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a b s t r a c t 

Skin cancer is considered one of the most common types of cancer in several countries and its incidence 

rate has increased in recent years. Computational methods have been developed to assist dermatologists 

in early diagnosis of skin cancer. Computational analysis of skin lesion images has become a challenging 

research area due to the difficulty in discerning some types of skin lesions. A novel computational ap- 

proach is presented for extracting skin lesion features from images based on asymmetry, border, colour 

and texture analysis, in order to diagnose skin lesion types. The approach is based on an anisotropic dif- 

fusion filter, an active contour model without edges and a support vector machine. Experiments were 

performed regarding the segmentation and classification of pigmented skin lesions in macroscopic im- 

ages, with the results obtained being very promising. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Computational analysis of skin lesion images is an area of great

esearch interest due to its importance in skin cancer prevention,

articularly in achieving a successful early diagnosis ( Celebi et al.,

007b; Filho, Ma, & Tavares, 2015; Scharcanski & Celebi, 2013 ).

uch lesions, which can be classified as benign or malignant, are

ainly due to abnormal production of melanocyte cells originat-

ng from factors such as excessive sun exposure. Melanocyte cells

re responsible for creating the substance melanin, whose main

unction is to provide skin pigmentation. In the case of malignant

ells, i.e. melanoma ( Fig. 1 a), such cells divide quickly and may

nvade other parts of the body. An increasing number of deaths

ue to melanoma have been observed worldwide, since this type

f malignant lesion is the most aggressive compared to other le-

ion types due to its high level of metastasis ( INCA, 2014 ). Be-

ign lesions display a more organized structure than malignant

esions, since the former are unable to proliferate into other tis-

ues. Seborrheic keratosis ( Fig. 1 b) and melanocytic nevus ( Fig. 1 c)

re examples of benign lesions. However, these skin lesions have
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lso been of global concern, since some types of nevi may become

elanoma; moreover a melanoma may resemble a seborrheic ker-

tosis or a nevus in its initial state. 

Different non-invasive imaging techniques have been employed

o assist dermatologists in diagnosing skin lesions ( Smith & Mac-

eil, 2011 ). Macroscopic images, commonly known as clinical im-

ges, are normally used in computational analysis of skin lesions

 Cavalcanti & Scharcanski, 2013; Wong, Scharcanski, & Fieguth,

011 ), since such images may be obtained using common digital

ideo or image cameras. Fig. 1 presents examples of macroscopic

mages. However, their imaging conditions are frequently incon-

istent; for example, images are acquired from variable distances

nd/or under different illumination conditions. Furthermore, the

mages may have poor resolution, which may be challenging when

he lesion under study is small. An additional problem with clinical

mages is related to the presence of artefacts, such as hair, reflec-

ions, shadows and skin lines, which may hinder adequate analysis

f the imaged skin lesions. 

Pre-processing, segmentation, feature extraction, and classifi-

ation are fundamental steps commonly found in computational

ystems of image analysis. In terms of skin lesions, the im-

ge pre-processing step is an important aspect for good seg-

entation, i.e. identification, of the image’s pigmented skin le-

ions. Effective approaches based on colour space transforma-

ion ( Abbas, Celebi, & Garcia, 2012a ), contrast enhancement

http://dx.doi.org/10.1016/j.eswa.2016.05.017
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Fig. 1. Three examples of pigmented skin lesions: (a) melanoma, (b) seborrheic ker- 

atosis and (c) melanocytic nevus. 
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( Schaefer, Rajab, Celebi, & Iyatomi, 2011 ) and artefact removal

( Abbas, Garcia, Celebi, Ahmad, & Mushtaq, 2013b ) have been pro-

posed for this step in order to improve the accuracy of the fol-

lowing segmentation step. Segmentation allows for extracting the

region of interest (ROI) from the macroscopic image under analy-

sis. Previous studies ( Silveira et al., 2009; Wong et al., 2011; Zhou

et al., 2010 ) have shown that computational methods for image

segmentation may provide suitable results for the identification of

skin lesions in images. 

The feature extraction of skin lesion images is usually based on

methods used by dermatologists in their clinical routine diagnosis.

Of these methods, the ABCD rule is mostly used, being a criteria

based on the Asymmetry, Border, Colour and Diameter characteris-

tics of the lesion under study ( Abbasi et al., 2004 ). The asymme-

try criterion may be examined by dividing the region of the lesion

into two sub-regions by an axis of symmetry, in order to analyse

the similarity of the area by overlapping the two sub-regions along

the axis. The lesion is considered symmetric when the two sub-

regions are highly similar, which is prevalent in benign lesions.

Otherwise, the lesion is considered asymmetric which is associ-

ated with malignant lesions. The border criterion corresponds to

the measure of the regularity of the lesion’s shape. According to

this criterion, a border of regular shape is associated with benign

lesions while a border of irregular shape is associated with malig-

nant lesions instead. The colour criterion consists of analysing the

tonality variation of the pigmented skin lesions in order to identify

the malignant lesions, which usually present non-uniform colours.

The diameter criterion is associated with the size of the lesion and

is defined by the greatest distance between any two points of the

lesion’s border. As such, a diameter equal to or greater than 6 (six)

millimetres may indicate malignancy. Texture analysis may also be

performed for image-based examination of skin lesions, since it as-

sists in discriminating benign from malignant lesions by assessing

the roughness of their structure ( Cavalcanti & Scharcanski, 2013 ). 

Several computational solutions ( Celebi et al., 2007b; Iyatomi,

et al., 2010 ) have been proposed for extracting features from pig-

mented skin lesions in images in order to represent them accord-

ing to certain criteria. Then, the classification step consists of rec-

ognizing and interpreting the information about the pigmented

skin lesions based on these features. Hence, computational clas-

sifiers are important tools to assist the computational diagnosis of

skin lesions in macroscopic images ( Celebi et al., 2008a; Iyatomi,

et al., 2008; Maglogiannis & Doukas, 2009 ). 

The objective of this work was to develop a novel compu-

tational approach based on the ABCD rule and texture analy-

sis for the identification and classification of pigmented skin le-

sions in macroscopic images, in order to provide information that

may assist dermatologists in their diagnosis. In this approach, an

anisotropic diffusion filter ( Barcelos, Boaventura, & Silva, 2003 ) is

applied to reduce the noise present in the image under study.

Then, the active contour model without edges ( Chan & Vese, 2001 )

is employed in the segmentation of the lesion in the pre-processed

image. Afterwards, features related to the asymmetry, border,

colour and texture of the lesion are extracted from the segmented
mage. Finally, the features are used as input to a support vector

achine (SVM) classifier ( Burges, 1998 ) to classify the skin lesion. 

This paper is organized as follows: a review of the computa-

ional methods that have been applied to classify pigmented skin

ancers and other skin lesions is provided in Section 2 . A novel

pproach for detecting and classifying skin lesions in dermoscopy

mages is proposed in Section 3 . The results and their discussion

re provided in Section 4 . Finally, conclusions drawn and proposal

or future studies are in the last section. 

. Related studies 

Computer-aided diagnosis (CAD) systems for skin lesions in im-

ges have been proposed in order to assist dermatologists, pre-

ominantly in the early assessment of skin cancer. In these sys-

ems, image filters are commonly applied to pre-process the in-

ut images in order to increase the accuracy of the segmentation

tep. A median filter, which is a non-linear image filtering algo-

ithm, has been applied often to smooth images of skin lesions as

ell as to remove artefacts, preserving the border of the lesion,

hich is imperative to assure adequate segmentation ( Celebi et al.,

0 07b, 20 08b; Silveira et al., 20 09 ). An anisotropic diffusion filter

as also been regularly used for smoothing skin lesion images, par-

icularly to remove artefacts with good results and without losing

elevant information about lesions ( Barcelos & Pires, 2009 ). Based

n set theory, morphological filtering ( Gonzalez & Woods, 2002 )

nables removing image noise ( Norton et al., 2010; Silveira et al.,

009 ), and may also be used to enhance skin lesions in images

 Beuren, Janasieivicz, Pinheiro, Grando, & Facon, 2012 ), as well as

o include areas with borders of low contrast in previously de-

ected lesion regions ( Norton et al., 2010, 2012 ). 

Algorithms of image segmentation have been developed based

n several techniques to assist the diagnosis of skin lesions from

mages ( Oliveira et al., 2016 ). From these, threshold-based algo-

ithms have been widely used, mainly because of their simplic-

ty. Thus, thresholding algorithms, such as the Otsu ( Celebi et al.,

007b; Celebi, Wen, Hwang, Iyatomi, & Schaefer, 2013; Norton

t al., 2010, 2012 ), type-2 fuzzy logic ( Yuksel & Borlu, 2009 ) and

he Renyi entropy method ( Beuren et al., 2012 ), aim to establish

he threshold values in order to separate the regions of interest

ROIs) in the input images. However, these techniques may re-

eal some problems; for example the segmented lesions tend to

e smaller than their real size, and the segmentation process may

ead to highly irregular lesion borders ( Yuksel & Borlu, 2009 ). 

