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ARTICLE INFO ABSTRACT

Article history: Osteonecrosis of the jaws (ONJ) is a complication of antiresorptive medications, such as denosumab or
ReC?IVEd 7 April 2016 bisphosphonates, prescribed to patients with bone malignancy or osteoporosis. The most common instigating
Revised 9 June 2016 local factor in ONJ pathogenesis is tooth extraction. However, in adults the great majority of teeth are extracted
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Available oniine 18 June 2016 due to dental disease. Here, we have investigated alveolar bone healing after extraction of healthy teeth or teeth

with naturally occurring periradicular disease in mice treated with high dose zoledronic acid (ZA), a potent bis-
phosphonate, or OPG-Fc, a RANKL inhibitor. C57BL/6 mice were treated for eight weeks and in vivo micro-CT was
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performed to identify spontaneously occurring periradicular lesions around the roots of maxillary molars. Then,
extractions of molars with and without dental disease were performed in all groups. Four weeks later, animals
were euthanized and maxillae were dissected and analyzed. Clinically, all vehicle animals with extraction of
healthy or diseased teeth, and most OPG-Fc or ZA animals with extraction of healthy teeth showed normal mu-

cosal healing. On the contrary, most animals with OPG-Fc or ZA treatment and extraction of diseased teeth dem-
onstrated impaired healing with visible mucosal defects. Radiographically, bone socket healing was significantly
compromised in OPG-Fc and ZA-treated mice with periradicular disease in comparison to other groups. Histolog-
ically, all vehicle animals showed normal mucosal healing and socket remodeling. OPG-Fc and ZA animals with
extraction of healthy teeth showed normal mucosal healing, woven bone formation in the socket, and decreased
remodeling of the original socket confines. OPG-Fc and ZA animals with extraction of diseased teeth showed mu-
cosal defects, persistent prominent inflammatory infiltrate, bone exposure and areas of osteonecrosis. These find-
ings support that dental disease is critical in the pathogenesis of ONJ, not only as the instigating cause for tooth
extraction, but also as a compounding factor in ONJ development and pathophysiology.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Medication related osteonecrosis of the jaws (ON]) is defined as ne-
crotic, exposed bone in the maxillofacial region for at least 8 weeks, in
patients on antiresorptive treatment [1,2] or antiangiogenic medica-
tions [2], but without a history of head and neck radiation. Patients
with primary bone cancer or metastatic disease on high dose
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bisphosphonates (BPs), notably zoledronic acid (ZA), or denosumab
most commonly suffer from this condition. Patients with osteoporosis
or Paget's disease receiving either oral or parenteral antiresorptive med-
ications are at much lower risk [1,2].

Dentoalveolar surgery is a major local risk factor associated with ONJ
incidence, with 52-61% of patients reporting tooth extraction as the
precipitating event for clinical manifestation of the disease [3-5].
Based on these clinical observations, ON] animal models have been de-
veloped that combine antiresorptive treatment and extraction of maxil-
lary or mandibular teeth in order to recapitulate clinical, radiographic,
and histologic features of the disease [6-12].

The vast majority of teeth in adult patients are extracted due to den-
tal disease [13,14], which is also true for patients with ONJ [15]. Peri-
odontal or periapical disease, even in the absence of tooth extraction
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is associated with ONJ occurrence [16] and is considered a local risk fac-
tor for the disease [1,2]. Moreover, improved oral hygiene measures sig-
nificantly reduce ON]J incidence in patients with multiple myeloma and
metastatic cancer [17,18]. Indeed, we and others have described ONJ
models in rodents treated with antiresorptive medications and induced
experimental dental disease, without extractions, that capture several
attributes of ON]J in patients [19-25].

