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Abstract Bound-state solutions of the singular harmonic oscillator and singular
Coulomb potentials in arbitrary dimensions are generated in a simple way from the
solutions of the one-dimensional generalized Morse potential. The nonsingular har-
monic oscillator and nonsingularCoulombpotentials in arbitrary dimensionswith their
additional accidental degeneracies are obtained as particular cases. Added bonuses
from these mappings are the straightforward determination of the critical attractive
singular potential, the proper boundary condition on the radial eigenfunction at the
origin and the inexistence of bound states in a pure inversely quadratic potential.

Keywords Morse potential · Singular harmonic oscillator · Singular Coulomb
potential · D-dimensional Schrödinger equation

1 Introduction

Some exactly soluble systems with importance in atomic and molecular physics
have been approached in the literature on quantum mechanics with a myriad of
methods. Among such systems is the Morse potential a(e−αx − 2e−2αx ) [1–19],
the D-dimensional pseudoharmonic potential a (x/b − b/x)2 [4,5,20–31], and the
D-dimensional Kratzer–Fues potential a

(
b2/x2 − 2b/x

)
and its modified version

a
(
b2/x2 − b/x

)
[4,5,12,30–34].More general exactly soluble systems have also been

appreciated: the generalized Morse potential Ae−αx + Be−2αx [31,35–39], the sin-
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gular harmonic oscillator Ax2 + Bx−2 [3–5,19,36,40–51] and the singular Coulomb
potential Ax−1 + Bx−2 [2–5,36,40,48,50,52–57].

In a recent paper [58], it was shown that the Schrödinger equation for all those
exactly solvable problems mentioned above can be reduced to the confluent hyper-
geometric equation in such a way that it can be solved via Laplace transform
method with closed-form eigenfunctions expressed in terms of generalized Laguerre
polynomials. Connections between the Morse and those other potentials have also
been reported. The three-dimensional Coulomb potential has been mapped into the
one-dimensional Morse potential and into the three-dimensional singular Coulomb
potential via change of function and variable [59]. The Morse potential with partic-
ular parameters has been mapped into the two-dimensional harmonic oscillator [60]
and into the three-dimensional Coulomb potential [61]. Later, the generalized Morse
potential was mapped into the three-dimensional harmonic oscillator and Coulomb
potentials [62,63]. Furthermore, a certain mapping between the Morse potential with
particular parameters and the three-dimensional Kratzer–Fues potential has been
found with fulcrum on the algebra so (2, 1) and its representations [64]. Although
the Morse and the Kratzer–Fues potentials are well-known systems, the map con-
necting them was used recently to obtain the Wigner distribution functions for the
Kratzer–Fues potential from the Wigner distribution functions of the Morse potential
[65].

In this paper, an alternative and more general approach for the mapping is devel-
oped. We show that bound-state solutions of the singular harmonic oscillator and
singular Coulomb potentials in arbitrary dimensions can be generated in a simple way
from the bound states of the one-dimensional generalized Morse potential via Langer
transformation [59]. Links with the nonsingular harmonic oscillator and nonsingular
Coulomb potentials in arbitrary dimensions with their additional accidental degenera-
cies are obtained as particular cases. Added bonuses from these interrelationships are
the straightforward determination of the critical attractive singular potential (that one
which avoids the famous “fall of a particle to the centre” [3]) and the proper boundary
condition on the radial eigenfunction at the origin [that one which excludes spurious
solutions coming from the Laplacian operator (see, e.g. [66,67])]. As a mere epiphe-
nomenon of our approach, it is shown that a pure inversely quadratic potential can not
hold bound states.

In Sect. 2 we present a detailed analysis of the bound-state solutions in a one-
dimensional generalized Morse potential. In Sect. 3 we present a few relevant
properties of the Schrödinger equation in D dimensions for spherically symmetric
potentials. We then proceed to show that the bound states in the singular harmonic
oscillator and singular Coulomb potentials are linked to the bound states in the gen-
eralized Morse potential. Final remarks comprise Sect. 4.

2 Bound states in a generalized Morse potential

The time-independent Schrödinger equation is an eigenvalue equation for the char-
acteristic pair (E, ψ) with E ∈ R. For a particle of mass m embedded in a
one-dimensional potential V (x) it is given by
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d2ψ (x)

dx2
+ 2m

h̄2
[E − V (x)]ψ (x) = 0, (1)

where h̄ is Planck’s constant, and
∫ +∞
−∞ dx |ψ |2 = 1 for bound states. For the gener-

alized Morse potential

V (x) = V1e
−αx + V2e

−2αx , α > 0, (2)

the substitution

ξ = 2
√
2mV2 e−αx

h̄α
(3)

and the definitions

s =
√−2mE

h̄α
, a = mV1

h̄α
√
2mV2

+ s + 1

2
(4)

convert Eq. (1) into

d2ψ (ξ)

dξ2
+ 1

ξ

dψ (ξ)

dξ
+

(
−1

4
+ s − a + 1/2

ξ
− s2

ξ2

)
ψ (ξ) = 0, (5)

whose solutions have asymptotic limits expressed asψ (ξ) →|ξ |→0
ξ±s andψ (ξ) →|ξ |→∞

e±ξ/2. On account of the normalization condition,
∫ ∞
0 d|ξ | |ψ (ξ) |2/|ξ | = α, one has

that ψ behaves like ξ s as |ξ | → 0 and like e−ξ/2 as |ξ | → ∞ with ξ ∈ R (V2 > 0)
and s > 0 (E < 0). We write ψ = e−ξ/2ξ sw, where w satisfies Kummer’s equation