Algorithms based on active contour models (ACM) have been

requently proposed for the segmentation of skin lesions in im-

ges ( Abbas et al., 2012a; Silveira et al., 2009; Zhou et al., 2010 ).

n these algorithms, initial curves move toward the boundaries of

he objects of interest through appropriate deformation. The al-

orithms of active contour may be classified as edge- or region-

ased models ( Zhang, Song, & Zhang, 2010 ) according to the tech-

ique used to track the curves movement. Additionally, mixed

odels have been also adopted, see, for example, Li, Xu, Gui,

nd Fox (2010) . The edge-based models include classic paramet-

ic models ( Kass, Witkin, & Terzopoulos, 1988 ), gradient vector

ow (GVF) ( Xu & Prince, 1998 ) and geometric (or geodesic) active

ontours (GAC) ( Paragios & Deriche, 2002 ). However, classic para-

etric models and GVF have difficulty in dealing with topologi-

al changes and large curvatures. On the other hand, GAC models,

uch as level-set-based algorithms, do not present such problems.

he region-based active contour model proposed by Chan and

ese (2001 ) has been used in the segmentation of skin lesions

 Silveira et al., 2009 ) due to its advantages relatively to other seg-

entation algorithms based on ACM ( Chan & Vese, 2001 ), such as:

1) the initial curve may be defined more freely in the input im-

ge, (2) the inner contours are automatically detected without the
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Fig. 2. Pipeline of the proposed approach for detecting and classifying pigmented 

skin lesions in images. 
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eed to define additional curves in the image, and (3) the segmen-

ation is successfully carried out even in the presence of intensity

ariations, very smooth boundaries and boundaries not success-

ully detected by gradient operators. Region-based algorithms, like

he region growing, splitting and merging methods have also been

sed to segment skin lesions in images ( Celebi et al., 20 07a, 20 07b;

yatomi et al., 2008; Silveira et al., 2009 ). These methods consist

f grouping similar neighbouring pixels, or sub-regions, into larger

omogeneous regions according to a growing criterion. Such meth-

ds have shown successful performance even under complex con-

itions such as great variations of illumination and colour. How-

ver, some of these methods may not adequately identify lesion

egions that present low contrast relatively to the skin background.

The wide use of algorithms based on artificial intelligence (AI)

s justified by the advantages they offer ( Silveira et al., 2009 ), such

s the possibility of learning from sample cases provided by ar-

ificial neural networks (ANNs) ( Schaefer et al., 2011 ), the search

nd optimization for the best segmentation results provided by

echniques based on genetic algorithms (GAs) ( Roberts & Clar-

dge, 2003 ), and the capability of dealing with imprecise values

rovided by fuzzy logic, e.g., by applying the type-2 fuzzy logic

echnique ( Yuksel & Borlu, 2009 ). In addition, fuzzy logic combined

ith clustering techniques have been employed in the image seg-

entation of skin lesions, such as the fuzzy c-means (FCM) algo-

ithm ( Rahman, Bhattacharya, & Desai, 2008 ) and the anisotropic

ean shift approach based on the FCM algorithm (AMSFCM)

 Zhou, Schaefer, Sadka, & Celebi, 2009 ). The hill-climbing algorithm

HCA) is a technique based on the clustering of points on an im-

ge, which is also applied to detect ROIs in skin lesion images

 Abbas, Garcia, Celebi, Ahmad, & Mushtaq, 2013a ). In Abbas, Celebi,

nd García (2012b) , a new segmentation method based on dynamic

rogramming was proposed to overcome the limitation of thresh-

lding, region-growing and clustering, as well as level-set-based

egmentation methods. However, some algorithms based on AI

ay also present disadvantages regarding the complexity of their

mplementation and the presence of unnecessary steps, which re-

uires high computational efforts ( Roberts & Claridge, 2003 ). 

The ABCD rule and texture analysis are examples of approaches

mployed in the literature for the computational analysis of skin

esions in macroscopic images. However, other descriptors have

lso been extracted for the characterization of skin lesions in im-

ges: 

• Asymmetry (A): asymmetry index descriptors based on axis of

symmetry ( Chang, Stanley, Moss, & Van Stoecker, 2005; She,

Liu, & Damatoa, 2007 ), and geometrical descriptors ( Cavalcanti

& Scharcanski, 2013 ); 
• Border (B): geometrical descriptors based on the best-fit of el-

lipse axes ( Chang et al., 2005; She et al., 2007 ), and statis-

tical descriptors based on border gradient and edge regions

( Cavalcanti & Scharcanski, 2013 ); 
• Colour (C): statistical descriptors based on colour models

( Cavalcanti & Scharcanski, 2013; Chang et al., 2005; She et al.,

2007 ), amount of colour pixels ( Cavalcanti & Scharcanski, 2013 ),

and relative colour descriptors ( Chang et al., 2005 ); 
• Diameter (D): semi-major axis of the best-fit ellipse ( She et al.,

2007 ); and 

• Texture (T): statistical descriptor based on the intensity of the

pixels inside the lesion regions ( Cavalcanti & Scharcanski, 2013 ).

For the classification process, one or several methods have been

valuated to achieve the best results. The performance of this pro-

ess depends on several issues, such as the quality of the seg-

ented image and extracted features, as well as on the classifica-

ion method used. The output of the skin lesion classification pro-

ess may be binary or multi-class, and concern different classes

ccording to the classification goal, e.g., malignancy of the lesions
benign versus malignant) ( Garnavi, Aldeen, & Bailey, 2012 ), and

istinct types of skin lesions (melanoma versus nevus ( Iyatomi

t al., 2008; Maglogiannis & Doukas, 2009 ), melanocytic versus

on-melanocytic ( Iyatomi, et al. , 2010 ), and dysplastic versus non-

ysplastic versus melanotic ( Maglogiannis & Doukas, 2009 ). Fur-

hermore, skin lesion features, such as border features regular ver-

us irregular ( Clawson, Morrow, Scotney, McKenna, & Dolan, 2009 )

an also be classified. 

Classification methods based on a decision tree have been used

n the classification of skin lesions by many authors ( Celebi et al.,

0 08a; Chang et al., 20 05; Maglogiannis & Doukas, 20 09 ). The sim-

licity of the classification structure in terms of ease of under-

tanding and visualization, as well as the easy rule generation, is

ne of the important advantages of this approach. However, the

ifficulties in dealing with correlated features and the possibil-

ty of excessive adjustments (over-fitting) are its major drawbacks.

ayesian learning-based methods have also been applied to classify

kin lesions ( Garnavi et al., 2012; Maglogiannis & Doukas, 2009 ).

lthough Bayesian methods provide fast training and no sensitivity

o irrelevant features, they assume that the features are indepen-

ent. Despite the long training time, artificial neural networks have

een proposed in various studies ( Iyatomi et al., 2008; Maglogian-

is & Doukas, 2009 ) to cope with many complex pattern recog-

ition problems, since such classifiers present good capability and

exibility to solve several non-separable problems. The SVM clas-

ifier ( Burges, 1998 ) has also been applied to discriminate skin le-

ions, due to its good generalization and simplification of the non-

inear data separation by means of kernel functions ( Celebi et al.,

0 07b; Maglogiannis & Doukas, 20 09 ). The SVM performed better

han other computer classifiers in several studies ( Maglogiannis &

oukas, 2009 ). However, this classifier may be sensitive to noise

nd the classification process is binary. 

. Proposed approach 

In this section, a computational approach for identification and

lassification of pigmented skin lesions in macroscopic images is

resented, in order to provide information that may assist derma-

ologists in their diagnosis. Fig. 2 illustrates the pipeline of the

roposed approach, which involves the following steps: (1) image
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pre-processing, (2) image segmentation, (3) image post-processing,

(4) feature extraction, and (5) lesion classification. The first step is

mainly applied to deal with noisy images based on an anisotropic

diffusion filter ( Barcelos et al., 2003 ). The second step is responsi-

ble for identifying the lesion presented in the image being stud-

ied by using an active contour model without edges, known as

Chan–Vese’s model ( Chan & Vese, 2001 ). The third step consists

of the post-processing of the segmented image based on morpho-

logical filtering ( Gonzalez & Woods, 2002 ) in order to improve the

quality of the segmentation result. In the fourth step, features are

extracted from the identified lesion, including the lesion’s asym-

metry, border, colour and texture properties. Finally, the last step

concerns the lesion classification based on the extracted features

that are inputted into an SVM classifier ( Burges, 1998 ). In the next

sections, each step of the proposed approach is detailed. 