During these studies, we identified an unexpected model of ON]J in an-
imals with naturally occurring periradicular lesions around the maxillary
molar teeth, when they were treated with high doses of ZA or with the
RANKL inhibitors RANK-Fc or OPG-Fc. It is noteworthy that no experimen-
tal intervention was performed in these animals and the ONJ-like lesions,
characterized by periosteal bone apposition, osteonecrosis, severe inflam-
mation and bone exposure, developed spontaneously [24]. Here, taking
advantage of this ON] model, we have combined the two methodologies
of local risk factors (extraction and dental disease), in association with sys-
temic treatment with two different types of antiresorptives, a BP or a
RANKL inhibitor, to more closely replicate the clinical setting and investi-
gate ONJ pathogenesis. We have extracted healthy teeth or teeth with nat-
ural periradicular lesions in animals treated with vehicle (veh), ZA, or
OPG-Fc and have assessed the animals clinically, radiographically, and his-
tologically. Our data indicate that extraction of diseased, but not healthy,
teeth is associated with high incidence of ON]J in this mouse model.

2. Materials and methods
2.1. Animal care

Animals were kept and treated according to guidelines of the UCLA
Chancellor's Animal Research Committee. Throughout the experimental
period, mice were housed in corn-bedding plastic cages (4 mice per
cage) in pathogen-free conditions with a light/dark cycle of 12 h, fed a
standard laboratory diet, and given water ad libitum. Fifty seven nine-
week-old C57BL/6] male mice (Jackson Laboratory, Bar Harbor, ME,
USA), weighing 25 g on average (range from 23 to 28 g), were randomly
assigned to receive intraperitoneal injections of endotoxin free saline (ve-
hicle), 10 mg/kg OPG-Fc (composed of the RANKL-binding domain of os-
teoprotegerin linked to the Fc portion of IgG, kindly provided by Amgen
Inc., Thousand Oaks, CA), or 200 pg/kg zoledronic acid (ZA) twice a
week in morning hours. There were 19 vehicle, 18 OPG-Fc, and 20 ZA
treated animals. The antiresorptive doses were chosen in order to induce
ONJ in the presence of dental disease, based on our previous studies [22-
25]. The protocol followed all recommendations of the ARRIVE (Animal
Research: Reporting in Vivo Experiments) guidelines for execution and
submission of studies in animals [26].

Animals were treated for eight weeks with vehicle, OPG-Fc or ZA, and
then in vivo UCT was performed to assess the presence of spontaneous
periradicular disease. The study included 6 experimental groups: vehicle,
OPG-Fc and ZA treated animals with extraction of either healthy or dis-
eased teeth. Two days after imaging, mice were anesthetized utilizing
isoflurane, and maxillary molars from both sides were extracted. For all
groups, sites with a fractured buccal cortical plate or fractured teeth dur-
ing extraction were excluded from subsequent analysis. Four weeks after
extractions animals were sacrificed, maxillae were dissected and photo-
graphs of the specimens were obtained utilizing a digital optical micro-
scope (Keyence VHX-1000, Osaka, Japan). Then specimens underwent
radiographic and histologic assessment, as described below. During ex
vivo radiographic evaluation, sites with remaining roots were excluded
from subsequent analysis. The final study groups consisted of 28, 24 and
25 maxillary sites for vehicle, OPG-Fc or ZA animals respectively.

2.2. In vivo uCT scanning
In vivo imaging was performed utilizing the SkyScan 1176 in vivo

UCT scanner (Bruker Corporation, Belgium) at 18 um resolution,
50 kVp and 500 pA. Volumetric image data were converted to DICOM

format and imported in the Dolphin Imaging software (Chatsworth,
CA, USA) to generate 3D and multiplanar reconstructed images. Altered
alveolar bone morphology with widening of the periodontal space
around the maxillary molar roots and/or presence of periosteal bone ap-
position at the alveolar ridge outline were a priori considered an indica-
tion of periradicular disease.

