0 0; Sussman

t al., 2007 ), benefiting from the accurate mass conservation of the

OF method and the smooth interface description provided by the

S method. 

In recent years, Eulerian mesh-based methodologies have been

sed for solving interfacial complex fluid flows. Complexity does

ot arise only from the interaction of different fluid, but also from

he physics that governs important phenomena. In some cases,

ore complex behaviors arise via rheological effects introduced by

on-Newtonian and viscoelastic fluids. Many attempts for solving

wo-phase viscoelastic fluid flows have been presented in the lit-

rature see for instance ( Pillapakkam and Singh, 2001; Yue et al.,

005; Khismatullin et al., 2006; Stewart et al., 2008; Lind and

hillips, 2010; Habla et al., 2011; Izbassarov and Muradoglu, 2015 ).

espite of this increase in the development of numerical methods

o deal with two-phase viscoelastic fluid flows, there is still un-

olved numerical issues and challenges. In non-Newtonian fluids,

lastic instabilities can occur even in the absence of inertia, as-

ociated with large normal stresses and curvature of streamlines.

rom a computational perspective, these instabilities present a de-

anding challenge, such as the High Weissenberg Number Prob-

em (HWNP), leading to the loss of convergence at very low level

f elasticity, quantified by the Weissenberg number ( Wi ). Such nu-

erical failure is usually attained at moderately low Weissenberg

umbers ( Wi ∼ 1). This is particularly significant for multi-phase

ows, where representing and tracking an interface with complex

hape and dynamics are quite challenging. Therefore, the combina-

ion of classical numerical methods to represent the interface, sur-

ace tension and curvature, along with stabilization techniques to

andle the HWNP, can be considered as an useful and innovative

ramework in current computational rheology. 

The main objectives of this work are two-folded: (i) present to

he scientific community, a validated new two-phase solver that

an deal with multi-phase flows and fluids of complex rheology,

nd (ii) report interesting results obtained for the Weissenberg ef-

ect, related to the dynamical aspects of the onset of elastic insta-

ilities and unsteady flow patterns formed at high rod angular ve-

ocities. As far as we are aware, such flow features have not been

eported in previous studies based on numerical simulations and

t is the ability of this new solver that makes these predictions

ossible. This numerical framework combines the classic VOF and

ontinuum surface force (VOF-CSF) and the Height Function (HF)

ethod, along with the generic kernel-conformation tensor trans-

ormations. To the authors knowledge, in the context of viscoelas-

ic two-phase flows, it is the first work that describes the imple-

entation of the VOF method, using a piecewise linear interface

onstruction method (PLIC) to reconstruct the interface and a least

quares VOF interface reconstruction algorithm (ELVIRA), for solv-

ng the HWNP. The code is verified with several benchmark tests,

s the viscoelastic laminar lid-driven cavity flow, the axisymmet-

ic concentric annulus with inner cylinder rotation and the droplet

preading of a viscoelastic fluid. Finally, we performed a set of sim-

lations for the application problem of a rotating rod inserted into

 container with viscoelastic fluid, named the Weissenberg or Rod-

limbing effect. 

The paper is organized as follows. The governing equations used

o define the dynamics of an isothermal and incompressible flow
f complex multi-fluids are discussed in Section 2 . Section 3 de-

cribes the numerical algorithms used in the finite difference code.

he validation of the numerical formulations are presented in

ection 4 . The obtained results and corresponding discussions of

he numerical simulations for the Weissenberg effect are presented

n Section 5 . Finally, the conclusions from this study are presented

n Section 6 . 

. Governing equations 

The flow is assumed to be isothermal, laminar, and the fluids

ncompressible. The governing equations are those expressing con-

ervation of mass 

 · u = 0 , (1)

nd conservation of momentum (
∂u 

∂t 
+ u · ∇u 

)
= ∇ · ( −pI + τ + 2 μs D ) + g + F , (2)

here u is the velocity field, t is time, ρ is the density, μs is the

ewtonian solvent viscosity, p is the pressure, g is the gravity force

nd F is the surface tension force. The symbol D = 

1 
2 (∇u + (∇u ) T )

s the rate of deformation tensor, τ is the elastic stress and I is the

dentity tensor. 

Several polymeric constitutive equations are implemented in

he current version of the solver: the Oldroyd-B model ( Bird et al.,

987 ), the linear form of the Phan-Thien–Tanner (LPTT) model

 Phan-Thien and Tanner, 1977 ) and the Giesekus model ( Giesekus,

982 ). For an isothermal flow, these rheological equations of state

an be written in a compact form as: 

∂ τ

∂t 
+ ( u · ∇ ) τ −

[
( ∇u ) 

T · τ + τ · ∇u 

]
= 

1 

λ
M ( τ) , (3) 

here M ( τ) is defined by the viscoelastic model 

 ( τ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 μp D − τ Oldroyd-B , 

2 μp D − τ − αλ

μp 
τ · τ Giesekus , 

2 μp D −
(

1 + 

ελ

μp 
tr ( τ) 

)
τ LPTT , 

−λξ ( τ · D + D · τ) 

(4) 

here λ is a relaxation time and μp is the polymer viscosity coeffi-

ient. The stress coefficient function of the LPTT model, depends on

he trace of τ , tr( τ), and introduces the dimensionless parameter ε
hich is closely related to the steady-state elongational viscosity

n extensional flows. The slip parameter, ξ , takes into account the

on-affine motion between the polymer molecules and the con-

inuum. The polymer strands embedded in the medium may slip

ith respect to the deformation of the macroscopic medium, thus

ach strand may transmit only a fraction of its tension to the sur-

ounding continuum. When ξ = 0 there is no slip and the motion

ecomes affine. The parameter ξ is responsible for a non-zero sec-

nd normal-stress difference in shear, leading to secondary flows

n ducts having non-circular cross-sections, which is superimposed

n the streamwise flow. In the nonlinear term of the Giesekus

odel, α represents a dimensionless “mobility factor”. The amount

f Newtonian solvent is controlled by the dimensionless solvent

iscosity coefficient, β = 

μS 
μ0 

, where μ0 = μS + μP denotes the to-

al shear viscosity. 

An alternative form of describing viscoelastic models is by using

he conformation tensor, A , as proposed by Fattal and Kupferman

2005) . In this formulation the velocity gradient is defined as 

u 

T = � + B + NA 

−1 , (5)

here � and N are anti-symmetric tensors, B is symmetric and

ommutes with A . Thus the constitutive equation based on the
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conformation tensor can be rewritten using Eq. (5) as 

∂A 

∂t 
+ ( u · ∇ ) A − ( �A − A �) − 2 BA = 

1 

λ
M (A ) , (6)

where M (A ) is defined according to the viscoelastic model, 

M (A ) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

I − A Oldroyd-B , 

I − A − α( A − I ) · ( A − I ) Giesekus , (
1 + 

ελ

μp 
( tr ( A ) − 3 ) 

)
( I − A ) LPTT . 

−2 λξ ( B − BA ) 

(7)

The relationship between the stress tensor τ and A is given by 

τ = 

μp 

λ
(A − I ) . (8)

For non-Newtonian fluids, elastic instabilities can occur even

in the absence of inertia, associated with large normal stresses

and curvature of streamlines. When the elastic instabilities become

very intense, reaching a saturated non linear state, fluctuations can

even become random over a wide range of length and time scales,

very much like turbulence, in spite of small Reynolds numbers.