3.1. Image pre-processing 

As mentioned previously, the image under analysis may contain

several artefacts that can affect the accuracy of the image segmen-

tation step. Hence, an anisotropic diffusion filter ( Barcelos et al.,

2003 ) is applied to smooth the input image, mainly in order to re-

duce the presence of hairs. Hence, initially, the original RGB (red,

green, blue) image is converted into a grey-level image, since the

segmentation method used is applied to grey-level images. After-

wards, the anisotropic diffusion filter is applied to the converted

image according to the solution proposed by Barcelos et al. (2003) ,

which aims at smoothing very noisy images without removing rel-

evant borders. 

The implementation of this filter is based on the following

equations: 

u t = g ( | ( G σ ∗ ∇u | ) | ∇u | di v 
( ∇u 

| ∇u | 
)

− λ ( 1 − g ) ( u − I ) , (1)

g ( | ( G σ ∗∇u | ) = 

1 

1 + k | ( G σ ∗∇u ) | 2 , and (2)

G t ( x, y ) = 

1 

2 πσ t 2 
e 

−| x 2 + y 2 | 
2 σ t 2 , (3)

where u ( x, y, 0 ) = I( x, y ) , x ∈ �, t > 0, I ( x, y ) is the original image

to be processed, u the smoothed image at scale t, div the diver-

gence operator, ∇u the gradient of u , and λ a parameter related

to the diffusion speed. The term g (|( G σ ∗∇u |) is used for border de-

tection, where k is a parameter, G σ the Gaussian function, and σ
the standard deviation of G σ . The convolution G σ ∗∇u is a Gaussian

scale space of g given by: T g ( x, y, t ) = g ∗ G t ( x, y ) where G t is given

by Eq. (3) and t is the scale. Considering a neighbourhood of a pixel

x , when the gradient ∇ has a low average value; i.e., there are few

noisy pixels in the input image, x is considered an inner pixel (ho-

mogeneous region), resulting in g ∼= 

1. Otherwise, x will be a pixel

of a contour, g ∼= 

0. The moderation selector ( 1 − g ) ( Barcelos et al.,

2003 ) allows a balanced diffusion of the input image, i.e., the ho-

mogeneous regions are smoothed even more with respect to the

borders of the regions. This filter is iteratively applied to the im-

age, such that the number of iterations ( NI ) is determined accord-

ing to the amount of noise presented in the input image. However,

relevant borders may be removed when the number of iterations

is too large. 

3.2. Image segmentation 

The segmentation process should be effective, so information

of the lesion may be extracted with high confidence. In addition,

the accuracy of this process directly influences the feature extrac-

tion step, which is required to suitably represent the lesion for its
lassification process. Therefore, an appropriate segmentation tech-

ique is crucial to obtain good classification results for the problem

n question. The Chan–Vese model ( Chan & Vese, 2001 ) is based on

he average of the intensities of the image’s pixels, and not on the

mage’s gradient. This model uses the concepts of the Mumford-

hah and level-set segmentation models. Essentially, Chan–Vese’s

odel considers a "fitting" term F for the energy minimization,

hich allows the deformation of the curve toward the boundary

f the object to be segmented, in which the inside and outside in-

ensities are constant and similar. In order to identify whether the

bject of interest is inside or outside the curve, the energy mini-

ization F ( c 1 , c 2 , φ) is calculated as: 

 ( c 1 , c 2 , φ) = μ

∫ 
�
δ( φ( x, y ) ) | ∇φ( x, y ) | d xd y +ν

∫ 
�

H ( φ( x, y ) ) d xd y

+ � 1 

∫ 
�

| u 0 ( x, y ) − c 1 | 2 H ( φ( x, y ) ) d xd y 

+ � 2 

∫ 
�

| u 0 ( x, y ) − c 2 | 2 ( 1 − H ( φ( x, y ) ) ) d xd y, (4)

here u 0 is a pre-processed image, as a bounded function on �̄

nd with real values. The fixed parameters μ, ν ≥ 0, and �1 and

2 > 0 are weights for the fitting term. The terms H and δ are

he Heaviside and Dirac delta functions, respectively, used in order

o obtain the level-set energy function F ( c 1 , c 2 , φ). The constants

 1 and c 2 , which are based on the Mumford-Shah segmentation

odel, are the average image u 0 inside and outside curve C , re-

pectively. Such constants are given by: 

 1 ( φ) = 

∫ 
� u 0 ( x, y ) H ( φ( x, y ) ) d xd y ∫ 

� H ( φ( x, y ) ) d xd y 
, (5)

 2 ( φ) = 

∫ 
� u 0 ( x, y ) ( 1 − H ( φ( x, y ) ) ) d xd y ∫ 

� ( 1 − H ( φ( x, y ) ) ) d xd y 
(6)

.3. Image post-processing 

Frequently, the segmentation results are post-processed to im-

rove the accuracy of the obtained lesion region. In many cases,

orphological operations ( Gonzalez & Woods, 2002 ) are employed

or this purpose ( Celebi et al., 2008b; Norton et al., 2012; Zhou

t al., 2009 ). Here, a morphological filtering, presented in Eq. (7) ,

s applied to the segmented image I by using a structuring element

 . This process allows the smoothing of borders, the removing of

solated regions, and/or even filling the segmented lesion region.

his filter consists of the opening operation I ◦E , defined by Eq. (8) ,

ollowed by the closing operation of the result by E , defined by

q. (9) , respectively: 

( I ◦ E ) · E, (7)

 ◦ E = ( I � E ) � E, (8)

 · E = ( I � E ) � E, (9)

here I �E is the dilation operation given by Eq. (10) and I �E is

he erosion operation given by Eq. (11) . Therefore, the opening of

et I by E is the erosion of I by E , followed by the dilation of the

esult by E . The closing of the set I by E is the dilation of I by E ,

ollowed by the erosion of the result by E : 

 � E = { x | [ ( ̂  E ) x ∩ I ] ⊆ I } , (10)

 � E = { x | ( E ) x ⊆ I } , (11)

here ˆ E is the reflection of set E (structuring element), ( ̂  E ) x is the

ranslation of set ˆ E by pixel x , and ( E ) x is the translation of set E

y pixel x . 
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.4. Feature extraction 

After the ROI identification, the next step is to extract a le-

ion’s features based on the ABCD rule in order to numerically

escribe its properties. The clinical assessment is usually based

n all of the rule’s criteria to diagnose the malignancy of lesions

n images. However, the diameter criterion was not applied here

ue to its great dependence on the image resolution ( Celebi et al.,

007b ), since the size of the image highly affects the number of

ixels of each segmented lesion regions. Instead, a texture anal-

sis is performed to assess the surface roughness of the lesion.

herefore, asymmetry, border, colour and texture properties are ex-

racted from the original RGB image using the segmented image

fter post-processing as a feature extraction mask. 

.4.1. Asymmetry 

In order to extract features based on the asymmetry criterion,

he region of the lesion under analysis is dividing into two sub-

egions ( R 1 , R 2 ) by an axis according to the longest diagonal d de-

ned by Euclidian distance ( Gonzalez & Woods, 2002 ): 

 ( p,q ) = 

√ 

( x 1 − x 2 ) 
2 + ( y 1 − y 2 ) 

2 
, (12) 

here ( x 1 , y 1 ) and ( x 2 , y 2 ) are the coordinates of the border’s pix-

ls p and q . All the border’s pixels are analysed in order to find

hich pair has the greatest distance D ( p, q ) . 

Perpendicular lines from the pixels of the longest diagonal d

re computed to analyse the similarity between two sub-regions of

he lesion. The number of perpendicular lines may be different for

ach image, since it depends on the size of the diagonal d of the

esion. Therefore, N = T /P is computed to determine the number

f perpendicular lines for all images to be classified; i.e. it deter-

ines a set of perpendicular lines S , where T is the total number

f perpendicular lines along the diagonal d , and P is a pre-defined

xed number of expected perpendicular lines. In order to deter-

ine an adequate set S , the following values for P have been exper-

mentally established, P = { 10 , 20 , 30 , 40 , 50 } . Ten perpendicular

ines P = 10 obtained the best results in experimental tests to rep-

esent the size of the set of perpendicular lines for each image.

fterwards, two semi-lines were determined from each perpendic-

lar line of the set S , one semi-line represents the sub-region R 1 ,

nd the other represents the sub-region R 2 . For each perpendicular,

he distance D ( p, q ) of the semi-line for both sub-regions ( R 1 , R 2 ) is

omputed, where p is a pixel of the diagonal d and q is a pixel of

he border. 

Eleven features are extracted to represent the asymmetry crite-

ion: 

• The ratio between the shortest and longest distances based on

the semi-lines ( R 1 , R 2 ) from each perpendicular line of set S (10

features); 
• The standard deviation from ratios based on all perpendicular

lines of set S (1 feature). 