All scans were de-identified. The presence of periradicular dis-
ease was recorded. The distance from the cemento-enamel junction
(CEJ) to the alveolar crest (AC) was measured at the distal surface
of the second molar, as previously described [24,25]. Buccal cortical
thickness was measured on axial slices oriented parallel to the occlu-
sal plane, in the area of the 2nd molar at the level of the apical third of
the roots [24,25].

2.3. Ex vivo UCT scanning

Dissected maxillae were imaged by high-resolution ex vivo UCT uti-
lizing the SkyScan 1172 uCT scanner (SkyScan, Kontich, Belgium), as de-
scribed [24,25]. Volumetric image data were converted to DICOM
format and imported in the Dolphin Imaging software to generate 3D
and multiplanar reconstructed images, as above.

All scans were de-identified. Healing of extraction sockets was
rated as complete (healing of >75% of the socket), partial (healing
of 25%-75% of the socket) or absent (healing of <25% of the socket).
Also, the bone volume (BV), tissue volume (TV), and BV/TV of the al-
veolar bone excluding the extraction socket were measured, as de-
scribed [24,25].

2.4. Histology and TRAP staining

Maxillae were fixed for 48 h in 4% paraformaldehyde and then
decalcified in 14% EDTA for 3 weeks. Samples were paraffin embedded
and 5 um-thick cross sections were made perpendicular to the long
axis of the alveolar ridge at the area of maximum radiographic and clin-
ical changes, as assessed by LCT analysis and clinical photographs. H&E
stained slides were digitally scanned utilizing the Aperio AT automated
slide scanner and automated image analysis was performed using the
Aperio Image Scope software (Aperio Technologies, Inc., Vista, CA,
USA). The area of the alveolar bone, from the alveolar crest to the floor
of the nasal cavity was defined as the region of interest (ROI). The
total number of osteocytic lacunae, the number of empty lacunae, and
the surface of osteonecrotic area(s) were quantified. An area of
osteonecrosis was defined as a loss of more than five osteocytes with
confluent areas of empty lacunae [20,24,25]. Lacunae housing necrotic,
karyolitic osteocytes, indicated by eosinophilic stained nuclei, were
counted as empty osteocytes. The shortest distance from the inferior
part of the epithelium to the alveolar crest was measured. If the bone
was extruding above the epithelium, in animals with bone exposure,
the distance was recorded as negative (Supplemental Fig. 1). The Aperio
Image Scope software was used to quantify the total bone area, the sur-
face area of osteonecrosis and to make all linear measurements. All his-
tology and digital imaging was performed at the Translational
Pathology Core Laboratory (TPCL) at the David Geffen School of Medi-
cine at UCLA.

For enumeration of osteoclasts, tartrate-resistant acid phosphatase
(TRAP) staining was performed utilizing the leukocyte acid phosphatase
kit (387A-IKT Sigma Aldrich, St. Louis, MO, USA). Positive cells were
identified as multinucleated (>2) TRAP-positive cells in contact with
or very close proximity to the bone surface, in the ROI and were counted
manually (AS).

2.5. Statistics
Raw data were analyzed using the GraphPad Prism Software

(GraphPad Software, Inc. La Jolla, CA). Descriptive statistics were used to
calculate the mean and the standard error of the mean (SEM). Data
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were analyzed by a two-way ANOVA and post-hoc Tukey's test for multi-
ple comparisons among the various groups, with a statistical significance
of p < 0.05. The presence or absence of mucosal defect after tooth extrac-
tion and the degree of socket healing (complete, partial or absent) were
analyzed using the Fisher's exact test.

