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Quasi-analytical algorithm (QAA) was designed to derive the inherent optical properties (IOPs) of water
bodies from above-surface remote sensing reflectance (Rrs). Several variants of QAA have been developed
for environments with different bio-optical characteristics. However, most variants of QAA suffer from
moderate to high negative IOP prediction when applied to tropical eutrophic waters. This research is
aimed at parametrizing a QAA for tropical eutrophic water dominated by cyanobacteria. The alterations
proposed in the algorithm yielded accurate absorption coefficients and chlorophyll-a (Chl-a) concentra-
tion. The main changes accomplished were the selection of wavelengths representative of the optically
relevant constituents (ORCs) and calibration of values directly associated with the pigments and detritus
plus colored dissolved organic material (CDM) absorption coefficients. The re-parametrized QAA elimi-
nated the retrieval of negative values, commonly identified in other variants of QAA. The calibrated model
generated a normalized root mean square error (NRMSE) of 21.88% and a mean absolute percentage error
(MAPE) of 28.27% for at(k), where the largest errors were found at 412 nm and 620 nm. Estimated NRMSE
for aCDM(k) was 18.86% with a MAPE of 31.17%. A NRMSE of 22.94% and a MAPE of 60.08% were obtained
for au(k). Estimated au(665) and au(709) was used to predict Chl-a concentration. au(665) derived from
QAA for Barra Bonita Hydroelectric Reservoir (QAA_BBHR) was able to predict Chl-a accurately, with a
NRMSE of 11.3% and MAPE of 38.5%. The performance of the Chl-a model was comparable to some of
the most widely used empirical algorithms such as 2-band, 3-band, and the normalized difference chloro-
phyll index (NDCI). The new QAA was parametrized based on the band configuration of MEdium
Resolution Imaging Spectrometer (MERIS), Sentinel-2A and 3A and can be readily scaled-up for spatio-
temporal monitoring of IOPs in tropical waters.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Proximal and satellite remote sensing for marine and freshwa-
ter systems is often aimed at estimating the optically relevant con-
stituents (ORCs) such as phytoplankton, total suspended sediments
(TSS), and colored dissolved organic matter (CDOM) concentrations
from remote sensing reflectance (Rrs). Rrs is directly related to the
inherent optical properties (IOPs) of the water, i.e., absorption (a)
and backscattering coefficients (bb) as described by Gordon et al.
(1988):
RrsðkÞ / bbðkÞ
bbðkÞ þ aðkÞ ð1Þ
where a(k) is the absorption coefficients of phytoplankton, detritus,
CDOM, and pure water and bb(k) is represented by the sum of
backscattering of particulate material and pure water. Table 1 lists
all symbols, abbreviations and definitions used in this study.

Marine and freshwater systems contain a differing variety of
particles and dissolved substances and the variability in absorption
and backscattering properties associated with these constituents
hampers the extraction of quantitative information about them
(Morel and Prieur, 1977). Several remote sensing methods have
been developed to quantify ORCs responsible for water color using
statistical regressions (Vincent et al., 2004; Mishra and Mishra,
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Table 1
Symbols, abbreviations, and definitions.

Symbols Definition Unit

a(k), at(k) Absorption coefficient of the total, aCDM + au + aw (m�1)
ap(k) Absorption coefficient of particulate material (m�1)
ad(k) Absorption coefficient of detritus (m�1)
aCDOM(k) Absorption coefficient of colored dissolved organic material (m�1)
aCDM(k) Absorption coefficient of detritus and CDOM (m�1)
au(k) Absorption coefficient of phytoplankton pigments (m�1)
aw(k) Absorption coefficient of pure water (m�1)
at-w(k) Absorption coefficient of the total minus pure water (m�1)
ORC Optically relevant constituent
bb(k) Backscattering of the total, bbp + bw (m�1)
bbp(k) Backscattering of particle (m�1)
bw(k) Backscattering of pure water (m�1)
BBHR Barra Bonita hydroelectric reservoir
CDOM Colored dissolved organic matter
CDM Colored detrital material
Chl-a Chlorophyll-a (mg m�3)
IOP Inherent optic properties
g Spectral power for particle backscattering coefficient
Rrs(k) Above surface remote sensing reflectance (sr�1)
rrs(k) Below surface remote sensing reflectance (sr�1)
S Spectral slope for detritus and CDOM absorption coefficient
u Ratio of backscattering coefficient to the sum of absorption and backscattering coefficient, bb/(a + bb)
k0 Reference wavelength (nm)
f au(411)/au(443)
n aCDM(411)/aCDM(443)
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2010; Gurlin et al., 2011; Odermatt et al., 2012; Kumar et al., 2016)
and inversion algorithm techniques (Hoge and Lyons, 1996;
Brando and Dekker, 2003; Doerffer and Schiller, 2007; Odermatt
et al., 2012). These models are based on Rrs or irradiance reflec-
tance (R) and use empirical, semi-analytical and quasi-analytical
approaches.