From a computational perspective, these instabilities present a de-

manding challenge, such as the High Weissenberg Number Prob-

lem, leading to the loss of convergence at very low level of elas-

ticity, quantified by the Weissenberg number, W i = λ/t c , where

t c is a characteristic time of the flow. Such numerical breakdown

is usually attained at moderately low Weissenberg numbers ( Wi

∼ 1). In order to implement a stabilization method to deal with

high values of the Weissenberg number, we have adopted the

generic kernel-conformation tensor transformation ( Afonso et al.,

2012 ) where several matrix kernel -transformation families can be

applied to the conformation tensor evolution Eq. (6) . The kernel-

conformation constitutive law is obtained by introducing the fol-

lowing kernel-conformation tensor transformation, 

k ( A ) = O k ( �) O 

T 
, (9)

where k () represents a continuous, invertible and differentiable

matrix function. Notice that this transformation is mathematically

possible due to the fact that the conformation tensor can be diag-

onalized into: 

A = O �O 

T , (10)

where O is an orthogonal matrix and � is a diagonal matrix. 

In summary, the evolution equation used for the kernel-

conformation tensor transformation is given by: 

D k (A ) 

D t 
= �k (A ) − k (A ) � + 2 B + 

1 

λ
M (11)

where B and M are symmetric tensors constructed by an orthogo-

nalization process using Eqs. (5) and (7) , respectively. More details

about this formulation can be found in Afonso et al., 2012 and Mar-

tins et al., 2015 . 

In order to represent the interface between different fluids, the

VOF method is used, in which, a function f with values in [0, 1],

known as volume fraction, is transported by the following expres-

sion: 

∂ f 

∂t 
+ ∇ · ( f u ) = 0 . (12)

The volume fraction is defined in each computational cell and the

fluid properties are interpolated at the interface cells as 

χ = fχ1 + (1 − f ) χ2 , (13)

where χ can be any property of the fluid such as ρ , μs , μp , λ, ε,

ξ and α, with the subscripts 1 and 2 representing the properties

of each phase of the fluid. 
The interface representation used in the present work for vis-

oelastic two-phase simulation is based on the VOF method, us-

ng the PLIC (Youngs, 1982) to reconstruct the interface together

ith the ELVIRA ( Pilliod and Puckett, 2004 ). Moreover, the surface

ension F term in the momemtum Eq. (2) is modeled by the CSF

ethod ( Brackbill et al., 1992 ). This method considers the surface

ension term as a surface force per unit area of the interface as 

 = σκn δi , (14)

here σ is the surface tension coefficient, κ is the interface cur-

ature, n is the normal vector to the interface and δi is the δ-

unction at the interface. In Eq. (14) some terms are computed us-

ng the volume fraction, for instance n = ∇ f/ |∇ f | and δi = |∇ f | ,
hile the curvature is given by: 

= κ1 + κ2 = r −1 
1 + r −1 

2 , (15)

here r 1 and r 2 are the radius of curvature. In axisymmetric coor-

inates κ1 is calculated in the r − z plane by the volume fraction

ccording to the HF method ( Francois et al., 2006 ). 

From the above equations, five dimensionless parameters are

efined, that relate the properties of the fluid with the geomet-

ic parameters of the flow; namely, the Reynolds number Re , the

eissenberg number Wi , the Froude number Fr , the Stokes num-

er St and the Capillary number Ca , defined by 

e = 

ρUL 

μ0 

, W i = λ
U 

L 
, F r = 

U √ 

gL 
, St = 

μ0 U 

ρg 
, Ca = 

μ0 U 

σ
, 

here L and U are appropriate length and velocity scales and g is

he magnitude of the gravity field. 

. Numerical method 

The numerical solver proposed in this work is based on a fi-

ite difference method, in which the Navier–Stokes Eqs. (1) and

2) are discretized in non-uniform staggered grids. To obtain the

elocity and pressure fields, a semi-implicity time discretization of

he projection method is used. Further details on the numerical

mplementation for these equations are presented in Section 3.1 .

he extra-stress tensor in the momentum equations is obtained via

n explicit time discretization of the constitutive equations, relying

n both the standard extra-stress formulation – Eq. (3) , the tensor

onformation formulation – using Eq. (6) or other matrix transfor-

ations (11) , as detailed in Section 3.2 . Finally, details about the

pplication of the non-uniform mesh are described in Section 3.3 . 

.1. Time discretization and the projection method 

Several viscoelastic flows effects usually occur in low Reynolds

nd high Weissenberg numbers regimes. This creates a problem

or explicit methods because the time step is defined as a func-

ion of the Reynolds number due to the parabolic stability re-

triction. To circumvent this restriction we have used an implicit

ime discretization of the diffusive terms in Eq. (2) while the con-

ective terms are explicitly computed. In particular, the numeri-

al approach used in the present work, for solving the Navier–

tokes equations Eqs. (1) and (2) is an adaptation of the projec-

ion method described in Figueiredo et al., 2013 for the solution of

iscoelastic fluid flows. Summarily, we have: 

 · u 

n +1 = 0 , (16)

(
u 

n +1 − u 

n 


t 
+ ( u · ∇u ) 

n 

)
= −∇p n +1 + ∇ ·

(
μs 

(
∇u 

n +1 + 

(∇u 

n +1 
)T 

))
+ ∇ · τn + F n . (17)
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Due to the incompressibility constraint the numerical solution

f the Eqs. (16) and (17) couples the velocity and pressure fields.

o overcome this difficulty the projection method is applied. The

ssence of the projection method is to calculate an intermediate

elocity ̃  u , through Eq. (17) by approximating p n +1 by p n , i.e., (˜ u 

n +1 − u 

n 


t 
+ ( u ·∇u ) 

n 

)
= −∇ p n + ∇ ·

(
μs 

(
∇ ̃

 u 

n +1 + 

(∇ ̃

 u 

n +1 
)T 

))
+ ∇ · τn + F n . (18) 

This strategy decouples the velocity and pressure fields, but it is

ecessary to correct the pressure and calculate a velocity field that

atisfies Eq. (16) . In this case the pressure correction is achieved by

utting 

p n +1 = p n + 

ψ 

n +1 


t 
(19) 

and the velocity field that satisfies Eq. (16) is obtained from 

 

n +1 = ̃

 u 

n +1 − 1 

ρ
∇ψ 

n +1 , (20) 

where ψ 

n +1 is calculated by the solution of the Poisson equa-

ion 

 ·
(

1 

ρ
∇ψ 

n +1 
)

= ∇ · ˜ u 

n +1 . (21) 

.2. Viscoelastic constitutive equation 

After updating the velocity and pressure fields, it remains to

pdate the non-Newtonian stress tensor by solving the viscoelas-

ic constitutive equation. In the present work, we have imple-

ented a standard extra-stress and a stabilized formulation. For

ow Weissenberg number flows, the transport equation for the

on-Newtonian stress tensor is given by Eq. (3) . In order to be able

o simulate HWNP, the generic kernel transformation formulation

s adopted, and consequently, Eq. (11) need to be solved. In sum-

ary, Eqs. (3) and (11) are discretized in time, respectively, as fol-

ows: 

τn +1 − τn 


t 
= −[( u 

n +1 · ∇) τn ] + 

(∇u 

n +1 
)T · τn 

+ τn · ∇u 

n +1 + 

1 

λ
M 

(
τn 

)
(22) 

nd 

k (A ) n +1 − k (A ) n 


t 
= −[( u 

n +1 · ∇) k (A ) n ] + �n +1 
k (A ) n 

− k (A ) n �n +1 + 2 B 

n + 

1 

λ
M 

n . (23) 

Remark: Once obtained the value of k (A ) (n +1) , the inverse ker-

el function is used to obtain the conformation tensor A 

n +1 , and fi-

ally, the non-Newtonian extra-stress tensor τ(n +1) is computed from

q. ( 8 ). More details about the numerical procedure to deal with the

ernel-conformation tensor k (A ) can be found in Martins et al., 2015 .