3. Results

3.1. Radiographic assessment of spontaneous periradicular bone loss
around maxillary molars

In vivo microCT revealed the presence of periradicular bone loss in 12/
28,10/24 and 8/25 maxillary sites of all vehicle, OPG-Fc or ZA animals re-
spectively, with no statistical difference among vehicle, OPG-Fc and ZA
groups (p > 0.05). uCT imaging showed a normal PDL space and alveolar
bone in vehicle, OPG-Fc and ZA animals with healthy teeth (Fig. 1A, A1,
B, B1, Cand C1). In contrast, significant alveolar bone loss (white arrows)
and increased bone thickness (white arrowheads) were seen around the
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molar roots of animals with periradicular disease (Fig. 1D, D1, E, E1, F, F1).
Quantification of radiographic features showed statistically increased
bone loss in diseased vs. healthy teeth in all groups (Fig. 1G). A common
radiographic finding in patients with ON] is periosteal bone deposition
causing alveolar expansion [27]. To quantify potential bone deposition
along the buccal maxillary cortex, we measured the thickness of the buc-
cal bone in all six groups. Indeed, buccal cortical thickness increased in the
diseased vs. healthy site of ZA and OPG-Fc groups, as well as in the dis-
eased site of the ZA and OPG-Fc groups vs. the diseased site of the vehicle
group (Fig. 1TH).

3.2. Clinical assessment of mucosal healing after tooth extraction

Visual inspection showed that four weeks after extraction, the
alveolar mucosa healed normally in all vehicle treated animals
(Fig. 2A and D). Normal soft tissue healing was also present in the
majority of mice treated with antiresorptives with extraction of
healthy teeth, with only 1 of 14 (7.1%) and 2 of 17 (11.7%) OPG-Fc
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Fig. 1. In-vivo uCT assessment of the maxillary molars prior to tooth extraction. (A, B, C) Sagittal and (A1, B1, C1) coronal sections of sites with healthy molars in vehicle, OPG-Fc, and ZA
groups, respectively. (D-F) Sagittal and (D1-F1) coronal sections of sites with diseased molars in vehicle, OPG-Fc, and ZA groups, respectively. Quantification of (G) interproximal bone loss
and (H) buccal cortex thickness. + statistically significantly different, p < 0.0001. * statistically significant difference among compared groups, p < 0.05. Differences among groups were
calculated by two-way ANOVA and post-hoc Tukey's test for multiple comparisons. Data represent the mean + SEM.
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or ZA animals, respectively, demonstrating soft tissue defects (Fig.
2B, C, G). In contrast, 7 of 10 (70%) of OPG-Fc and 6 of 8 (75%) of
ZA animals that had undergone extraction of teeth with
periradicular disease showed mucosal defects and the presence of
exposed bone in the area of the extraction (Fig. 2E and F, arrows
and 2G).

3.3. Radiographic assessment of socket healing after tooth extraction

High-resolution ex vivo micro-CT was performed to assess bone
architecture of the alveolar ridge after tooth extraction. Vehicle an-
imals, irrespective of extraction of healthy or diseased teeth, dem-
onstrated remodeling of the socket outline and, in the great
majority of cases, near complete healing of the extraction socket
(Fig. 3A, A1, D, D1, D2, G). OPG-Fc and ZA animals that had under-
gone extraction of healthy teeth, also displayed some extraction
socket healing in nearly all sites (12/13 and 14/15 respectively),
with the majority of sockets (9/14 and 14/15 respectively) showing
complete healing (Fig. 3B, B1, C, C1, G). Interestingly, in the
antiresorptive but not vehicle treated animals, the original outline
of the extraction socket was easily identifiable and the socket healed
with a granular, woven-like bone that lacked normal trabecular ar-
chitecture. In contrast, in OPG-Fc and ZA animals, extraction sockets
of diseased teeth showed overall decreased healing compared to
socket of extracted healthy teeth (Fig. 3G), with several animals
showing absence (5/10 and 5/8 respectively) of intra-socket bone
formation as seen by multiplanar views (Fig. 3E, E2, F, F2) and 3D
rendering (Fig. 3 E1, F1, black arrows). Occasional bony spicules
were also noted within the empty extraction sockets (Fig. 3 F, F2,
white arrows). As expected, OPG-Fc and ZA animals demonstrated
increased BV/TV values of the alveolar ridge, compared to vehicle
animals, without any difference between sites of healthy vs. dis-
eased teeth (Fig. 3H).