Empirical models are based on statistical regression between
water properties and Rrs or R measurements. These models do
not utilize the IOPs which limits their applicability in terms of tem-
poral and geographic spread (Moses et al., 2012; Odermatt et al.,
2012; Lee et al., 2002). Semi-analytical models involve numerical
optimization and are based on solutions for radiative transfer
equations (Hoge and Lyons, 1996; Brando and Dekker, 2003; Lee
et al., 2002; Chen et al., 2014). Nevertheless, they require some
empirical solution (Odermatt et al., 2012). These models have the
geographic and temporal flexibility and can be applied to other
aquatic environments (Lee et al., 2002). However, their perfor-
mances depend on the parameterization to be representative of
the IOPs of that environment (Lee et al., 2002).

The quasi-analytical algorithm (QAA) was originally developed
by Lee et al. (2002) to derive a(k) and bb(k) from Rrs directly below
the air-sea interface (rrs). Derived a(k) are decomposed to absorp-
tion by phytoplankton (au(k)) and CDOM plus detritus (CDM)
(aCDM(k)), whereas, bb(k) is estimated from the backscattering coef-
ficient for particulate material (bbp) (Lee et al., 2002, 2009; Mishra
et al., 2013, 2014; Lee, 2014). Lee et al. (2002) showed that QAA
presented similar accuracy when compared to approaches using
optimization techniques. Several versions of QAA have been
parametrized and tested for aquatic environments with different
IOPs such as open ocean and coastal waters (Lee et al., 2002,
2009; IOCCG, 2006; Lee, 2014; Wei et al., 2015; Chen and Zhang,
2015), lakes (Le et al., 2009), rivers (Zhu et al., 2013; Li et al.,
2013, 2015), and ponds (Mishra et al., 2013, 2014).

Wavelength reference (k0) and the spectral power for particle
backscattering coefficient (g) have been appointed as the main
source of errors in estimating a(k0) (Le et al., 2009; Yang et al.,
2013). The selection of the (k0) is essential for an accurate perfor-
mance of the QAA and must be dominated by pure water absorp-
tion (aw). QAA was originally developed for open ocean waters by
Lee et al. (2002) using 555 nm as k0. The algorithm was
parametrized and calibrated using ocean Rrs data available from
NASA bio-Optical Marine Algorithm Dataset (NOMAD) (SeaBASS,
2015). Lee and Carder (2004) applied the native QAA to coastal
waters, with chlorophyll-a (Chl-a) concentration ranging from
0.16 to 11.3 mg m�3. Other versions up to version 5, all
developed for marine environments, adopted 555 nm as k0 (Lee
et al., 2009). Lee (2014) proposed 667 nm as k0 for waters with
Rrs(670) > 0.0065 sr�1, i.e., waters with higher concentrations of
Chl-a.

In inland waters, there is a high influence of au(k) and aCDM(k)
over a(k) at shorter wavelengths and hence other authors (Le
et al., 2009; Mishra et al., 2013, 2014; Li et al., 2013, 2015) have
shifted k0 toward the red-edge region, improving significantly the
estimation of a(k0). Le et al. (2009) conducted a study in Taihu
Lake, a highly turbid eutrophic water body. They used the
wavelength at 710 nm as k0. Mishra et al. (2013, 2014) developed
a version for highly productive waters with a Chl-a range of
59.40–1376.60 mg m�3 and TSS range of 69.80–401.20 g m�3. They
did not immediately observed an improvement in the model per-
formance by shifting k0 to 708 nm, because there still was influ-
ence of particles absorption at this wavelength. Several attempts
were carried out until they found a satisfactory empirical relation-
ship between a and rrs.