The boundary conditions for the extra-stress tensor, necessary

o solve Eq. (22) , are the homogeneous Neumann conditions in

utlets and symmetry planes. Notice that wall boundary condi-

ions are not needed for the extra-stress tensor due to its hyper-

olic nature. At the interface, the constitutive equation is solved

y interpolating the properties of both phases using Eq. (13) (see

ore details in Khismatullin et al. (2006) ). In order to maintain the

econd-order accuracy of discretization of Eq. (18) , the divergent

f the extra-stress tensor is calculated by a forward or backward

econd-order difference scheme in the cells neighboring the rigid

all. 
.3. Non-uniform mesh 

Non-uniform grids, also known as stretched grids, are a popular

orm of adaptive meshing, where more grid points are positioned

n regions of interest or where higher gradients are expected. They

re particularly useful in the rod-climbing problem, since higher

esolution is desired near the rod. They are very popular due to its

ase of implementation. Most finite-differences codes can be easily

dapted to stretched grids. 

The main drawback is that central differences become first-

rder accurate if adjacent points are not equally spaced. Forward

nd backward differences remain first-order. According to ( Ferziger

nd Peric, 2012 ) the truncation error in non-uniform grids can be

ritten as 

 τ ≈ ( 1 − r e ) 
x i 
2 

(
∂ 2 φ

∂x 2 

)
i 

, (24) 

here 
x i = x i − x i −1 and r e = 
x i +1 / 
x i is close to one, first-

rder errors decrease faster than second-order ones. As the grid is

efined, convergence becomes asymptotically second order for cen-

ral differences. 

In non-uniform grids, central first derivatives become 

∂φ

∂x 

)
i 

= 

φi +1 ( 
x i ) 
2 − φi −1 ( 
x i +1 ) 

2 + φi 

[
( 
x i +1 ) 

2 − ( 
x i ) 
2 
]


x i +1 
x i ( 
x i +1 + 
x i ) 

(25) 

nd central second derivatives become 

∂ 2 φ

∂x 2 

)
i 

= 

φi +1 
x i + φi −1 
x i +1 − φi ( 
x i +1 + 
x i ) 
1 
2 ( 
x i +1 + 
x i ) 
x i +1 
x i 

. (26) 

The mesh generation is one of the difficulties encountered in

olving fluid flow. In this work we have adopted a structured mesh

ith MAC type cells Figueiredo et al., 2013 . Thus we can generate a

on-uniform mesh stretching or compressing the cells in each di-

ection separately. We do this by using grid control function to get

he points x i in the domain. Two different grid control functions

ere employed in this work. We used a geometric progression, de-

ned as 

 i = r e x i −1 , (27)

here r e is the progression ratio. We can also use a different non-

niform mapping, defined as 

 i = L ̄x a i + A ( x c − L ̄x i ) ( 1 − x̄ i ) ̄x i (28)

here x̄ i ∈ [ 0 , 1 ] is a uniform distribution of points, L is the width

f the computational domain, A and a are compression/expansion

eometrical factors and x c is a point of attraction of the grid lines. 

.4. Computational algorithm 

The numerical procedure used to approximate the solution of

ll variables at a time step, t = t n + δt, consists in the following

teps: 

(1) The first step is to treat the interface representation solving

the advection equation Eq. (12) through a split operator with

a geometric procedure; 

(2) Reconstruct the interface using the ELVIRA method; 

(3) The next step is the calculation of the surface tension term

(14) . The curvature is calculated by the HF method; 

(4) Calculate the intermediate velocity field, ̃  u , solving Eq. (18) ; 

(5) The next step is to apply the projection method, which cal-

culates the pressure correction by solving the Poisson equa-

tion, Eq. (21) . After computing the pressure correction, the

velocity and the pressure fields are updated by Eqs. (19) and

(20) ; 
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(6) The last step is to obtain the non-Newtonian tensor by solv-

ing Eq. (22) . If the flow has a high Weissenberg number, the

constitutive equation is solved using stabilization methods,

Eq. (23) ; 

4. Numerical validations 

In this Section, we present the numerical validation of the new

viscoelastic two-phase solver, in order to assess the numerical im-

plementation accuracy for distinct levels of physical complexities.

First, a confined problem with single-phase fluid is used a bench-

mark problem to assess both the implementation of the Navier–

Stokes and constitutive equations (in both standard and matrix

transformation formulations) in 2D Cartesian coordinates (the vis-

coelastic laminar lid-driven cavity flow – see Section 4.1 ) and in

1D a 2D axisymmetric coordinates (the concentric annulus with

inner cylinder rotation – see Section 4.2 ). Finally, to assess the

validation of the numerical implementation for a 2D axisymmet-

ric flow with two-phases, we study two benchmark test problems

from the literature, namely the shear deformation of a droplet, in

Section 4.3 , and the impacting drop problem – see Section 4.4 . In

order to maintain the accuracy and stability of the code, we have

used moderate density and viscosity ratios. In particular, the maxi-

mum ratios used in this work are: 
ρ f luid 

ρouter 
≤ 816 . 33 and 

μ f luid 

μouter 
≤ 200 .

4.1. Viscoelastic single-phase flow in Cartesian coordinates: lid-driven 

cavity problem at high Weissenberg number 

In this test, we present the validation of the numerical imple-

mentations for a two-dimensional confined flow, namely the lid-

driven cavity benchmark flow problem. We examine and validate

the accuracy of the estimation for the extra-stress terms arising

from the viscoelastic constitutive equations in two dimensional

Cartesian coordinates. In this Section, we present the results ob-

tained for this problem using the Oldroyd-B fluid, and compare

with data from the literature. 

This benchmark has been used to verify the stabilization meth-

ods for HWNP ( Fattal and Kupferman, 2005; Pan et al., 2009; Su

et al., 2013; Habla et al., 2014 ). In particular, for Wi ≥ 1 and

the Oldroyd-B model, results have been published by Fattal and

Kupferman (2005) and for several Kernel function by Martins et al.

(2015) and Palhares-Junior et al. (2016) . In Martins et al., 2015 , the

authors used a Marker-And-Cell discretization implemented in the

scope of finite differences method framework, while in the work of

Palhares-Junior et al. (2016) the results were also obtained using a

finite volume method. 

The usual standard problem relies on the following regularized

parabolic profile for the top lid u (x, t) = 8[1 + tanh (8 t − 4)] x 2 (1 −
x ) 2 . The remaining cavity walls are stationary and the no-slip

boundary condition is imposed everywhere. We have fixed the

Reynolds number Re = 0 . 01 and the solvent viscosity ratio as β =
0 . 5 . In order to show qualitative comparison with the literature,

we have adopted W i = 2 . 

We used a grid with cells concentrated near the walls. The non-

uniform stretching of the mesh was obtained using Eq. (28) , with

A = 0 and a = 0 . 3 for the compression of the center of the domain

to the walls. To assess the mesh convergence, the cavity flow was

simulated using three non-uniform meshes: M 1 with 64 × 64 cells

( min (
x i , 
y j ) = 0 . 007068 , i, j = 1 , 2 , . . . , 64 ), M 2 with 128 × 128

cells ( min (
x i , 
y j ) = 0 . 002892 , i, j = 1 , 2 , . . . , 128 ) and M 3 with

256 × 256 cells ( min (
x i , 
y j ) = 0 . 001179 , i, j = 1 , 2 , . . . , 256 ). For

all figures in this Section, the profiles of the u -velocity and of the

non-Newtonian τ xx component are plotted along the vertical line

x = 0 . 5 while the v -velocity component is reported at the horizon-

tal line y = 0 . 75 . The origin of the Cartesian coordinate system is

placed at the lower left corner of the square cavity, and the moving
all is located at y = 1 . In these simulations, the time step used in

he simulation was fixed as δt = 0 . 0 0 01 for all meshes. In order

o assess the numerical stability properties of the solver at higher

eissenberg number, we have adopted the generic kernel transfor-

ation framework where the functional kernel relation is based in

he logarithm of base exp . 