3.4. Histologic assessment of socket healing after tooth extraction

After uCT assessment, histologic evaluation of the maxillae was per-
formed (Fig. 4). Vehicle animals with extraction of healthy teeth showed

Disease
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normal healed epithelium (Fig. 4A, white arrow) with presence of rete
pegs, fibrous connective tissue with no significant inflammatory infiltrate,
and remodeled extraction sockets (Fig. 4A, A1). Animals treated with
either OPG-Fc or ZA and with extraction of healthy teeth also showed
normal soft tissue healing, including a regular epithelial lining with the
presence of rete pegs (Fig. 4B, C, white arrows) and fibrous connective
tissue without a significant inflammatory infiltrate. Dense woven bone
occupied most of the extraction socket, while the boundaries of
the original extraction socket could be easily recognized (Fig. 4, B, B1, C,
C1).

Vehicle animals with extraction of diseased teeth also showed
mostly normal epithelial lining (Fig. 4D, white arrow). The underly-
ing connective tissue contained a mild inflammatory infiltrate. In the
healing extraction socket, woven bone with multiple reversal lines,
and marrow fibrosis were noted (Fig. 4D, D1, D2, D3). In OPG-Fc or
ZA animals with extraction of diseased teeth (Fig. 4E, E1, E2, E3, F,
F1, F2, F3), epithelial migration (black arrows) and abundant inflam-
matory infiltrate (green arrows) in both the epithelial and connec-
tive tissue compartments were noted. In several specimens, the
extraction socket had not healed with any bone and was not covered
by epithelium or connective tissue, but was exposed to the oral cav-
ity (blue arrows). In other specimens, an epithelial defect was pres-
ent, and thin fragmented connective tissue, and foreign material
debris covered the extraction sockets (orange arrows).
Osteonecrosis (Fig. 4 E, E1, E2, E3, F, F1, F2, F3 yellow arrows) of
the alveolar bone and occasional small sequestra (light blue arrows)
were noted.

Quantification of the histologic findings revealed a statistically sig-
nificant increase in the number of empty osteocytic lacunae and in the
osteonecrotic area in OPG-Fc and ZA animals with extraction of diseased
teeth compared to extraction of healthy teeth in the same treatment
group or compared to extraction of diseased teeth in vehicle animals
(Fig. 5 A and B). Also, OPG-Fc vs. ZA animals with extraction of diseased
teeth showed a higher number of empty osteocytic lacunae and
osteonecrotic area (Fig. 5 A and B).

Epithelium to alveolar bone crest distance was similar in vehicle
animals with extraction of healthy or diseased teeth and in OPG-Fc
and ZA animals with extraction of healthy teeth. However, in some
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Fig. 2. Visual assessment of mucosal healing of maxillary alveolar ridge after tooth extraction. (A-C) Maxillae in vehicle, OPG-Fc, and ZA groups after extraction of healthy teeth,
respectively. (D-F) Maxillae in vehicle, OPG-Fc, and ZA groups after extraction of diseased teeth, respectively. Arrows point to areas of exposed bone. (G) Qualitative assessment of
mucosal healing after healthy or diseased teeth in various treatment groups. *** statistically significantly different, p < 0.001. ** statistically significantly different, p < 0.01. Differences

between groups were calculated by Fisher exact probability test.
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Fig. 3. ICT assessment of the edentulous maxillary alveolar ridge and quantification of uCT findings. (A-F) Sagittal, (A1, B1, C1, D2, E2, F2) coronal views and (D1, E1, F1) 3D renderings of
edentulous alveoli after extraction of healthy (A, B, C,and A1, B1, C1) or diseased (D, E, F, D1, E1, F1, D2, E2, F2) teeth in vehicle, OPG-Fc, or ZA groups. (G) Qualitative assessment of socket
healing after extraction of healthy or diseased teeth in various treatment groups (H). Quantification of bone volume/tissue volume. + statistically significantly different, p < 0.0001. ***
statistically significantly difference, p < 0.001. ** statistically significantly different, p < 0.01. * statistically significantly different, p < 0.05. Differences between groups for (G) were
calculated by Fisher exact probability test. Differences among groups for (H) were calculated by two-way ANOVA and post-hoc Tukey's test for multiple comparisons. Data represent