Li et al. (2013, 2015) also developed QAA versions for inland
waters. The first model developed by Li et al. (2013) was parame-
trized for an environment with a Chl-a range of 1.85–
285.8 mg m�3 and TSS range of 1.51–211.91 g m�3. The second
model was a QAA for an environment with a Chl-a range of
2.93–285.8 mg m�3 and TSS of 2.34–123.79 g m�3. They changed
the structure of some QAA steps while using 709 nm as k0. Yang
et al. (2013) developed a study in three turbid Asian lakes with a
Chl-a range of 9.79–153.92 mg m�3 and TSS range of 4.81–
61.00 g m�3. They shifted the position of k0 to 753 nm to prevent
the interference of the high turbidity over a(k0).

Bio-optical status of the water body at these locations is very
different from each other, therefore, these versions may not be



30 F. Watanabe et al. / ISPRS Journal of Photogrammetry and Remote Sensing 121 (2016) 28–47
directly applicable to all aquatic systems with widely varying
range of OACs. Our study area exhibited a Chl-a range of 17.7–
797.8 mg m�3 and TSS range of 3.6–44 g m�3. This extreme Chl-a
range is outside the calibration range of all the aforementioned
QAAs and therefore, produces high errors in IOP prediction. The
objective of this study were to parametrize and calibrate a QAA
to retrieve IOPs and use them in a bio-optical model for estimating
Chl-a concentration in a tropical eutrophic reservoir with extreme
variability in phytoplankton biomass.

The newly re-parametrized QAA is based on the QAA_v5 pro-
posed by Lee et al. (2009). Radiometric data and water samples col-
lected in situ were used to parametrize and calibrate the empirical
steps (Lee et al., 2002) of QAA. Alterations to some empirical steps
considerably improved the retrieval of at(k), aCDM(k) and au(k). The
critical alterations as part of the re-parameterization were (a) the
selection the wavelengths suitable for the OACs composition; (b)
calibration of a(k0); (c) parameterization and calibration of f that
is a value associated with au; and (d) calibration of n, the parameter
associated with aCDM. The accurate calibration and parameteriza-
tion of at-w(k0) was essential to derive a(k0) and other IOPs, being
that the wavelengths associated with absorption by Chl-a and phy-
cocyanin (PC) (443, 620 and 665 nm) were the most appropriate.
The novelty of this research is related to estimation of aCDM(k)
and au(k), which were underestimated with all existing QAA, yield-
ing negative values. The fit of CDOM spectral slope (S) improved
the accuracy of algorithm, but the alterations carried out in f were
the key contributions of this study. This new variant of QAA would
be applicable to tropical reservoirs exhibiting eutrophic to hyper-
eutrophic conditions.
2. Data and methods

2.1. Study area

Barra Bonita hydroelectric reservoir (BBHR) (22� 310 1000 S and
48� 320 300 W) lies in the middle course of the Tietê River, São Paulo
State, Brazil (Fig. 1). The BBHR is situated in a transitional region
between tropical and subtropical climate, characterized by a dry
period (May–October) and a wet period (November–April). The
BBHR is the first of six reservoirs cascading in the Tietê River and
was built in 1963, flooding an area of 310 km2 with a volume of
Fig. 1. Study area – Barra Bonita hydroelectric reservoir (BBHR). Map shows the distribu
432) acquired on October 13, 2014.
3.622 � 106 m3. It is a storage reservoir, presenting a minimum
quota of 439.5 m and maximum of 451.5 m (AES Tietê, 2013).