In Fig. 1 , we present a mesh refinement study and compare

ith literature data for the velocity fields. From Fig. 1 a and b,

e can observe that the results for the velocity field are in good

greement with those found by Fattal and Kupferman (2005) and

artins et al. (2015) . Results for a mesh refinement study of the x -

omponent of the non-Newtonian stress tensor, τ xx , are presented

n Fig. 1 c where it can be observed the numerical convergence of

he solutions. In addition, in Fig. 1 c, we have included the finite

ifference results from Martins et al. (2015) showing reasonable

greement between the numerical solutions. Finally, the time evo-

ution of the kinetic energy obtained for meshes M 1, M 2, and M 3 is

ompared against the results of Martins et al. (2015) , as depicted

n Fig. 1 d. We can observe from this figure that our results tend

o a steady state showing a peak of the dimensionless kinetic en-

rgy at E ≈ 0.018 for t ≈ 0.8, followed by a decrease towards an

symptotic value of E ≈ 0.0093 in M 3 mesh. 

.2. Viscoelastic single-phase flow in axisymmetric coordinates: 

oncentric annulus with inner cylinder rotation 

Here we present the validation of the numerical implementa-

ions for an axisymmetric confined flow, namely the flow in a con-

entric annulus with inner cylinder rotation. This type of annular

ows of non-Newtonian fluids can be found in a wide variety of

pplications, such as in industrial processes involving waste fluids

nd synthetic fibres, and on drilling for oil and gas wells, as re-

iewed in an extensive bibliographic list by Escudier et al. (2002) .

olutions for other rheological constitutive models were presented

y other authors, such as the work of Pinho and Oliveira (20 0 0) ,

hat presented an analytical solution for the concentric annular

aminar flow without inner cylinder rotation for the simplified PTT

odel and Mirzazadeh et al. (2005) , that presented an approxi-

ate analytical solution for purely tangential flow of a viscoelastic

uid obeying the LPTT constitutive equation in a concentric an-

ulus with relative rotation of the inner and outer cylinders. In

irzazadeh et al. (2005) , an explicit analytical solution was ob-

ained for the the simplified PTT model. Ravanchi et al. (2007) pre-

ented an approximate analytical solution for the steady state,

urely tangential flow of a viscoelastic fluid obeying the Giesekus

onstitutive equation in a concentric annulus with inner cylinder

otation. 

In the solution of Ravanchi et al. (2007) , the analytical dimen-

ionless wall shear stress on the inner cylinder, denoted as τ ∗
Wi 

, is

iven by a nonlinear equation. In the present paper, we have nu-

erically solved this equation to compare with τ ∗
Wi 

obtained from

he numerical method by the following equation: 

∗
rθ = 

ζ 2 τ ∗
Wi 

r ∗
(29)

here ζ is the radius ratio and r ∗ is the non-dimensional radial

oordinate. In this problem, the Weissenberg number is defined as

 i = 

λU 
δ

, where δ is the annular gap. 

The mesh adopted for the computations was generated with

tretching in the r direction from Eq. (27) with r e = 1 . 04 and

r 0 /δ ≈ 2 . 6587 × 10 −4 . The mobility factor for the Giesekus

odel, α, was fixed at 0.2 in all simulations. According to Ravanchi

t al. (2007) , the approximate solution is valid for small values of

 α2 W i 2 τ ∗2 

rθ
, and thus increasing the value of the mobility factor, α,

he range of acceptable Weissenberg numbers become narrower.

oundary conditions are imposed as follows: in the inner cylinder,
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Fig. 1. Numerical simulation of the lid-driven cavity flow at t = 80 using Oldroyd-B model with Re = 0 . 01 , W i = 2 and β = 0 . 5 : (a) u -velocity on (0.5, y ), (b) v -velocity on 

( x , 0.75), (c) τ xx on (0.5, y ), and (d) kinetic energy. 

Fig. 2. Dimensionless wall shear stress τ ∗
Wi 

on the inner cylinder predicted numer- 

ically and by the approximate analytical solution of Ravanchi et al. (2007) . The er- 

ror bars represent the percentage of truncation error introduced in Ravanchi et al., 

2007 . 
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s  
 uniform rotating velocity V c is imposed while no-slip boundary

ondition is adopted in the outer cylinder. 

Fig. 2 presents the dimensionless wall shear stress τ ∗
Wi 

on the

nner cylinder predicted numerically and by the approximate an-

lytical solution of Ravanchi et al. (2007) . As we can observe, the

ercentage of truncation error introduced by the approximate so-
ution increases when the Weissenberg numbers increases. This

act is in agreement with the studies presented by Ravanchi et al.

2007) . 

Finally, we show in Fig. 3 the dimensionless velocity and stress

rofiles obtained for several Weissenberg numbers, which are in

ood agreement with the analytical approximate solutions, within

he respective truncation error. 

.3. Viscoelastic two-phase flow in Cartesian coordinates: 

eformation droplet 

In this section we validate the numerical implementations for

 viscoelastic two-phase flow, using Cartesian coordinates. In this

est, we study the behavior of a deformable droplet under a pure

ouette shear flow, in which either or both the droplet and bulk

uid may be considered as a viscoelastic fluid. All four possible

ombinations for the droplet-bulk fluid system are considered in

he present work: (i) a Newtonian droplet in a Newtonian fluid

NN) (ii) a viscoelastic droplet in a Newtonian fluid (VN) (iii) a

ewtonian droplet in a viscoelastic fluid (NV) and (iv) a viscoelas-

ic droplet in a viscoelastic fluid (VV). Similar tests were used by

illapakkam and Singh (2001) using a Level-Set method, Habla

t al. (2011) using a VOF method with conditionally volume av-

raging, Chinyoka et al. (2005) and Khismatullin et al. (2006) , us-

ng an 2D and 3D/PROST algorithm based on the VOF method,

espectively. 

The initial configuration used for the simulation of tran-

ient droplet deformation subjected to a steady Couette planar
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Fig. 3. Numerical simulation for the concentric annulus with inner cylinder rotation using the Giesekus model α = 0 . 2 : (a) u θ -velocity, (b) –τ θθ , (c) τ rr and (d) –τ r θ . 

a b

Fig. 4. Initial configuration for the deformation droplet flow: (a) sketch view of the numerical experiments and (b) non-uniform mesh representation. 
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shear-flow is presented in Fig. 4 a. An initially circular droplet

of radius R d is located at the center of a rectangular domain

and subjected to a simple Couette shear flow, with the bottom

and top rigid walls moving in opposite directions, with veloci-

ties V B and V T , respectively. The bottom wall is located at z =
0 , while the top wall is located at z = L z = 8 R d . The horizontal

channel length is L x and is taken large enough compared with

the initial drop radius, so that the drop is effectively at constant

shear rate, ˙ γ = ( V T − V B ) /L z . Notice that in the lateral boundaries

we have used homogeneous Neumann boundary condition for all
fields. 
m  
Here the viscoelastic fluid is defined as an Oldroyd-B liquid, in

hich the amount of Newtonian solvent is controlled by the di-

ensionless solvent viscosity coefficient, β . When , β = 1 the fluid

ecomes Newtonian while a value close to zero corresponds to

 more elastic fluid. The other dimensionless parameters used in

his test case are defined as: Ca = 

μ0 ̇ γ R d 
σ , Re = 

ρ ˙ γ R 2 
d 

μ0 
and W i = λ ˙ γ .

he deformation parameter, �, is defined as the ratio between the

maller and larger distances of the droplet interface up to the drop

enter, as � = (R max − R min ) / (R max + R min ) . 

The domain was discretized by two different non-uniform

eshes: M 1 ( min (
x , 
y ) /R ≈ 4 . 6876 × 10 −2 , 256 × 128
min min d 
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a b

Fig. 5. (a) Time evolution for the deformation parameter, �, for all droplet-bulk fluid configurations: NN, VN, NV and ,VV; (b) droplet shapes at t = 10 ̇ γ −1 . 
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Fig. 6. Sketch view of the numerical experiments for the impacting drop problem. 
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Fig. 7. Numerical prediction of the time variation of the width of viscoelastic drop. 
ells) and M 2 with ( min (
x min , 
y min ) /R d ≈ 2 . 3438 × 10 −2 , 512 ×
56 cells). These meshes were generated using the Eq. (28) , with

 = 1 , a = 1 and x c = L x / 2 , as observed in Fig. 4 b. The time step

ize is determined so as to satisfy the CFL conditions due to

urface tension and viscous terms. 