The ratio between the two semi-lines allows for determining

hether the lesion area may be more symmetric or more asym-

etric to a particular pixel of the longest diagonal, i.e., the area is

ither more asymmetric when its coefficient is closer to zero, or

ore symmetrical when its coefficient is closer to one. 

.4.2. Border 

A border is represented by pixels comprising the lesion’s

oundary, obtained as a result of the lesion segmentation process.

 one-dimensional border ( Gonzalez & Woods, 2002 ) of the lesion

nder analysis is defined to extract features based on this crite-

ion. The number of peaks, valleys and straight lines of the border

s extracted by vector product and inflexion point descriptors by
eans of the one-dimensional border. An inflexion point descriptor

s applied to measure small irregularities in the border, whereas a

ector product descriptor is applied to measure substantial irregu-

arities in the border ( Araujo, 2010 ). 

The inflexion point descriptor aims to analyse border’s pixels

 i to define which pixels show a change of direction. Therefore,

 four-point neighbourhood N j for both left and right directions

s considered for each border’s pixel P i . In order to detect if a

iven pixel P i is an inflexion, weights w j are assigned to its neigh-

our pixels. From the analysis of the y axis of a system of coordi-

ates, each neighbour pixel N j that is below the pixel under anal-

sis P i receives w j = 1 . Otherwise, each neighbour pixel receives

 j = −1 . Afterwards, the weights w j corresponding to each direc-

ion (left, D l , and right, D r ) are added separately, D l , D r = 

∑ 

j w j .

re-defined thresholds T 1 = 2 and T 2 = −2 ( Araujo, 2010 ) are con-

idered to analyse small irregularities in the border, based on the

um of the weights D l , D d . An inflexion pixel P i is achieved when

 l and D r ≥ T 1 or D l and D r ≤ T 2 . The sum of the weights for both

eft and right neighbour pixels S i = D l + D r identifies the inflexion

ixel P i as a peak when S i > 0, as a valley when S i < 0, or as a

traight line when S i = 0 . 

On the other hand, the vector product descriptor aims to anal-

se a border’s pixels to identify peaks and valleys with substantial

rregularities. The vector product V i is based on three border pixels

 1 , p 2 , and p 3 established according to a difference of fifteen pixels

etween them, totalling a difference of thirty pixels between p 1 
nd p 3 ( Araujo, 2010 ). The vector product V i is computed for each

order’s pixels as: 

 i = ( x 2 − x 1 ) ( y 3 − y 1 ) − ( y 2 − y 1 ) ( x 3 − x 1 ) , (13) 

here ( x 1 , y 1 ), ( x 2 , y 2 ) and ( x 3 , y 3 ) are the three aforementioned

ixels p 1 , p 2 , and p 3 . Such points determine whether a segment be-

ongs to a peak, valley or straight line. Therefore, a border’s pixel

 i is identified as a peak when V i > 0, as a valley when V i < 0, or

s a straight line when V i = 0 . 

Six features are extracted to represent the border criterion: 

• The number of peaks, valleys and straight lines based on small

irregularities of the border by using the inflexion point descrip-

tor (3 features); 
• The number of peaks, valleys and straight lines based on large

irregularities of the border by using the vector product descrip-

tor (3 features). 

The peak, valley and straight-line values may be relatively dif-

erent for each image, since they depend on the size of the lesion’s

order. In order to solve the problem of different ranges that may

nfluence the classification results, such values are adjusted into an

nterval between 0 (zero) and 1 (one). Therefore, the values ob-

ained by the inflexion point descriptor are divided by the total

umber of pixels obtained, and the values obtained by the vec-

or product descriptor are divided by the total number of border’s

ixels. These features allow the assessment of the regularity or ir-

egularity of the lesion’s border. 

.4.3. Colour 

The RGB colour model is commonly employed to represent the

olours of skin lesions in images ( Celebi et al., 2007b; Chang et al.,

0 05; Iyatomi et al., 20 08, 2010; She et al., 2007 ). Therefore, sta-

istical measures based on this model are applied to represent the

olour criterion. The mean, variance and standard deviation values

or each RGB channel were extracted (nine features). These features

llow for analysing tonality changes of pigmented skin lesions in

rder to identify malignant lesions. 
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3.4.4. Texture 

In order to extract texture properties of the skin lesions, frac-

tal dimensions are computed from the image under study by us-

ing a box-counting method (BCM), since it is simple and effec-

tive ( Dobrescu, Dobrescu, Mocanu, & Popescu, 2010; Garnavi et al.,

2012 ). A fractal dimension ( Al-Akaidi, 2004 ) is a procedure for

splitting the input image into several quadrants to quantify the ir-

regularity level or self-similarity of the image’s fractals according

to: 

D = 

log ( N ) 

log ( 1 / T ) 
, (14)

where N represent the number of elements of the self-similar parts

that reconstruct the original image, and T is the amount of quad-

rants corresponding to a fraction of its previous size. 

The BCM method demarcates a grid over the image; i.e., it di-

vides the image into several squares. The process is iterative, in

which the size of each square decreases and the amount of squares

that covered the fractal is counted at each iteration. The box-

counting algorithm uses a least squares error to compute the frac-

tal dimension: 

e = 

∑ 

i 

(
f i − ̂ f i 

)2 
, with i = 1 , 2 , . . . , N, (15)

where N is the number of elements and the term 

̂ f i , which is an

approximation to function f i , is defined as: 

̂ f i = βx i + c, (16)

where the slope β and intercept c of the line ̂ f i are computed as:

β = 

N 

∑ 

i f i x i − ( 
∑ 

i f i ) ( 
∑ 

i x i ) 

N 

∑ 

x 2 
i 

− ( 
∑ 

i x i ) 
2 

, (17)

c = 

∑ 

i f i − β
∑ 

i x i 
N 

. (18)

The image-based fractal dimension D 2 is computed individually

for each row and column of the image. Afterwards, the final fractal

dimension is defined as: 

D 2 = 

(∑ 

i D i 

t 

)
+ 1 , (19)

where D i is the fractal dimension obtained at each iteration and t

is the total amount of fractal dimensions. 

Eighteen features are extracted to represent the texture proper-

ties of the lesion under analysis: 

• The fractal dimension of the lesion’s area (1 feature); 
• The fractal dimension of the original image (1 feature); 
• The fractal dimension of sixteen parts of the image, with the

original image divided into parts of the same size to measure

their fractal dimension (16 features). 

The fractal dimension is a value between two and three, which

allows for measuring the irregularity level or self-similarity of the

image surface. 

Overall, the number of features m extracted from each image

under study is 44 (11 asymmetry, 6 border, 9 colour and 18 tex-

ture features). From this set of features, datasets are constructed

with a set of samples ( x i ), according to the number of images n

for a given classification problem, i = 1 , . . . , n . Each sample ( x i ) is

composed of m features ( x im 

) and the class to which it belongs ( y i ).

Such datasets are used for the classification process. 
.5. Lesion classification 

After building the set of features, the next step is the lesion

lassification based on the extracted features. The classification

rocess occurs by randomly dividing the available image samples

nto training and test sets. The training step consists of develop-

ng a classification model based on the training samples, which

re applied as input data to the classifier for the learning process.

he testing step consists of measuring the accuracy of the model

earned in the training step over the set of tests. The classifica-

ion process should have high performance and robustness, since

ts results are often used to assist dermatologists in their diagno-

is. Therefore, the SVM classifier ( Burges, 1998 ) was used mainly

ue to its good generalization properties. 

The SVM classifier involves an algorithm based on statistical

earning applied to build a hyperplane that separates the data ac-

ording to the defined classes. Such data may be linearly separa-

le or linearly non-separable. Let us consider the training data { x i ,

 i }, with x i ∈ X and y i ∈ Y, where X is the set of samples and Y is

he class to which they belong { −1 , +1 } . A separating hyperplane

ay be defined as f (x ) = w · x + b. Then, the points x that lie on

he hyperplane satisfy f (x ) = 0 , where w is the normal distance to

he hyperplane, and | b |/ ‖ w ‖ is the perpendicular distance from the

yperplane to the origin, with b ∈ � and ‖ w ‖ being the Euclidian

orm of w . Therefore, the f ( x ) divides X into two regions: positive

amples if f ( x ) > 0, and negative samples if f ( x ) < 0. For the lin-

arly separable case, the algorithm is used to search the data with

argest distance (“named as largest margin”) from the hyperplane

ased on the following constraints: 

 i ( w · x i + b ) − 1 ≥ 0 , with ∀ i = 1 , . . . , n, (20)

here w · x i + b ≥ +1 for y i = +1 , and w · x i + b ≤ −1 for y i = −1 . 