ξ
d 2w (ξ)

dξ2
+ (2s + 1 − ξ)

dw (ξ)

dξ
− aw (ξ) = 0 (6)

with general solution expressed as

w (ξ) = AM (a, 2s + 1, ξ) + BU (a, 2s + 1, ξ) . (7)

Here, A and B are arbitrary constants, M (a, b, z) = 1F1 (a, b, z) is the confluent
hypergeometric function [68], and

U (a, b, z) = π

sin πb

[
M (a, b, z)

� (1 + a − b)
− z1−b M (1 + a − b, 2 − b, z)

� (a) � (2 − b)

]
, (8)

where � (z) is the gamma function. One has to search particular solutions of Eq. (6)
such thatw (ξ) →

ξ→0
C andw (ξ) →

ξ→∞ ξα1eα2ξ
α3 , whereC is a nonvanishing constant,

α1 and α2 are arbitrary constants, and α3 < 1. This occurs because ξα1eα2ξ
α3−ξ/2 →

e−ξ/2 as ξ → ∞. For the reason that [68]
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M (a, b, z) →|z|→0
1, U (a, b, z) →|z|→0

� (b − 1) z1−b

� (a)
for b �= 1, (9)

one has B = 0. On the other hand [68],

M (a, b, z)

� (b)
→|z|→∞

eiπaz−a

� (b − a)
+ ezza−b

� (a)
, −π/2 < arg z < 3π/2, (10)

so thatw diverges as eξ for large ξ . Due to the poles of the gamma function in (10), this
bad behaviour can be remedied making −a = n ∈ N. It follows from (4) that V1 < 0
and therefore the generalized Morse potential is able to hold bound states only if it
has a well structure (V1 < 0 and V2 > 0). Furthermore, M (−n, b, z) is proportional
to the generalized Laguerre polynomial L(b−1)

n (z), a polynomial of degree n [68].
Therefore,

ψn (ξ) = Nn ξ se−ξ/2L(2s)
n (ξ) , (11)

where Nn is a normalization constant. Substituting a = −n in Eq. (4), one finds the
quantization condition

n + s + 1

2
= m|V1|

h̄α
√
2mV2

, (12)

and because s > 0 one gets

n <
m|V1|

h̄α
√
2mV2

− 1

2
. (13)

This restriction on n limits the number of allowed states and requires
m|V1|/

(
h̄α

√
2mV2

)
> 1/2 to make the existence of a bound state possible. Finally,

the solution of the quantization condition is expressed as

En = − V 2
1

4V2

[
1 − h̄α

√
2mV2

m|V1|
(
n + 1

2

)]2
. (14)

These results for the generalized Morse potential is in agreement with those ones
obtained in Ref. [58] via Laplace transform method.

3 Bound states in D dimensions

The D-dimensional time-independent Schrödinger equation is expressed as (see, e.g.
[19,69])

− h̄2

2m
∇2
Dψ (�r) + V (�r) ψ (�r) = εψ (�r) , (15)

where ∇2
D is the D-dimensional Laplacian operator. In spherical coordinates �r =

(r,�). Here, r = |�r | ∈ [0,∞), and � denotes a set of D − 1 angular variables.
Equation (15) is an eigenvalue equation for the characteristic pair (ε, ψ) with ε ∈ R

and
∫
dτ |ψ |2 = 1 for bound states. In this last formula dτ = r D−1drd� is the

volume element and the integral is taken over the whole hyperspace.
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For spherically symmetric potentials one can write (see, e.g. [19,69])

ψ (�r) = r (1−D)/2 u(r)Y (�) , (16)

where u obeys the radial equation

d2u (r)

dr2
+ 2m

h̄2

[
ε − V (r) − L (L + 1) h̄2

2mr2

]
u (r) = 0 (17)

with
∫ ∞
0 dr |u|2 = 1 for bound-state solutions, and

L = l + (D − 3) /2 or L = −l − (D − 1) /2, (18)

in which l = 0, 1, 2, . . . In (16), Y denotes the normalized hyperspherical harmonics
(
∫
d� |Y |2 = 1) labeled by D − 1 quantum numbers:

lD−1 = l, lD−2 = 0, 1, 2, . . . , lD−1, lD−3 = 0, 1, 2, . . . , lD−2,

...

l4 = 0, 1, 2, . . . , l5, l3 = 0, 1, 2, . . . , l4, l2 = 0, 1, 2, . . . , l3,

l1 = −l2,−l2 + 1, . . . ,+l2 − 1,+l2. (19)