Fig. 5 a shows the results for Ca = 0 . 6 , Re = 0 . 3 , β = 0 . 5 and

 i = 0 . 4 , the same parameters used by Chinyoka et al. (2005) . The

btained results are in good agreement with literature data. We

an observe that when the outer fluid is Newtonian the droplet

eforms continuously along time, while it settles to a stationary

tate when the outer fluid is viscoelastic. The interface shape of

he deformed droplet at t = 10 ̇ γ −1 is presented in Fig. 5 b, show-

ng that when the viscoelastic droplet in the VN system presents a

umbbell shape whereas the Newtonian droplet in the NV system

as an almost elliptical shape. 

.4. Viscoelastic two-phase flow in axisymmetric coordinates: 

mpacting drop problem 

Finally, by this problem, we present the validation of the

umerical implementations for an axisymmetric flow with two-

hases. In the impacting drop problem, we compute the time evo-

ution of the shape of a drop that falls under gravity action from

 distance H above a rigid wall. In this Section, we present the

esults obtained for this problem using the Oldroyd-B fluid, and

ompare with data from the literature ( Xu et al., 2012; Figueiredo

t al., 2014 ). Fig. 6 illustrates the initial drop shape used in the

ransient motion. 

The parameters used in this study were: D = 0 . 02 m , U = 1 m / s

nd g = −9 . 81 m / s 2 (resulting in F r = 2 . 26 ). We consider a drop

ith an initial velocity v z = −1 m / s at a distance H = 0 . 04 m from

he center of the drop to the rigid wall. To verify the implementa-

ion of the code, we simulate the problem of the Oldroyd-B fluid

odel adopting: Re = 5 . 0 , F r = 2 . 26 , W i = 1 . 0 and β = 0 . 1 . The

rop is falling into a Newtonian fluid phase with ρ → 0 and μ
 0. We have imposed symmetry boundary conditions on the left

hile no-slip boundary condition is used in the rigid wall located

t the bottom. 

Three meshes were used for the computations: M 1 with 
r =
z = 5 × 10 −4 , M 2 with 
r = 
z = 3 . 33 × 10 −4 and M 3 with 
r =
z = 2 . 5 × 10 −4 . Fig. 7 shows the comparison among our results

nd those in the literature. The results obtained for the three

eshes show good convergence with mesh refinement, and in

omparison with the other methods, our code produces similar

ualitative results. In Fig. 8 we present a 3D view of the droplet

preading time evolution for W i = 1 . 0 and β = 0 . 1 . 
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Fig. 8. 3D view of droplet spreading time evolution obtained for W i = 1 . 0 and β = 0 . 1 . 
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5. Application case: the Weissenberg effect 

The Weissenberg effect is an interesting problem in Fluid Me-

chanics for which many peculiar behaviors can be observed. A ma-

jor contributor to these studies was compiled by Joseph and his

co-workers in Joseph, 1990 . Several authors performed experimen-

tal and theoretical predictions of the Weissenberg effect ( Beavers

and Joseph, 1975; Beavers et al., 1980; Joseph et al., 1984 ). On

the other hand, fewer studies can be found considering numeri-

cal simulations of this effect. Debbaut and Hocq, 1992 presented

numerical results for a finite element method and axisymmetric

coordinates. In their study secondary flows were analyzed for the

Weissenberg effect problem and results were compared with ex-

perimental and analytical solutions. Also, using FEM and axisym-

metric coordinates, Luo (1999) presented numerical results for the

Upper convected Maxwell and Phan-Thien–Tanner models. In addi-

tion, Luo (1999) proposed an elaborate scheme of orthogonal tra-

jectories to update structured and unstructured meshes, showing

good agreement between numerical and experimental results. Re-

cently, Habla et al. (2011) developed an algorithm for solving vis-

coelastic two phase flows in the OpenFOAM code. In Habla et al.,

2011 numerical results of the Weissenberg effect were obtained

with the VOF method where the interface was represented in a

three-dimensional framework. 

The Weissenberg effect or rod climbing occurs due to the influ-

ence of normal stress differences in the variation of the pressure

value in the radial direction ( Bird et al., 1987 ). Therefore, the nor-

mal stresses ( N 1 and N 2), may cause the total normal pressure to

decrease in the radial direction, as observed by the following rela-

tion ( Bird et al., 1987 ): 

∂ ( τzz + p ) 

∂ ln r 
= 2 τrθ

∂ 

∂τrθ
( τrr − τzz ) ︸ ︷︷ ︸ + ( τθθ − τrr ) ︸ ︷︷ ︸ + ρu 

2 
θ

N 2 N 1 

  
In this Section, two viscoelastic models were adopted to sim-

late the Weissenberg effect: the Oldroyd-B model and a sub-

odel of the linear Phan-Thien–Tanner ( Phan-Thien and Tanner,

977 ) with ε = 0 , called the Johnson–Segalman model Johnson

nd Segalman (1977) . Note that as ξ vanishes, one recovers the

ldroyd-B model. The Johnson–Segalman model satisfies the sec-

nd normal stress differences, which is also responsible for the

limbing effect of the fluid ( Bird et al., 1987 ). 

The geometry of the problem consists of a rod of radius R ro-

ating at a constant angular velocity ω, inserted into a cylindrical

ontainer of radius R c and height H filled with a viscoelastic fluid,

s displayed in Fig. 9 . The other phase was considered as a Newto-

ian fluid, with ρ = 1 . 2 × 10 −3 g/cm 

3 
and μs = 1 . 81 g / ( cm · s ) . The

eometric parameters are R = 0 . 635 cm, R c ≈ 24 R and H ≈ 12 R .

e have imposed a uniform angular velocity ω on the rod and no-

lip boundary conditions at the bottom and right boundaries. Due

o the geometry of the Weissenberg effect problem, which is usu-

lly composed of a rod and a container both of cylindrical form, it

s convenient to use a cylindrical coordinate system for the math-

matical model. The climbing height of the fluid is measured by

/R = 

(
˜ h (r) − H 

)
/R, where ˜ h (r) is the height of the interface. 

.1. Mesh refinement study 

The system of governing equations is solved using a mesh gen-

rated using a geometric progression – see Eq. (27) . The stretch-

ng factor r e = 1 was used in the r direction from the rod with

ength 2 R and in the z direction near the interface with length

 R . To expand the cells away from the near rod/interface region

f the computational domain, an expansion ratio was adopted as

 e = 1 . 07 (see Fig. 9 b)). 

A study of mesh refinement was performed with the follow-

ng meshes: M 1 with 
r min = 
z min = 0 . 125 , M 2 with 
r min =
z min = 0 . 0625 , M 3 with 
r min = 
z min = 0 . 03125 and M 4 with

r = 
z = 0 . 015625 . This mesh refinement study was
min min 
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a b

Fig. 9. The Weissenberg effect (rod-climbing problem): (a) sketch view of the numerical experiments and (b) non-uniform mesh representation. 

Fig. 10. Mesh refinement study for the Weissenberg effect using the Oldroyd-B 

model ( ξ = 0 ) with ω = 2 . 6 rev/s . 
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Table 1 

Angular velocity and dimensionless parameter group 

used to verify the proposed methodology. 

Case 1 Case 2 Case 3 Case 4 

ω( rev / s ) 1.7 2.1 2.6 2.9 

W i = λω 0.195 0.240 0.298 0.332 

Re = 

ρωR 2 

μ
0.026 0.032 0.040 0.045 

St = 

μω 

ρgR 
2.813 3.475 4.302 4.798 

Ca = 

μωR 

σ
32.05 39.59 49.01 54.67 

w

β

i  

fi  

u

 

s  

B  
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(  

H  
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a  
erformed for an angular velocity of ω = 2 . 6 re v /s using ξ = 0 ,

.e., the Oldroyd-B model. Fig. 10 shows the numerical values for

he climbing height as function of the dimensionless minimum

ell spacement. We can observe numerical convergence for this

roblem. 