The largest border is represented by a pair of parallel hyper-

lanes, H 1 and H 2 . The points defined for these hyperplanes are

he training points used for classification, called support vectors.

he pair of hyperplanes is obtained by minimization of ‖ w ‖ 2 
ased on the constraints defined in Eq. (20) . Such minimization

s given by the Lagrangian function subject to the conditions w =
 n 
i =1 αi y i x i and

∑ n 
i =1 αi y i = 0 , where αi are positive Lagrange mul-

ipliers for each of the constraints ( Eq. (20) ). The Lagrangian func-

ion is defined as: 

 1 = 

n ∑ 

i =1 

αi −
1 

2 

n ∑ 

i, j=1 

αi α j y i y j x i x j , with αi ≥ 0 . (21)

For the linearly non-separable case, positive slack variables ξ i ,

 = 1 , . . . , n , are introduced in the constraints: 

 i ( w · x i + b ) ≥ 1 − ξi , with ξi ≥ 0 , and ∀ i = 1 , . . . , n, (22)

here w · x i + b ≥ +1 − ξi for y i = +1 , and w · x i + b ≤ −1 + ξi for

 i = −1 . In order to deal with noise and outliers, parameter C is

ntroduced for assigning a penalty to errors, which becomes: 

 2 = 

n ∑ 

i =1 

αi −
1 

2 

n ∑ 

i, j=1 

αi α j y i y j x i x j , (23)

ubject to 0 ≤ αi ≤ C , ∀ i = 1 , . . . , n , and 

∑ n 
i =1 αi y i = 0 . 

In order to simplify the process of separating the non-linear

ata, a kernel function may be applied to map the set of samples

f the original space X to a new space with infinite dimensional

 , defined as � : X → � . The kernel function receives two points

f the original space (x i , x j ), and computes the scalar product in

he new space, defined as K( x i , x j ) = �( x i ) · �( x j ) . The mapping,

y using kernel function based on a dual problem presented in

q. (23) , is defined as: 

 3 = 

n ∑ 

i =1 

αi −
1 

2 

n ∑ 

i, j=1 

αi α j y i y j K( x i , x j ) , (24)
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ubject to 0 ≤ αi ≤ C , and 

∑ n 
i =1 αi y i = 0 . The application of kernel

unctions for non-linear data makes the algorithm efficient, so that

imple hyperplanes are constructed in a space with high dimen-

ions. 

In this study, the histogram intersection kernel ( Barla, Odone, &

erri, 2003 ) is adopted, as defined by Eq. (25) , since such a kernel

s proposed especially for image classification and it has achieved

uperior results compared to other kernels. The histogram intersec-

ion kernel has been proposed for colour-based image recognition

 Barla et al., 2003 ), whereas in this study it is based on all ex-

racted lesion features, i.e., asymmetry, border, colour and texture:

 

(
x i , x j 

)
= 

∑ n 

i =1 
min 

(
x i , x j 

)
. (25) 

Here, the classification algorithm is based on supervised learn-

ng and the classification process is binary, since the SVM classi-

er is originally binary. The image classification is divided into two

teps: feature classification and skin lesion classification. The fea-

ure classification step consists of analysing the following classifi-

ation processes: (1) region asymmetry (symmetric or asymmet-

ic), (2) border irregularity (regular or irregular), (3) colour unifor-

ity (uniform or non-uniform), and (4) texture irregularity (reg-

lar or irregular). Each process takes into account only the fea-

ures related to the classification goal, i.e., a subset of features. The

kin lesion classification step consists of distinguishing the follow-

ng types of skin lesions: (1) nevus and seborrheic keratosis, (2)

evus and melanoma, and (3) seborrheic keratosis and melanoma.

n this case, each classification process considers the entire set of

eatures. 

. Experimental results and discussion 

In this section, segmentation and classification results are de-

cribed and discussed. First, the image databases used to evalu-

te the results are described. Second, the experiments for border

etection, regarding the pre-processing, segmentation and post-

rocessing steps are presented. Finally, the experiments on the fea-

ure extraction of skin lesions, which correspond to the lesion’s

symmetry, border, colour, and texture, are presented as well as

hose for lesion classification. 

.1. Image databases 

The databases used to evaluate the proposed approach are com-

osed of macroscopic images of pigmented skin lesions. Examples

f such images are shown in Fig. 1 . A great deal of information

oncerning the diagnosis of the imaged lesions provided by expert

ermatologists is available in these databases, including among

hem, diagnostics on the lesions and their features (i.e., asymme-

ry, border, colour and texture). All the information contained in

he datasets has been used for the development and evaluation of

his work. 

The used databases have a total of 408 images, which were col-

ected from Loyola University Chicago ( Melton & Swanson, 2012 ),

SP Dermatology Image Database ( Suzumura, 2012 ), DermAtlas

 Cohen & Lehmann, 2012 ), DermIS ( Diepgen & Yihune, 2012 ),

aúde Total (Saúde Total, 2012 ), Skin Cancer Guide ( Skin Cancer

uide, 2012 ), and Dermnet - Skin Disease Atlas ( Campbell Jr., 2012;

hapman, 2012 ). Of these, 62 images were melanocytic nevi, 86

mages were seborrheic keratosis, and 260 images were melanoma.

n regard to the asymmetry criterion, the lesions were symmetric

n 137 images and in 271 images were asymmetric. In regard to

he border criterion, the lesions have regular borders in 77 images

nd irregular borders in 331 images. In regard to the colour cri-

erion, the lesions present uniform colours in 32 images and non-

niform colours in 376 images. In regard to the texture criterion,
he lesions present regular texture in 224 images and in 184 im-

ges they present irregular texture. The images of the databases

ave been resized to 200 × 200 pixels to simplify their processing.

.2. Border detection 

In order to remove noise and enhance the lesions, an

nisotropic diffusion filter was applied to the input images accord-

ng to the discretization of Eq. (1) . The parameters were defined by

xperimental tests, based on parameters suggested by Barcelos and

ires (2009) , with the following values: t = 0 . 1 , σ = 1 , λ = 1 , k =
 . 0 0 08 , and NI = 10 0 . The smoothing results obtained by applying

he anisotropic diffusion filter to grey-level images are shown in

ig. 3 (a-c). The resultant images in (d–f) indicate that the filter has

uccessfully reduced the presence of hairs. However, this filter may

ot remove other artefacts, such as, reflections and shadows. 

Afterwards, Chan–Vese’s model was applied to segment the

moothed image according to Eq. (4) . The parameters were de-

ned by experimental tests, based on the parameters proposed

y Chan and Vese (2001) : μ = 0 . 2 , ν = 0 , λ1 and λ2 = 1 , h = 1 ,

t = 0 . 1 , and 500 iterations were established for the evolution of

he curve. In order to define an appropriate curve C , several ini-

ial shapes and sizes were tried and visually assessed. A square-

haped curve was defined and positioned close to the image’s cen-

re. However, the imaging conditions are usually inconsistent, and

he clinical images are acquired from variable distances, implying

hat the size of the lesions may be different as they are dependent

n the distance adopted in the image acquisition. Therefore, two

urves, C s and C b , with different sizes were established: for small

esions, C s = 40 × 40 pixels, and for large lesions, C b = 140 × 140

ixels. Examples of the segmentation results obtained by apply-

ng the Chan–Vese model to the smoothed images (d-f) are shown

n Fig. 3 . Although the resultant binary images (g-i) are of good

uality, some binary images presented holes in the interior of the

eguemented lesion region and/or split regions, which were mainly

aused by reflections and shadows. 

A morphological filter ( Gonzalez & Woods, 2002 ) was applied

o the segmented binary images to achieve better segmentation re-

ults. In order to define an appropriate structuring element E , sev-

ral shapes and sizes were tested. Ellipse-shaped structuring ele-

ents with radii r 1 , r 2 = 4 , presented the best results according to

 visual assessment. The post-processing results obtained by apply-

ng the morphological filter to the binary images (g-i) are shown in

ig. 3 . The resultant images (j–l) confirm the removing of isolated

egions and the filling of hole regions, as well as the smoothing of

he borders without losing their important characteristics. After-

ards, the borders found were overlapped on the original images

m–o) based on the post-processing image results (j-l). 

A subjective evaluation ( Celebi, Iyatomi, Schaefer, & Stoecker,

009 ) was applied to evaluate the proposed approach, which in-

luded a visual assessment of the border detection results by a

pecialist. The first evaluation analysed whether the lesions were

orrectly or incorrectly segmented; Fig. 4 includes some exam-

le results. The evaluation of the results obtained revealed that

he proposed approach is effective in detecting skin lesions and

xtracting their contours from clinical images. The proposed ap-

roach adequately tackled the noisy images. However, some im-

ges with low contrast boundaries, shadows and reflections were

ncorrectly segmented. 