the mean 4+ SEM.
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Fig. 4. Representative H&E-stained images from maxillae of all groups Alveolar ridge after extraction of (A, A1, B,B1,C,C1) healthy or (D, D1, D2, D3, E, E1, E2, E3, F, F1,F2, F3) diseased teeth
of vehicle, OPG-Fc, and ZA groups, respectively, viewed at 4 x (A, B,C, D, E, F), 10x (A1,B1,C1,D1,E1,F1),20x (D2, E2, F2), or 40x (D3, E3, F3) magnification. White arrows point to normal
epithelia lining, green arrows to inflammatory infiltrate, black arrows to epithelial migration, blue arrows to bone exposure, orange arrows to fragmented connective tissue, yellow arrows

to areas of osteonecrosis, light blue arrows to sequestra.
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Fig. 5. Quantification of the histologic findings. (A) percent empty osteolytic lacunae,
(B) percentage of osteonecrotic area, (C) distance from lower point of epithelium
to alveolar bone crest (D) number of TRAP + cells per area + Statistically significantly
different, p < 0.0001. *** statistically significantly different, p < 0.001. ** statistically
significantly different, p < 0.01. * statistically significant different, p < 0.05. Differences
among groups were calculated by two-way ANOVA and post-hoc Tukey's test for
multiple comparisons. Data represent the mean 4 SEM.

OPG-Fc and ZA animals with extraction of diseased teeth, the epi-
thelial to alveolar bone crest distance decreased and in animals
with bone exposure it assumed a negative value. This was

presumably due to the epithelial migration in combination with in-
hibition of alveolar bone crest resorption (Fig. 5C).

TRAP staining was performed to evaluate osteoclast numbers (Fig.
5D). As expected, high numbers of osteoclasts were present in vehicle
animals with extraction of healthy teeth, and statistically higher num-
bers in vehicle animals with extraction of diseased teeth. OPG-Fc treat-
ment inhibited formation of osteoclasts in all animals. As previously
observed [23-25], TRAP + cells in ZA treated animals were atypical,
with a round shape and pyknotic nuclear morphology that were de-
tached from the bone surface (not shown). Significantly increased num-
bers of these atypical TRAP + cells were seen in animals with extraction
of diseased vs. healthy teeth.

4. Discussion

Major progress has been made in the understanding of ONJ patho-
physiologic mechanisms since the disease was first reported more
than a decade ago [28,29]. However, significant gaps in our knowledge
still exist [1]. A strategy towards bridging these gaps is the concerted ef-
fort of research groups in developing animal models that closely mimic
ON]J presentation in humans [30]. For these models, animals are treated
systemically with high-dose antiresorptives in combination with a local
intervention.

Two approaches to induce changes to the local oral environment and
precipitate ONJ development have been utilized [1,30,31]. One ap-
proach involves tooth extraction [6-12], prompted by well-established
observations in clinical studies that clearly associate ONJ with tooth ex-
tractions [3-5]. These models employ extraction of healthy teeth in
combination with antiresorptives. However, in adult patients, >90% of
teeth are extracted due to severe dental disease, including periodontitis,
extensive caries, periapical disease, root fracture, or failed endodontic
treatment [13,14]. Severe dental disease, as the precipitating factor
leading to extraction, also occurs in patients on antiresorptives who
eventually develop ON]J [15]. Patients with bone cancer or osteoporosis
would not be candidates for elective extraction of healthy teeth. This
raises the concern that animal models of ONJ with extraction of healthy
teeth might not fully capture the clinical setting of patients with extrac-
tion of teeth so severely affected by dental disease that they cannot be
managed through conservative interventions.