Hence, the essential degeneracy of the spectrum for a given l is expressed by Avery
[69]

dl (D) = (D + 2l − 2) (D + l − 3)!
l! (D − 2)! . (20)

With potentials expressed as

V (r) = Zr δ + h̄2β

2mr2
, (21)

the Langer transformation [59]

u = √
r/r0 φ, r/r0 = e−αx , (22)

with r0 > 0 and  > 0, transmutes the radial equation (17) into

d2φ (x)

dx2
+ 2m

h̄2

{

− (h̄αS)2

2m
− (αr0)

2
[
Zr δ

0e
−α(δ+2)x − εe−2αx

]}

φ (x) = 0,

(23)
with

S =
√

β + (L + 1/2)2. (24)

At this point, it is instructive to note that S is insensible to the different choices of
L as prescribed by (18). Besides that, Eq. (23) is precisely the Schrödinger equation
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for the ‘Morse potential’ with V1 = 0 or V2 = 0 when (21) is the pure inversely
quadratic potential (δ = 0 or δ = −2). In this case there is no bound-state solution.
Nevertheless, a connection with the bound states of the generalized Morse potential,
with

∫ +∞
−∞ dx e−2αx |φ|2 = (αr0)−1, might be reached if the pair (δ,) is equal

to (2, 1/2) or (−1, 1). As an immediate consequence of the mapping for bound states
S2 > 0. Thus,

β > − (D − 2)2 /4. (25)

Furthermore, the existence of bound states also demands φ (x) →
x→+∞ e−αS x with

S > 0, in such a way that
u (r) →

r→0
r1/2+S . (26)

The above restriction on the coupling constant β and the boundary condition
u (0) = 0 represent important pieces for the determination of bound states. The first
one excludes strongly attractive singular potentials and can be obtained by recurring
to a regularization of the potential at the origin (see, e.g. [3]). The second one, well-
grounded even for nonsingular potentials, can be legitimated by ruling out the Dirac
delta function δ (�r) coming from the Laplacian operator in (15) (see, e.g. [66,67]).

3.1 The singular harmonic oscillator

With δ = 2 plus the definition Z = mω2/2, the potential (21) is written as

V (r) = 1

2
mω2r2 + h̄2β

2mr2
. (27)

In order to complete the identification of the bound-state solutions with those ones
from the generalized Morse potential one must choose = 1/2, V1 = −α2r20ε/4 and
V2 = α2r40mω2/8. For the reason that V1 < 0 and V2 > 0 one can see that bound-state
solutions require ε > 0 and ω2 > 0, respectively, and choosing ω > 0 one can write

ξ = mωr2/h̄. (28)

Furthermore, (13) implies ε > 2h̄ω (n + 1/2). Using (14) and (24) one can write
the complete solution of the problem as

εnL = h̄ω (2n + 1 + S) ,

unL(r) = AnLr
1/2+Se−mωr2/(2h̄)L(S)

n

(
mωr2/h̄

)
. (29)

When β = 0, the case of a pure harmonic oscillator, one can write

εN = h̄ω (N + D/2) , N = 0, 1, 2, . . . , (30)

where N = 2n + l. The radial eigenfunction u, though, is labelled with the quantum
numbers N and l, with l even (odd) for N even (odd) and l ≤ N .
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3.2 The singular Coulomb potential

Now, δ = −1 and

V (r) = Z

r
+ h̄2β

2mr2
. (31)

Comparison of the bound states with those ones from the generalized Morse poten-
tial is done by choosing  = 1, V1 = α2r0Z and V2 = −α2r20ε. The conditions
V1 < 0 and V2 > 0 imply Z < 0 and ε < 0, respectively. Now,

ξ = 2
√
2m|ε| r/h̄ (32)

and (13) implies ε > −h̄2/[2ma2 (n + 1/2)2]. Here, a = h̄2/ (m|Z |). Using (14) and
(24) one can write

εnL = − h̄2

2ma2 (n + 1/2 + S)2
,

unL (r) = BnLr
1/2+Se−r/[a(n+1/2+S)]L(2S)

n (2r/ [a (n + 1/2 + S)]) . (33)

In the case of a pure Coulomb potential (β = 0), one can write

εN = − h̄2

2ma2 [N + (D − 3) /2]2
, N = 1, 2, 3, . . . (34)

Here N = n + l + 1 and the radial eigenfunction u is labelled with the quantum
numbers N and l, with l ≤ N − 1.

4 Final remarks

We have shown that the complete infinite sets of bound-state solutions of the singular
harmonic oscillator and singular Coulomb potentials (and their higher degenerate
nonsingular counterparts) in arbitrary dimensions can be extracted from the finite
set of bound-state solutions of the one-dimensional generalized Morse potential in
a simple way. Surprisingly, the determination of the critical coupling constant βc =
− (D − 2)2 /4 aswell as the proper boundary condition u (0) = 0 emerged in a natural
manner. As a by-product, we have shown that there is no bound state in a pure inversely
quadratic potential.
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