The second evaluation compared the segmentation results ob-

ained by the proposed approach against the threshold-based seg-

entation results achieved by using Otsu’s method ( Otsu, 1979 ),

ince this method has been widely applied in this domain ( Abbas

t al., 2013a; Celebi et al., 2007b ; Norton et al., 2010, 2012 ). Fig. 5

resents examples of the segmentation results obtained by apply-

ng both segmentation methods to the original images (a–e). The
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Fig. 3. Image processing results for each step of the proposed approach: (a–c) grey-level images, (d–f) smoothed images, (g–i) segmented images, (j–l) post-processed images, 

and (m–o) original images with the detected borders (white contours) overlapped. 

Fig. 4. Example of border detection results obtained by applying the proposed approach: (a–d) examples of correctly segmented images and (e–h) examples of incorrectly 

segmented images. 

Table 1 

Skin lesion segmentation results. 

Segmentation method Melanocytic nevus (%) Seborrheic keratosis (%) Melanoma (%) All (%) 

Thesholding 80 .65 81 .40 80 80 .39 

Proposed approach 96 .77 93 .02 94 .23 94 .36 
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evaluation performed on the results obtained revealed that the

proposed approach defined the border of the lesion in a more ef-

fective way than Otsu’s method in several cases. Furthermore, the

proposed approach also achieved better results when dealing with

images of low contrast, and with shadows and reflections. The

percentages of correctly segmented images for both segmentation

methods, based on the visual assessment of the resultant borders

by a specialist, are shown in Table 1 . It may be seen that the pro-

posed approach obtained significantly superior results compared to

the threshold-based method. The quality of the detected borders

of the 385 images correctly segmented by the proposed approach

was also visually evaluated by the specialist, with 91.43% of these

considered having good quality and the remaining ones having ac-

ceptable quality. 
.3. Skin lesion classification 

In order to differentiate types of skin lesions and to detect

heir features, several classification experiments were performed.

he sets of training and test for the classification process were

andomly defined from the available image samples, i.e., from

he 385 correctly segmented images. In order to define adequate

raining sets and test for each classification problem, several sizes

or the training set were assessed, with the remaining ones em-

loyed as test sets. The size values considered for the training set

ere T S = { 10 , 20 , 30 , 40 , 50 } (in percentage). Each classification

odel was obtained by applying the SVM classifier ( Burges, 1998 )

y using a histogram intersection kernel ( Barla et al., 2003 ) based

n the set or subset of features and on the samples of the training
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Fig. 5. Comparison of the two segmentation methods: (a–e) original images, (f–j) borders detected by Otsu’s method, and (k–o) detected by the proposed approach. 

Table 2 

Feature classification results of the proposed approach. 

Classification Radial basis function Histogram intersection 

Class 1 Precision (%) Class 2 Precision (%) Accuracy (%) Class 1 Precision (%) Class 2 Precision (%) Accuracy (%) 

Asymmetry Symmetric Asymmetric 69 .45 Symmetric Asymmetric 

60 .71 73 .62 89 .29 100 96 .54 

Border Regular Irregular 81 .35 Regular Irregular 

22 .86 94 .30 71 .43 74 .68 74 .09 

Colour Uniform Non-uniform 73 .06 Uniform Non-uniform 

43 .75 75 .71 56 .25 75 .14 73 .58 

Texture Regular Irregular 62 .73 Regular Irregular 

61 .69 64 .10 60 .39 69 .23 64 .21 

s  

t  

t  

t  

m

 

f  

i  

o  

5  

c  

e  

t  

i  

a  

c  

t  

t  

t

 

i  

t  

t  

c  

s  

t  

t  

w  

c  

e  

s  

t  

s  

T  

s  

u  

c  

t

et. Afterwards, the samples of the test set were classified based on

he classification model and the predicted classes were compared

o the known classes. Classification performance metrics, such as

he precision for each class and the accuracy for each model, were

easured to assess the quality of the results obtained. 

The following experiments for feature classification were per-

ormed: (1) the first experiment involved asymmetry classification,

n which T S = 10 was considered the best training set, (2) the sec-

nd experiment comprised the border classification, in which T S =
0 was considered the best training set, (3) the third experiment

omprised the colour classification, in which T S = 50 was consid-

red the best training set, and (4) the last experiment was the tex-

ure classification, in which T S = 30 was considered the best train-

ng set. The feature classification results are shown in Table 2 . The

symmetry classification obtained good results for both classes. In

ontrast, the texture and colour feature classifications have not led

o good generalization between the classes, whereas border fea-

ure classification has resulted in an average distinction between

he two classes. 
The results obtained for the skin lesion classification are shown

n Table 3 . The following experiments for skin lesion classifica-

ion were performed: (1) the first experiment involved classifica-

ion between nevus and seborrheic keratosis, in which T S = 40 was

onsidered the best training set. Although these two types of le-

ions are benign, the classification model had an average separa-

ion between the two classes, (2) the second experiment was de-

ermined by the classification between nevus and melanoma, in

hich T S = 50 was considered the best training set. The classifi-

ation result between these two types of lesion has not been quite

xpressive, since several samples of the database are composed of

kin lesions that do not exactly follow the rule that distinguishes

hese lesions, and (3) the last experiment was based on the clas-

ification between seborrheic keratosis and melanoma, in which

 S = 20 was considered the best training set. In this case, such le-

ions are usually too similar, with texture being the main feature

sed to differentiate them. Therefore, the outcome of the texture

lassification properly explains why the classification results be-

ween seborrheic keratosis and melanoma were not so expressive. 
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Table 3 

Skin lesion classification results of the proposed approach. 

Classification Radial basis function Histogram intersection 

Class 1 Precision (%) Class 2 Precision (%) Accuracy (%) Class 1 Precision (%) Class 2 Precision (%) Accuracy (%) 

Nevus–Keratosis (Class 1–Class 2) 72 .22 73 .33 72 .84 77 .78 80 79 .01 

Nevus–Melanoma (Class 1–Class 2) 56 .67 73 .02 69 .87 76 .67 73 .81 74 .36 

Keratosis–Melanoma (Class 1–Class 2) 60 72 .64 69 .73 80 72 .64 74 .33 
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The classification results obtained by applying the histogram in-

tersection kernel for the SVM classifier were compared with the

results obtained by applying the radial basis function (RBF) kernel

( Celebi et al., 2007b; Maglogiannis & Doukas, 2009; Rahman et al.,

2008 ). The comparison results between the two kernels for both

feature and skin lesion classifications are shown in Tables 2 and

3 , respectively. The application of a histogram intersection kernel

showed superior performances for the image classifications. Al-

though the border classification by using an RBF kernel had better

accuracy than the classification by using a histogram intersection

kernel, the precision of the regular border classification was some-

what low (22.86%). On the other hand, the border classification by

using a histogram intersection kernel achieved a more balanced

classification result between the regular and irregular classes. In

regard to the colour and texture classification, the results were

similar for both kernels. In contrast, the asymmetry classification

presented significantly superior results. Moreover, the application

of a histogram intersection kernel presented much better results

for all skin lesion classifications than the RBF kernel. 

The proposed approach has been developed using: (1) Mat-

lab 8.4.0.150421 environment for the algorithms of pre-processing,

segmentation, post-processing and feature extraction; and (2) Dev-

C ++ 5.11 environment for the algorithms of texture extraction and

classification. The pre-processing step took 63.76 s in smoothing

the 385 images. As to the segmentation step, the algorithm took

around 49.12 min to segment the images. The post-processing step

required 5.09 s to enhance the segmented images. The extraction

of the image features from the enhanced images required 1.54

min: asymmetry, 48.65 s; border, 7.35 s; colour, 6.53 s; and tex-

ture, 29.44 s. Finally, the classifier required a total of 4.48 s for the

training and testing steps. From these values, which are the aver-

age times over 10 runs, one can note that the segmentation step

was the most time-consuming; however, the computation time re-

quired by this step can be considerably decreased by using opti-

mized C/C ++ implementations. All algorithms were performed on

an Intel(R) Core(TM) i5 CPU 650 @ 3.20 GHz 3.33 GHz with 8 GB of

RAM, running Microsoft Windows 7 Professional 64-bits. 

5. Conclusion and future works 

There are several approaches in the literature for pigmented

skin lesion classification. Nevertheless, most of the studies involve

only dermoscopy images, in which these images may be more diffi-

cult to obtain, since they require a dermoscopy device. In contrast,

macroscopic images may be obtained using common digital video

or image cameras, so that many computational methods to process

them become accessible to dermatologists in several regions of the

world. Furthermore, the feature classifications in macroscopic im-

ages are still little explored in research on automated diagnosis,

and most studies do not deal with the classification of all features

considered in this paper. 