A second approach in introducing local risk factors for ONJ develop-
ment in animals utilizes induction of severe dental disease [20-25]. This
approach was prompted by the association of periodontal or periapical
disease with ON] in patients in the absence of tooth extraction [1,2,16,
32]. An additional revealing observation was the 1981 publication by
Gotcher and Jee, reporting the presence of exposed alveolar bone tra-
beculae protruding into the oral cavity or well into the oral epithelium
of rice rats with periodontitis treated with dichloromethylene
diphosphonate (Cl,MDP) [19]. Thus, the authors effectively reported
the development of experimental ONJ nearly 22 years before the disease
was reported in patients [28,29]. However, these dental disease models
do not reflect the most common presentation of ON]J in patients, which
is a non-healing socket after tooth extraction [1,2,15].

The need to more accurately reflect the clinical reality has led re-
searchers to continue developing and improving animal models [1,30,
31]. In this effort, here we have combined the two approaches of alter-
ing the local oral environment to favor ONJ development along with ex-
traction of both healthy and diseased teeth. Additionally, animals were
treated with two different classes of antiresorptives: ZA, a potent BP,
or OPG-Fc, a RANKL inhibitor. We confirmed the presence of dental dis-
ease prior to tooth extractions by performing in vivo microCT and radio-
graphically assessing the architecture of the periodontal bone and the
alveolar ridge. The incidence of dental disease was comparable in all
groups, as reported in our previous publication [24]. Bone loss and cor-
tical bone thickness prior to tooth extraction, as assessed by in vivo
microCT, were similar to our previous report [24]. However, the current
data expand our previous study and provide visual, radiographic and
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histologic assessment of the socket healing after extraction of healthy
vs. diseased teeth in vehicle vs. antiresorptive treated animals.

Mucosa healed normally after extraction of healthy or diseased teeth
in vehicle animals, and following extraction of healthy teeth in animals
treated with antiresorptives. In contrast, extraction of diseased teeth in
animals treated with antiresorptives resulted in mucosal defects resem-
bling clinical ONJ in 70-75% of the sites. Our previous study in the ab-
sence of tooth extraction, reported bone exposure in 36.4-52% of
diseased teeth in animals on antiresorptives. Importantly, in that publi-
cation, bone exposure was noted only histologically and not with visual
inspection [24].

Radiographic assessment of the extraction socket revealed normal
healing of all the sockets in vehicle animals with extraction of healthy
or diseased teeth. In OPG-Fc or ZA animals with extraction of healthy
teeth, the extraction sockets healed mostly with woven bone that was
distinct from the remaining alveolar bone. However, in the same animal
groups, but with extraction of diseased teeth, 50-60% of the animals
showed defective socket healing with occasional sequestration.

Interestingly, quantitative histologic measures, including
osteonecrotic area, number of empty osteocytic lacunae and epithe-
lial to alveolar bone crest distance were similar between the current
data and our previous report [24], suggesting that although tooth
extraction affected mucosal healing and socket remodeling, it did
not affect the extent of osteonecrosis. These observations support
the thesis that bone necrosis precedes mucosal defect and do not
favor the hypothesis of a direct impairment of mucosal integrity by
antiresorptive treatments [33].

Our findings closely parallel the clinical, radiographic, and histologic
features of ONJ in patients with exposed and necrotic bone, without
(Stage 1) or with (Stage 2) evidence of infection [1,2]. Interestingly,
we did not observe any animals with extensive changes of the alveolar
bone structure, pathologic fractures, extraoral fistulae, or oronasal com-
munication that would be classified as Stage 3 ONJ. The absence of such
severely affected animals is possibly due to the short duration of our ex-
periments, the lower incidence of Stage 3 ONJ compared to other stages
[34-36], or the lack of a concomitant systemic factor that would com-
pound healing of the oral tissues [1,2].