.2. Experimental and numerical comparisons 

Beavers and Joseph (1975) reported theoretical predictions on

od climbing for a fourth-order Rivlin–Ericksen fluid, claiming that

heir predictions showed good quantitative agreement with exper-

mental measurements made with a STP fluid Beavers and Joseph

1975) , for low values of angular velocity. Also for low angular ve-

ocity, Beavers and Joseph (1975) showed that the climbing height

 can be predicted analytically by 

 = 

R 

2 σ
√ 

ρg 
σ

[ 

4 ̂

 β

4 + R 

√ 

ρg 
σ

− ρR 

2 

2 + R 

√ 

ρg 
σ

] 

W i 2 

λ2 
+ O(W i 4 ) (30) 
here the climbing constant, ˆ β, defined as 

ˆ = 

[(
1 − μs 

μp 

)
( μs + μp ) λ

]
( 1 − 2 ξ ) 

s a linear combination of the first and second normal stress coef-

cients. Eq. (30) predicts a quadratic dependence of the climbing h

pon Wi . 

To verify the proposed methodology, we perform a set of

imulations for the same experimental geometry described in

eavers and Joseph, 1975 , varying the angular velocity. In order

o compare our results with those presented in the literature

 Beavers and Joseph, 1975; Debbaut and Hocq, 1992; Luo, 1999;

abla et al., 2011 ), the following parameters were employed: ρ =
 . 89 g/cm 

3 
, μ = μs + μp = 146 poise, μs /μp = 1 / 9 , λ = 0 . 0162(1 −

μs 
μp 

) −1 s , σ = 30 . 9 dyn/cm , g = 981 cm/s 2 and ε = 0 . Moreover, in

he Weissenberg effect problem there are four dimensionless pa-

ameters that relate the properties of the fluid with the geometric

arameters of the flow, for instance, Wi, Re, St and Ca , introduced

n Section 2 and defined for this problem in Table 1 . Experimen-

ally, Beavers and Joseph (1975) used a coated rod, so that at the

ontact point the free surface is normal to the rotating rod. In the

resent simulation, we impose that the two-fluid interface has a

anishing curvature on the rod. 

The parameter ξ is determined by the climbing constant ˆ β,

hich depends on the temperature that can obtained from experi-

ental data. According to Beavers and Joseph, 1975 and Luo, 1999 ,

t temperature 27 o C this constant has the value ˆ β = 0 . 86 and at
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Fig. 11. Predicted climbing heights, h , compared with analytical ( Beavers and 

Joseph, 1975 ) and numerical ( Luo, 1999; Habla et al., 2011 ) results: (a) ξ = 0 . 284 

and (b) ξ = 0 . 318 . 
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26 o C , ˆ β = 1 . 02 , resulting in ξ = 0 . 318 and ξ = 0 . 284 , respectively.

The other phase was considered as a Newtonian fluid, with ρ → 0

and μs → 0. 

Fig. 11 presents the results for the maximum climbed height

obtained for the proposed method, compared with the theoretical

approximation ( Eq. (30) ) and experimental and numerical values

proposed in the literature ( Beavers and Joseph, 1975; Luo, 1999;

Habla et al., 2011 ). We observe that both the numerical and exper-

imental data differs from the perturbation theory for high angu-

lar velocities for both values of ξ . Nevertheless, one can see from

Fig. 11 that our numerical results are closer to the experimen-

tal data (see Fig. 11 a) and closer to the theoretical solution (see

Fig. 11 b). 

Fig. 12 shows the numerical results obtained with the proposed

method using the dimensionless parameters of Table 1 . In addi-

tion, in these figures, we also plot the results presented by Beavers

and Joseph (1975) ; Debbaut and Hocq (1992) ; Luo (1999) ; Habla

et al. (2011) . We can see that the increase of ξ (from ξ = 0 . 284 to

ξ = 0 . 318 ) leads to a decrease in the climbed height for all angu-

lar velocities. Similar results were obtained by Luo (1999) ; Habla

et al. (2011) . The difference in the climbing height for different ξ
values, is consistent with the theory whereby the Weissenberg ef-

fect also depends on the second normal stress differences. It can

also be seen in Fig. 12 that as omega increases and consequently

Wi increases, the climbing height increases. Furthermore, the com-

parison between the numerical results obtained with the proposed

methodology and the results reported in the literature, showed

good agreement. Fig. 12 also presents the results for the Oldroyd-B
odel ( ξ = 0 ), which, for all angular velocities, presented higher

limbing height, almost two times the climbing height obtained

ith the Johnson–Segalman model for higher ξ , h ξ=0 /h ξ=0 . 318 ∼ 2 . 

The discrepancies between numerical and experimental data

re more significant for higher angular velocities, as observed in

ig. 12 d. This discrepancies can be rooted to the definition of the

limbing constant ˆ β . Since higher order terms are not consid-

red in Eq. (30) , it can feed some uncertainty on material pa-

ameters when using the Johnson–Segalman model to describe the

uid interface for large deformations. Notice that in Fig. 12 d with

= 0 . 284 to ξ = 0 . 318 , a bell shaped interface is formed. This is

haracterized as a consequence of a rapid slope interface change

ver a short distance, while for ξ = 0 , the interface is smoother,

lthough presenting higher elevation. 

.3. Flow dynamics at higher angular velocities 

The Weissenberg effect flow dynamics for high rod speeds have

een studied experimentally by Joseph (1990) ; Beavers and Joseph

1979) and Degen et al. (1998) . Beavers and Joseph (1979) ob-

erved different flow modes, depending on the rod velocities: for

ow ω the flow is steady; increasing ω, other time-dependent

odes were observed, including the breathing, nautilus, and rup-

ure modes. Breathing is an axisymmetric rising and falling of the

ree surface of the climbing fluid parallel to the axis of the rod. The

autilus mode is an asymmetric structure with a spiral movement

lose to fluid surface. Finally, the rupture mode results in fluid be-

ng thrown around the container in a random fashion. Degen et al.

1998) presented an experimental work using the same fluid of

eavers and Joseph (1979) , the STP oil additive, and defined three

ifferent regimes of the flow dynamics: fixed, periodic and ape-

iodic flows. The authors observed successive bifurcations from a

ime independent state to states with one frequency, two frequen-

ies, three frequencies and then chaos, suggesting a characteristic

uelle–Takens route to chaos. 

As far as we are aware, such experimental flow features have

ot been reported in previous numerical studies. So, in order to

btain further insight into the fluid dynamics of the Weissenberg

ffect, and in particular its inherent unsteadiness, a new set of sim-

lations was performed using the Oldroyd-B model and mesh M 2.

he full set of simulations and respective dimensionless groups are

resented in Table 2 . 