An approach was presented for the segmentation and classi-

fication of pigmented skin lesions in macroscopic images. This

approach is based on an anisotropic diffusion filter, Chan–Vese’s

model and an SVM classifier to allow for extracting lesion features

and the distinguishing between some types of skin lesions, in or-

der to assist dermatologists in their diagnosis. Asymmetry, border,
olour and texture properties were considered for the classifica-

ion process. Although the proposed approach achieved good seg-

entation results, mainly with noisy images, it may not perform

ell on images with too low contrast boundaries, shadows and re-

ections. Both feature and skin lesion classification presented sig-

ificant results. However, some classification results were not ex-

ressive, e.g., the colour and texture based classifications. Whereas

hese features were extracted from the original RGB images of

he databases, in which some images contain too much hair and

oo many reflections and shadows. Therefore, such artefacts may

arm the assessment of the colour and texture properties of the

esions. In addition, the features of some images of the databases

re too heterogeneous for both classes, which can adversely affect

he classification results. Unbalanced databases regarding the num-

er of samples for each class may have decreased the accuracy of

he classification results, since the classifier tends to be based on

lasses with the highest occurrence. 

In conclusion, future studies regarding the segmentation and

lassification of pigmented skin lesion images should involve

earching for new methods aiming to develop more efficient and

ffective systems for better computational diagnosis based on

acroscopic images. For example, the development of methods for

ealing with reflections and shadows may be considered, in order

o solve the previously discussed problems concerning the image

egmentation step. Other features and types of pigmented skin le-

ions may also be approached for the purpose of lesions classifica-

ion from macroscopic images. The skin lesion classification results

an be improved using deep learning architectures, since these ar-

hitectures have presented excellent performances in different ap-

lications, including of Computational Vision. From the advantages

hat these architectures have revealed, one can stress the capac-

ty of learning from large amount of data in an unsupervised way

 Bengio, 2009 ). Therefore, deep learning architectures should be

aken into account in future works related to the classification of

kin lesions in images. 

cknowledgments 

The first author would like to thank CNPq (“Conselho Nacional

e Desenvolvimento Científico e Tecnológico”), in Brazil, for her

hD grant. The authors would also like to thank CAPES (“Coorde-

ação de Aperfeiçoamento de Pessoal de Nível Superior”), in Brazil,

or the financial support. 

Authors gratefully acknowledge the funding of Project NORTE-

1-0145-FEDER-0 0 0 022 - SciTech - Science and Technology for

ompetitive and Sustainable Industries, cofinanced by “Programa

peracional Regional do Norte” (NORTE2020), through “Fundo Eu-

opeu de Desenvolvimento Regional” (FEDER). 

Furthermore, the authors thank Dr. Ricardo Baccaro Rossetti,

rom Derm Clínica’s Dermatologist of São José do Rio Preto, in

razil, for his suggestions and for evaluating the results obtained. 

eferences 

bbas, Q. , Celebi, M. E. , & Garcia, I. F. (2012a). A novel perceptually-oriented ap-
proach for skin tumor segmentation. International Journal of Innovative Comput-

ing, Information and Control, 8 , 1837–1848 . 

http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0001


R.B. Oliveira et al. / Expert Systems With Applications 61 (2016) 53–63 63 

A  

 

A  

 

A  

 

A  

 

A

A  

 

 

B  

 

B  

 

B  

B  

B  

 

 

B  

C

C  

 

 

C  

 

C  

 

C  

 

 

C  

 

C  

 

C  

 

C  

C  

 

C  

C  

 

 

C  

D  

D  

 

F  

 

G  

 

G  

I  

I  

 

 

I  

 

 

K  

L  

 

M  

 

M  

 

N  

 

 

N  

 

 

O  

 

 

O  

P  

 

R  

 

 

R  

 

 

T  

S  

 

S  

S  

S  

 

 

S  

S  

S  

W  

 

X  

Y  

 

Z  

Z  

 

 

Z  

 

bbas, Q. , Celebi, M. E. , & García, I. F. (2012b). Skin tumor area extraction using
an improved dynamic programming approach. Skin Research and Technology, 18 ,

133–142 . 
bbas, Q. , Garcia, I. F. , Celebi, M. E. , Ahmad, W. , & Mushtaq, Q. (2013a). A per-

ceptually oriented method for contrast enhancement and segmentation of der-
moscopy images. Skin Research and Technology, 19 , e4 90–e4 97 . 

bbas, Q. , Garcia, I. F. , Celebi, M. E. , Ahmad, W. , & Mushtaq, Q. (2013b). Unified ap-
proach for lesion border detection based on mixture modeling and local entropy

thresholding. Skin Research and Technology, 19 , 314–319 . 

bbasi, N. R. , Shaw, H. M. , Rigel, D. S. , Friedman, R. J. , McCarthy, W. H. , Osman, I. ,
et al. (2004). Early diagnosis of cutaneous melanoma: Revisiting the ABCD cri-

teria. Jama, 292 , 2771–2776 . 
l-Akaidi, M. (2004). Fractal speech processing . Cambridge University Press . 

raujo, A.F.D. (2010). Método para extração e caracterização de lesões de pele
usando difusão anisotrópica, crescimento de regiões, watersheds e contornos

ativos. Unpublished master’s thesis, Universidade Estadual Paulista, Instituto de

Biociências, Letras e Ciências Exatas, Brasil (in Portuguese). 
arcelos, C. A. Z. , Boaventura, M. , & Silva, E. C., Junior (2003). A well-balanced flow

equation for noise removal and edge detection. IEEE Transactions on Image Pro-
cessing, 12 , 751–763 . 

arcelos, C. A. Z. , & Pires, V. B. (2009). An automatic based nonlinear diffusion equa-
tions scheme for skin lesion segmentation. Applied Mathematics and Computa-

tion, 215 , 251–261 . 

arla, A. , Odone, F. , & Verri, A. (2003). Histogram intersection kernel for image clas-
sification. In International conference on image processing: 3 (pp. 513–516) . 

engio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in
Machine Learning, 2 , 1–127 . 

euren, A. T. , Janasieivicz, R. , Pinheiro, G. , Grando, N. , & Facon, J. (2012). Skin
melanoma segmentation by morphological approach. In International conference

on advances in computing, communications and informatics (pp. 972–978). Chen-

nai, India: ACM . 
urges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2 , 121–167 . 
ampbell, J. L., Jr. (2012). Dermnet, skin disease atlas . Nevi: Melanoma . 

avalcanti, P. G. , & Scharcanski, J. (2013). Macroscopic pigmented skin lesion
segmentation and its influence on lesion classification and diagnosis. In

M. E. Celebi, & G. Schaefer (Eds.). In Color medical image analysis: Vol. 6

(pp. 15–39). Netherlands: Springer . 
elebi, M. E. , Aslandogan, Y. A. , Stoecker, W. V. , Iyatomi, H. , Oka, H. , &

Chen, X. (2007a). Unsupervised border detection in dermoscopy images. Skin
Research and Technology, 13 , 454–462 . 

elebi, M. E. , Iyatomi, H. , Schaefer, G. , & Stoecker, W. V. (2009). Lesion border de-
tection in dermoscopy images. Computerized Medical Imaging and Graphics, 33 ,

148–153 . 

elebi, M. E. , Iyatomi, H. , Stoecker, W. V. , Moss, R. H. , Rabinovitz, H. S. , Argen-
ziano, G. , et al. (2008a). Automatic detection of blue-white veil and related

structures in dermoscopy images. Computerized Medical Imaging and Graphics,
32 , 670–677 . 

elebi, M. E. , Kingravi, H. A. , Iyatomi, H. , Alp Aslandogan, Y. , Stoecker, W. V. ,
Moss, R. H. , et al. (2008a). Border detection in dermoscopy images using sta-

tistical region merging. Skin Research and Technology, 14 , 347–353 . 
elebi, M. E. , Kingravi, H. A. , Uddin, B. , Iyatomi, H. , Aslandogan, Y. A. , Stoecker, W. V. ,

et al. (2007b). A methodological approach to the classification of dermoscopy

images. Computerized Medical Imaging and Graphics, 31 , 362–373 . 
elebi, M. E. , Wen, Q. , Hwang, S. , Iyatomi, H. , & Schaefer, G. (2013). Lesion border

detection in dermoscopy images using ensembles of thresholding methods. Skin
Research and Technology, 19 , e252–e258 . 

han, T. F. , & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on
Image Processing, 10 , 266–277 . 

hang, Y. , Stanley, R. J. , Moss, R. H. , & Van Stoecker, W. (2005). A systematic heuris-

tic approach for feature selection for melanoma discrimination using clinical
images. Skin Research and Technology, 11 , 165–178 . 

hapman, S. (2012). Dermnet, skin disease atlas, benign tumors http://www.dermnet.
com/videos/benign-tumors/ Accessed 01.08.2012 . 

lawson, K. M. , Morrow, P. , Scotney, B. , McKenna, J. , & Dolan, O. (2009). Analy-
sis of pigmented skin lesion border irregularity using the harmonic wavelet

transform. In 13th international machine vision and image processing conference

(pp. 18–23). IEEE . 
ohen, B. A., & Lehmann, C. U. (2012). Dermatology image atlas . DermAtlas: Johns

Hopkins University http://dermatlas.med.jhmi.edu/ . 
iepgen, T. L., & Yihune, G. (2012). Dermatology information system - DermIS . Derma-

tology Online Atlas http://www.dermis.net/dermisroot/en/home/index.htm Ac- 
cessed 01.08.2012 . 

obrescu, R. , Dobrescu, M. , Mocanu, S. , & Popescu, D. (2010). Medical images clas-

sification for skin cancer diagnosis based on combined texture and fractal anal-
ysis. WISEAS Transactions on Biology and Biomedicine, 7 , 223–232 . 

ilho, M. , Ma, Z. , & Tavares, J. M. R. S. (2015). A review of the quantification and
classification of pigmented skin lesions: From dedicated to hand-held devices.