Surprisingly, very few animals with extraction of healthy teeth and
treated with antiresorptives presented with mucosal defects or radio-
graphic and histologic features resembling ONJ. This finding appears in
agreement with some, but not all, published studies that have utilized
extraction of healthy teeth in animals on BP or other antiresorptive treat-
ment. Indeed, the reported outcomes of disease incidence and severity in
ON] rodent extraction models vary considerably [30]. This variability has
been hypothesized to be due to the type, route of administration, and
dose regimen of BP delivery, in combination with the lack of well-de-
fined outcome measures that define the presence of ONJ in rodents
[30]. It is noteworthy, that studies consistently reporting ONJ-like fea-
tures in mice or rat extraction models include in their experimental de-
sign systemic risk factors such as steroid or chemotherapy treatment,
vitamin D deficiency, or diabetes all of which alter soft tissue and/or
bone homeostasis and compound wound healing [6-8,10,12,37-39].

Our results here point to an additional factor contributing to the var-
iability of ONJ incidence and severity in animal model studies that lack a
concomitant systemic risk factor [9,11,40-46]. In our experience, occur-
rence of spontaneous periradicular lesions around maxillary teeth in
C57BI1/6] or DBA1/] male mice ranges from 35 to 50% [24], varies
among vendor shipment of animals, and is unavoidable. The only way
to predictably affirm the presence or absence of changes in alveolar
bone is to perform in vivo microCT prior to tooth extraction, as per-
formed in our present studies. Thus, it is plausible that in some studies,
extractions could have involved diseased teeth that might have inadver-
tently escaped detection. Based on our data presented herein, such ex-
tractions in animals under antiresorptive treatment would likely
present with clinical, radiographic, and histologic features of ONJ-like
lesions.

In our studies, OPG-Fc vs. ZA animals showed a significantly larger
number of empty osteocytic lacunae and osteonecrotic area, suggesting
that the extent of osteonecrosis might be slightly greater after OPG-Fc
treatment. We had made a similar observation of higher number of
empty osteocytic lacunae with OPG-Fc vs. ZA treatment previously
[24]. This finding could be within expected experimental variation.
However, it could also reflect diverse residual osteoclastic activity
after treatment with the two antiresorptives. Indeed, OPG-Fc abolished
formation of osteoclastic cells, suggesting complete inhibition of bone
resorption. On the other hand, TRAP positive cells were present in the
ZA animals, but demonstrated an altered morphology. Thus, some de-
gree of bone resorption must have occurred that caused ZA release
from the bone matrix and subsequent intracellular translocation to in-
duced alterations in osteoclast function and morphology. Nevertheless,
it is important to note that both OPG-Fc and ZA animals presented sim-
ilar incidence of mucosal defects and extraction socket healing deficits.

From a clinical point of view, our studies demonstrate the impor-
tance of detailed radiographic assessment of bone changes prior to
tooth extraction in patients on antiresorptive treatment. Indeed, the
most recent International Consensus paper [1] recommends that in pa-
tients for whom ON]J is a clinical concern and teeth extractions are con-
sidered, small field of view (FOV), high resolution Cone Beam Computed
Tomography (CBCT) or multi-detector CT scans are recommended, if
available. These imaging modalities provide valuable information on
changes in cortical and trabecular architecture, periosteal reaction,
osteolysis, or sequestration.

In conclusion, we have created an approach that refines existing ONJ
mouse models to more closely parallel the clinical setting. We report
that extraction of diseased, but not of healthy teeth in mice treated
with high-dose antiresorptives led to mucosal defects, and radiographic
and histologic features of ON]J. Our data, in association with previous
published reports, strongly suggest that dental disease is critical in path-
ogenesis of ONJ, not only as the instigating cause for tooth extraction,
but also as a compounding factor in ONJ development.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bone.2016.06.011.
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