As for the experimental works of Joseph (1990) ; Beavers and

oseph (1979) and Degen et al. (1998) , the numerical simulations

or the Oldroyd-B predicted steady free surface climbing for rod

ngular velocities lower than a critical velocity of ω c = 5 . 3 rev/s . In

ig. 13 , we can observe that increasing the rod rotation, the inter-

acial shape evolves from a smooth interface ( ω = 0 . 5 rev/s ) up to

 bell shaped interface, with rapid curvature changes in the free

urface over a short distance ( ω = 5 . 3 rev/s ). Further inspections in

he simulations results allowed to correlate the interfacial shape

volution with the secondary motions within the climbing fluid. It

s well known that in the Weissenberg effect flow experiment, in-

rtia and the non-Newtonian extra stresses caused by the primary

ow induce secondary motions. These secondary motions are de-

icted in Fig. 14 for ω = 0 . 5 rev/s and ω = 1 . 7 rev/s . For low rota-

ions, the secondary motion is composed of one large inertial vor-

ex only with the fluid particles moving counterclockwise, while

or high rotations a small secondary vortex appears near the rod,

ue to viscoelastic effects and normal stress differences, with the

uid particles moving clockwise, as already predicted theoretically

y Yoo et al. (1979) , numerically by Debbaut and Hocq (1992) and

xperimentally in Beavers and Joseph (1975) and Hu et al. (1990) .

e can also correlate the re-entrant point where the free surface

hanges curvature (see Fig. 14 ) with the line between the two op-

osed secondary motions. This point is of major importance, since
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Fig. 12. Numerical results of the Weissenberg effect with ξ = 0 . 284 and 0.318: (a) ω = 1 . 7 rev/s , (b) ω = 2 . 1 rev/s (c) ω = 2 . 6 rev/s and (d) ω = 2 . 9 rev/s . 

Table 2 

Angular velocity and dimensionless groups used to 

the study of the higher angular speeds. 

ω ( rev/s ) Wi Re St Ca 

0.5 0 .057 0 .008 0 .827 9 .43 

1 0 .115 0 .015 1 .655 18 .85 

1.3 0 .149 0 .020 2 .151 24 .51 

1.5 0 .172 0 .023 2 .482 28 .28 

1.7 0 .195 0 .026 2 .813 32 .05 

2.1 0 .240 0 .032 3 .475 39 .59 

2.6 0 .298 0 .040 4 .302 49 .01 

2.9 0 .332 0 .045 4 .798 54 .67 

3.4 0 .389 0 .053 5 .626 64 .10 

4.0 0 .458 0 .062 6 .619 75 .41 

4.5 0 .515 0 .069 7 .446 84 .83 

5 0 .573 0 .077 8 .273 94 .26 

5.3 0 .607 0 .082 8 .770 99 .91 

5.5 0 .630 0 .085 9 .100 103 .68 

5.8 0 .664 0 .090 9 .597 109 .34 

6 0 .687 0 .093 9 .928 113 .11 

6.3 0 .721 0 .097 10 .424 118 .77 

6.5 0 .744 0 .100 10 .755 122 .54 

6.8 0 .779 0 .105 11 .251 128 .19 

7 0 .802 0 .108 11 .582 131 .96 

7.5 0 .859 0 .116 12 .410 141 .39 

7.8 0 .893 0 .121 12 .906 147 .04 

8 0 .916 0 .124 13 .237 150 .81 

8.3 0 .950 0 .128 13 .733 156 .47 

8.5 0 .973 0 .131 14 .064 160 .24 

8.6 0 .985 0 .134 14 .230 162 .12 

9 1 .031 0 .139 14 .892 169 .66 

Fig. 13. Shape of the interface at different rod speeds, 0 . 5 ≤ ω ≤ 5 . 3 rev/s . 
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0  
t high elasticity, rapid slope changes in the free surface can occur

ithin an extremely short distance, and therefore, the interplay of

lastic stresses, interfacial curvature and secondary flows can lead

o the onset of tension-elastic instabilities. 

Fig. 15 displays the dimensionless length (see the depicted

ketch in Fig. 14 b as a function of the rod angular velocity.

rom this picture, we can observe that the dimensionless length

f the vortex increases monotonically for ω ≥ 1 . 7 rev/s ( Wi ≥
.195) while for ω ≥ 4 . 0 rev/s ( Wi ≥ 0.458) the dimensionless
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Fig. 14. Secondary flows and secondary vortex motions for the Weissenberg effect problem at t = 150 s . 

Fig. 15. Dimensionless length of the vortex for the range 1 ≤ ω ≤ 5 . 3 rev/s . 
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length of the vortex shows a time-periodic motion (the oscilla-

tions amplitude is marked as error bars in Fig. 15 . The time-

averaged non-dimensional climbing height h / R value as a func-

tion of the Wi is presented in Fig. 16 a. Moreover, in this fig-

ure, we have illustrated the shape of free surface considering ω =
2 . 1 rev/s (W i = 0 . 24) , ω = 3 . 4 rev/s (W i = 0 . 389) , ω = 4 rev/s (W i =
0 . 458) , ω = 5 rev/s (W i = 0 . 573) , ω = 5 . 8 rev/s (W i = 0 . 664) and

ω = 9 rev/s (W i = 1 . 031) . According to Fig. 16 a, the oscillations in

the interface (measured by the variation of the climbing h / R value

and represented by error bars) start from ω > 5 . 3 rev/s ( Wi >

0.607). Nevertheless, the vortex periodic motion did not affect the

free surface shape up to ω > 5 . 3 rev/s . 

As can we see in Fig. 16 a, at larger values of the rotation

speed, and above a critical value of ω c = 5 . 3 rev/s ( W i c = 0 . 607 ) no

steady free surface could be attained. Here, the plotted quantity

for ω > 5 . 3 rev/s is the time-averaged non-dimensional climbing

value. Note that for slow rotations, the dependence of the climb-

ing parameter h / R upon Wi is quadratic, as predicted by the low

order Eq. (30) . The steady bell shaped interface configuration loses

its stability to a time-periodic motion which initially appears with

small amplitude and frequency, and increases in frequency as the

rotational velocity is increased. This time-periodic motion is a bi-

furcating type of flow, whose amplitude increases with speed, as

depicted in the amplitude graph of Fig. 16 b. In this figure, the line

represents the fitting to identify the critical Wi c for an Hopf bifur-

cation to unsteady surface motion ( A = 0 . 2492 
√ 

W i − W i c where
 is the amplitude). This kind of bifurcation flow was also re-

orted experimentally by Degen et al. (1998) . Beavers and Joseph

1979) also presented experimental results for unsteady motions,

alled the “breathing instability”. 

We now report the most interesting results of this work, re-

ated to the numerical predictions for the breathing instability. Nu-

erically, this time-periodic motion was well capture for values of

 ≥ 5 . 3 rev/s , as observed in the instantaneous plots of Figs. 17 and

8 , for ω = 8 rev/s ( W i = 0 . 916 ) and ω = 9 rev/s ( W i = 1 . 031 ), re-

pectively. Improved understanding of the dynamics of the numer-

cal breathing instability processes can be gained from the observa-

ion of supplementary movies available at supplementary material

see Electronic Annex 1 in the online version of this article). From

igs. 17 and 18 it can be observed that the portion of fluid enclosed

n the second vortex rises slowly to a certain height, then collapses

own into the body of fluid. The frequency and amplitude of this

eriodic motion increase as the rotational velocity is increased. In

rder to compare with the experimental results, a general descrip-

ion of the breathing instability can be found in Joseph and co-

orkers ( Beavers and Joseph, 1975; Beavers et al., 1980 ) and in

he photographs displayed in Fig. 95.3 by Joseph (1976) and in

ig. 17.13 by Joseph (1990) . Experimentally, for the fluid used in

heir works at fluid bulk temperature of 25 ◦C , the critical time-

eriodic motion was observed to be ω expc = 4 . 94 rev/s and similar

o the numerical value of ω c = 5 . 3 rev/s . Simulation for higher ro-

ation speeds were not performed, since experimentally the flow

oses symmetry, presenting symmetry breaking instabilities, such

s the nautilus and rupture modes. Full three-dimensional simula-

ions will be performed in a future work in order to obtain realistic

umerical predictions for these cases. 

. Conclusions 

In this work a new viscoelastic multi-phase solver is presented.

he solver is based on a finite difference scheme using the projec-

ion method to solve the governing equations of viscoelastic two-

hase flows. The interface between the fluids is approximated us-

ng the classical volume-of-fluid interface reconstruction algorithm,

nd a second-order operator-split method is used to solve the ad-

ection equation. Several viscoelastic models can be used to repre-

ent the rheological properties of the (multi)-fluid phases, employ-

ng appropriate matrix reformulations for the conformation tensor.