Journal of Medical Systems, 39 , 1–12 . 
arnavi, R. , Aldeen, M. , & Bailey, J. (2012). Computer-aided diagnosis of melanoma

using border- and wavelet-based texture analysis. IEEE Transactions on Informa-

tion Technology in Biomedicine, 16 , 1239–1252 . 
onzalez, R. C. , & Woods, R. E. (2002). Digital image processing (2nd ed.). New Jersey:

Prentice Hall . 
NCA. (2014). Estimativa 2014: Incidência de câncer no Brasil . Rio de Janeiro: INCA (in
Portuguese). 

yatomi, H. , Norton, K. , Celebi, M. E. , Schaefer, G. , Tanaka, M. , & Ogawa, K. (2010).
Classification of melanocytic skin lesions from non-melanocytic lesions. In An-

nual international conference of the IEEE engineering in medicine and biology soci-
ety (pp. 5407–5410) . 

yatomi, H. , Oka, H. , Celebi, M. E. , Hashimoto, M. , Hagiwara, M. , Tanaka, M. ,
et al. (2008). An improved Internet-based melanoma screening system with der-

matologist-like tumor area extraction algorithm. Computerized Medical Imaging

and Graphics, 32 , 566–579 . 
ass, M. , Witkin, A. , & Terzopoulos, D. (1988). snakes: Active contour models. Inter-

national Journal of Computer Vision, 1 , 321–331 . 
i, C. , Xu, C. , Gui, C. , & Fox, M. D. (2010). Distance regularized level set evolution and

its application to image segmentation. IEEE Transactions on Image Processing, 19 ,
3243–3254 . 

aglogiannis, I. , & Doukas, C. N. (2009). Overview of advanced computer vision sys-

tems for skin lesions characterization. IEEE Transactions on Information Technol-
ogy in Biomedicine, 13 , 721–733 . 

elton, J. L., & Swanson, J. R. (2012). Skin cancer and benign tumor image atlas . Loy-
ola University Dermatology Medical Education, http://www.meddean.luc.edu/

lumen/MedEd/medicine/dermatology/melton/content1.htm Accessed 01.08.2012 . 
orton, K.-A. , Iyatomi, H. , Celebi, M. E. , Ishizaki, S. , Sawada, M. , Suzaki, R. ,

et al. (2012). Three-phase general border detection method for dermoscopy im-

ages using non-uniform illumination correction. Skin Research and Technology,
18 , 290–300 . 

orton, K. , Iyatomi, H. , Celebi, M. E. , Schaefer, G. , Tanaka, M. , & Ogawa, K. (2010).
Development of a novel border detection method for melanocytic and non-me-

lanocytic dermoscopy images. In Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society (pp. 5403–5406) . 

liveira, R. B. , Filho, M. E. , Ma, Z. , Papa, J. P. , Pereira, A. S. , &

Tavares, J. M. R. S. (2016). Computational methods for the image segmen-
tation of pigmented skin lesions: A review. Computer Methods and Programs in

Biomedicine, 131 , 127–141 . 
tsu, N. (1979). A threshold selection method from gray-level histograms. IEEE

Transactions on Systems, Man and Cybernetics, 9 , 62–66 . 
aragios, N. , & Deriche, R. (2002). Geodesic active regions and level set methods

for supervised texture segmentation. International Journal of Computer Vision, 46 ,

223–247 . 
ahman, M. M. , Bhattacharya, P. , & Desai, B. C. (2008). A multiple expert-based

melanoma recognition system for dermoscopic images of pigmented skin le-
sions. In International Conference on BioInformatics and BioEngineering (pp. 1–6).

IEEE . 
oberts, M. E. , & Claridge, E. (2003). An Artificially evolved vision system for seg-

menting skin lesion images. In R. E. Ellis, & T. M. Peters (Eds.). In Medical im-

age computing and computer-assisted intervention: Vol. 2878 (pp. 655–662). Berlin
Heidelberg: Springer . 

otal, Saúde (2012). Câncer da Pele: Fotoproteção, Vida saudável com o sol http:
//www.saudetotal.com.br/prevencao/topicos/default.asp Accessed 01.08.2012. (in 

Portuguese) . 
chaefer, G. , Rajab, M. I. , Celebi, M. E. , & Iyatomi, H. (2011). Colour and contrast en-

hancement for improved skin lesion segmentation. Computerized Medical Imag-
ing and Graphics, 35 , 99–104 . 

charcanski, J. , & Celebi, M. E. (2013). Computer vision techniques for the diagnosis of

skin cancer . Berlin Heidelberg: Springer-Verlag . 
he, Z. , Liu, Y. , & Damatoa, A. (2007). Combination of features from skin pattern and

ABCD analysis for lesion classification. Skin Research and Technology, 13 , 25–33 . 
ilveira, M. , Nascimento, J. C. , Marques, J. S. , Marcal, A. R. S. , Mendonca, T. , Ya-

mauchi, S. , et al. (2009). Comparison of segmentation methods for melanoma
diagnosis in dermoscopy images. IEEE Journal of Selected Topics in Signal Process-

ing, 3 , 35–45 . 

kin Cancer Guide. Melanoma. (2012). http://www.skincancerguide.ca/melanoma/
images/melanoma _ images.html Accessed 01.08.2012. 

mith, L. , & MacNeil, S. (2011). State of the art in non-invasive imaging of cutaneous
melanoma. Skin Research and Technology, 17 , 257–269 . 

uzumura, Y.. YSP dermatology image database. (2012). http://homepage1.nifty.
com/ysh/soft _ e _ ysp.htm Accessed 01.08.2012 . 

ong, A. , Scharcanski, J. , & Fieguth, P. (2011). Automatic skin lesion segmentation

via iterative stochastic region merging. IEEE Transactions on Information Technol-
ogy in Biomedicine, 15 , 929–936 . 

u, C. , & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transac-
tions on Image Processing, 7 , 359–369 . 

uksel, M. E. , & Borlu, M. (2009). Accurate segmentation of dermoscopic images
by image thresholding based on type-2 fuzzy logic. IEEE Transactions on Fuzzy

Systems, 17 , 976–982 . 

hang, K. , Song, H. , & Zhang, L. (2010). Active contours driven by local image fitting
energy. Pattern Recognition, 43 , 1199–1206 . 

hou, H. , Schaefer, G. , Celebi, M. E. , Iyatomi, H. , Norton, K. , Liu, T. , & Lin, F. (2010).
Skin lesion segmentation using an improved snake model. In Annual in-

ternational conference of the engineering in medicine and biology society
(pp. 1974–1977). IEEE . 

hou, H. , Schaefer, G. , Sadka, A. H. , & Celebi, M. E. (2009). Anisotropic mean shift

based fuzzy C-means segmentation of dermoscopy images. IEEE Journal of Se-
lected Topics in Signal Processing, 3 , 26–34 . 

http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0022
http://www.dermnet.com/videos/benign-tumors/
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0024
http://dermatlas.med.jhmi.edu/
http://www.dermis.net/dermisroot/en/home/index.htm
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0035
http://www.meddean.luc.edu/lumen/MedEd/medicine/dermatology/melton/content1.htm
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0043
http://www.saudetotal.com.br/prevencao/topicos/default.asp
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0047
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0047
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0047
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0047
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0047
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0048
http://www.skincancerguide.ca/melanoma/images/melanoma_images.html
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0050
http://homepage1.nifty.com/ysh/soft_e_ysp.htm
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0054
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0054
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0054
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0054
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30235-4/sbref0057

	A computational approach for detecting pigmented skin lesions in macroscopic images
	1 Introduction
	2 Related studies
	3 Proposed approach
	3.1 Image pre-processing
	3.2 Image segmentation
	3.3 Image post-processing
	3.4 Feature extraction
	3.4.1 Asymmetry
	3.4.2 Border
	3.4.3 Colour
	3.4.4 Texture

	3.5 Lesion classification

	4 Experimental results and discussion
	 4.1. Image databases
	 4.2. Border detection
	4.3 Skin lesion classification

	5 Conclusion and future works
	 Acknowledgments
	 References