The solver numerical accuracy for distinct levels of physical

omplexities was assessed with several benchmark tests: the vis-

oelastic laminar lid-driven cavity flow, the 1D and 2D axisym-

etric concentric annulus with inner cylinder rotation, the droplet
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Fig. 16. (a) Time-averaged non-dimensional Climbing height h / R value (oscillation amplitude is marked as error bars) and (b) Amplitude graph as function of rod velocities. 

Line in the amplitude graph represents the fitting to identify the critical Wi c for the Hopf bifurcation to breathing instability ( A = 0 . 2492 
√ 

W i − W i c ). 

Fig. 17. Transient behavior of Weissenberg effect problem with ω = 8 rev/s ( W i = 0 . 916 ). 
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Fig. 18. Transient behavior of Weissenberg effect problem with ω = 9 rev/s ( W i = 1 . 031 ). 
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formation and the droplet spreading of a viscoelastic fluid. For all

the validation problems, the results showed an excellent agree-

ment with literature data. 

Finally, the Weissenberg effect was studied numerically, since it

introduces all the effects validated previously. The results showed

reasonable agreement with experimental and numerical results of

the literature. Furthermore, above a critical value of the Weis-

senberg number, we were able to observe the onset of elastic in-

stabilities driven by the combination of elastic stresses, interfacial

curvature and secondary flows, that, as far as we are aware, such

flow features have not been reported by previous numerical stud-

ies and it is the new enhanced capabilities of this new solver that

made these predictions possible. 
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Appendix A. Interface representation and surface tension 

validation 

In this appendix, we present validations of the transport code

and of the implementation of the surface tension. 

Transport of volume fraction: stretching of a circular fluid element 

To test the interface representation and volume fraction trans-

port we rely on a benchmark test problem from the literature,
amely the stretching of a circular fluid element. In this problem

e use a circular fluid element placed in a swirling shear flow

eld within the [0, π ] × [0, π ] square. The circular fluid element

ith radius 0.2 π is centered at (0 . 5 π, 0 . 2(π + 1)) . The prescribed

olenoidal velocity field is given by: 

u ( x, y, t ) = sin (x ) cos (y ) 
v ( x, y, t ) = − cos (x ) sin (y ) 

}
for 0 ≤ t ≤ t f / 2 , 

u ( x, y, t ) = − sin (x ) cos (y ) 
v ( x, y, t ) = cos (x ) sin (y ) 

}
for t f / 2 < t ≤ t f , 

(A.1)

here t f represents the total simulation time. The velocity field

see Eq. (A.1) ) reverses the flow in half the time of the simula-

ion, so that the final shape of the circular fluid element should be

he initial shape considered in time t = 0 s . This benchmark prob-

em has been widely used in the literature, for instance Rudman

1997) ; Yokoi (2007) . 

Four uniform meshes were used for the computations: M 1 with

0 × 40 cells ( 
x = 0 . 0785 ), M 2 with 80 × 80 cells ( 
x = 0 . 0393 ),

 3 with 160 × 160 cells ( 
x = 0 . 0196 ) and M 4 with 320 × 320

ells ( 
x = 0 . 00982 ). Fig. A.1 presents the results obtained with

ifferent meshes at three different simulation times: initial time,

 = 0 s, reversal time t = t f / 2 = 12 s and final time t = t f = 24 s .

rom this picture, we can observe that the final shape improves

ith mesh refinement. In addition, Table 3 presents the numerical

olume, order of convergence and the error between the numerical

nd exact volume, calculated as 

 m 

= 

V exact − V num 

V exact 
× 100% . (A.2)

btained at the end of a full cycle for all meshes. The volumetric

rror for the finest mesh is of order of 10 −3 % , in agreement with

ther data from the literature ( Rudman, 1997; Yokoi, 2007 ). 
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Fig. A.1. Deformation of a circulating fluid element at different times: solid line – t = 0 s , dotted line t = t f / 2 = 12 s and line with crosses – end time t = t f = 24 s . 

Table 3 

Simulation results of the deformation of a circu- 

lar fluid element: Numeric volume V num , volumet- 

ric error E m and order of convergence. 

Mesh V num E m % Order 

M 1 1.23742 2 . 83189 × 10 −1 −
M 2 1.23946 7 . 91949 × 10 −2 1.84 

M 3 1.24004 2 . 11092 × 10 −2 1.90 

M 4 1.24020 5 . 61272 × 10 −3 1.91 
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urface tension computations: Newtonian oscillating droplet 

In this second benchmark problem we examine the accuracy of

he surface tension body force implementation. In this test, the

urface tension body force, F in Eq. (2) , is activated. This term

s implemented using the CSF approximation method, while the

urvature, defined by Eq. (15) , is approximated according to the

eight Function method. 

In this benchmark test, also studied by Montefuscolo et al.

2014) using ALE methods and by Watanabe (2008) using a con-

ervative Level-Set method, we consider an initial disturbed spher-

cal Newtonian droplet and measure the instantaneous shape de-

ormation along time. The droplet is embedded in a Newtonian

uid phase with ρ → 0 and μ → 0. Here, we assume that the
hape oscillations are axisymmetric, and adopt a spherical coordi-

ate system ( r ; ψ ; θ ). The initial drop deformation, r ( θ ), can be

xpressed in terms of the Legendre polynomial, P n (cos θ ), of order

 and amplitude 10% of its radius ( ε = 0 . 1 ): 

(θ ) = R 0 [ 1 + ε P n ( cos θ ) ] 

here R 0 is the radius of the unperturbed drop. The generalized

inear solution of the problem, including the influence of a sur-

ounding fluid, was presented by Lamb (1932) . This solution de-

cribes the instantaneous deformation of the droplet shape by an

nfinite series of the surface spherical harmonics, where each term

f this function corresponds to one independent natural oscillation

ode. 

To assess the mesh convergence, the simulations for the oscil-

ating droplet were performed in three uniform meshes: M 1 with

 4 × 6 4 cells ( 
r = 
z = 1 / 64 ), M 2 with 128 × 128 cells ( 
r =
z = 1 / 128 ) and M 3 with 256 × 256 cells ( 
r = 
z = 1 / 256 ).

he time step size is determined so as to satisfy the CFL condi-

ions due to surface tension and viscous terms. The Reynolds num-

er, Re = ρσR/μ2 , and the Ohnesorge number, Oh = μ/ 
√ 

ρRσ , are

xed at 13.15 and 0.0195, respectively. For low values of the Ohne-

orge number, the drop exhibits weakly-damped oscillations, with

 period and decay time that can be estimated as ρπ2 R 3 /(2 σ )

nd ρR 2 /(5 μ), respectively, and the instantaneous deformation

mplitude can be approximated by a pseudo-analytical solution
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Fig. A.2. Numerical and theoretical time evolution (and Lamb’s ( Lamb, 1932 ) linear 

theory for decay of amplitude) of a natural droplet oscillation. 
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( Montefuscolo et al., 2014 ), which will be used here for bench-

marking. For this test, at r = 0 and z = 0 we have adopted the sym-

metry boundary conditions while on the right and top boundaries

homogeneous Neumann boundary conditions are imposed for all

fields. 

The numerical and theoretical time evolution for amplitude is

presented in Fig. A.2 , along with the results obtained using Lamb’s

linear theory Lamb (1932) . We can observe that for all meshes,

the agreement between the numerical and the theoretical results

is quite good, with a perfect match with the expected Lamb’s

linear theory. The numerical and theoretical oscillation period is

T = 114 . 68 and T = 113 . 92 , respectively. Given that the pseudo-

analytical solution ( Montefuscolo et al., 2014 ) is only valid for in-

finitesimal amplitudes, therefore some differences are observed, re-

flected in the small shift in the oscillation frequencies for longer

times. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.ijmultiphaseflow.2016.04.

014 
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