According to Tundisi et al. (2008), the maximum depth of the
reservoir is 25 m, with an average of 10.2 m. The water retention
time varies from 30 days (austral summer) to 180 days (austral
winter). The flow range is 1500 m3 s�1 in the austral summer
(wet season) to 200 m3 s�1 in the austral winter (dry season). BBHR
is characterized as eutrophic waters with high species richness and
concentration of phytoplankton (Calijuri and Santos, 1996;
Dellamano-Oliveira et al., 2008). The dominant species of phyto-
plankton in BBHR are Microcystis aeruginosa and free cells ofMicro-
cystis sp. (Cyanophyceae), and Aulacoseira granulata filaments
(Bacillariophyceae). Their variation in space and time are mainly
associated with water column mixing events and residence time.

The calibration data were collected in the Austral Autumn (May
5–9, 2014) and Austral Spring (October 13–16, 2014), whereas, the
validation dataset was acquired in the Austral Winter (September
13–15, 2015). Water samples and radiometric measurements were
collected from 20 sampling locations randomly distributed in
BBHR (see Fig. 1 for location), selected using a method proposed
by Rodrigues et al. (2016). Water samples were collected to esti-
mate Chl-a and TSS concentration, and IOPs (Watanabe et al.,
2015).

2.2. Remote sensing reflectance

Radiometric measurements collected in situ were used to calcu-
late Rrs using Mobley (1999).

Rrs ¼ Lw
Es

¼ ðLt � qLsÞ
Es

ð2Þ

where Ls is the incident sky radiance; Lt is the total radiance mea-
sured above surface and composed of the water-leaving radiance
(Lw) and the portion of the Ls that is reflected by water surface
(Lr); Es is the incident sky irradiance; q is a reflectance factor related
to direction, wavelength, wind speed, sensor field of view (FOV)
taken equal to 0.028, and sky radiance distribution (Mobley, 1999).

Acquisition geometry was adopted from Mobley (1999) and
Mueller (2003). Three spectroradiometers, one ACC-VIS RAMSES
with cosine collector and two ARC-VIS RAMSES with a 7� field-
of-view (TriOS, Oldenburg, Germany), were used to acquire the
radiometric measurements. The ACC-VIS sensor was pointed
tion of sampling locations on a Landsat-8 (path/row 220/76) true color image (RGB-



Fig. 2. In situ Rrs spectra collected in (a) May 2014 (n = 18), (b) October 2014 (n = 20), and (c) September 2015 (n = 24).
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upward to collect Es(k) (Wm�2). One ARC-VIS sensor was pointed
in downward direction (water surface) with an angle of 45� in rela-
tion to nadir position of the zenith angle to measure the Lt(k)
(Wm�2 sr�1). Another ARC-VIS sensor was pointed upward direc-
tion (sky) with an angle of 135� in relation to nadir position of
the zenith angle to measure Ls(k) (Wm�2 sr�1). The radiometers
acquired data in a wavelength range of 320–950 nm and a spectral
sampling of approximately 3.3 nm, therefore, all of the Es(k), Lt(k)
and Ls(k) measurements were interpolated to 1 nm.

Eighteen samples were collected in May 2014, 20 samples in
October 2014 and 24 samples in September 2015. Fig. 2 shows
the Rrs spectra measured in the three field surveys. The 38 mea-
surements of Rrs (first two field surveys) were used as input to
parametrize the QAA. The absorption feature of the phycocyanin
(PC) pigment at approximately 620 nm (Weaver and Wrigley,
1994; Mishra et al., 2009, 2014; Ogashawara et al., 2013) associ-
ated with presence of cyanobacteria is clearly identified in both
field campaigns. The high absorption at about 680 nm and reflec-
tance at 710 nm is associated with high concentrations of Chl-a
indicating the eutrophic status of the study site. Central wave-
lengths of the bands available in the MEdium Resolution Imaging
Spectrometer (MERIS) sensor, onboard ENVISAT-1 satellite (ESA,
2015), were adopted as reference to parametrize the QAA.
Although MERIS is non-operational, the results obtained in this
research can be compared with MERIS based published literature.
In addition, MERIS bands are compatible with of other operational
sensor systems such as MSI/Sentinel-2A, launched in June 23rd
2015, and OLCI/Sentinel-3A launched on February 16th 2016
(ESA, 2015).
2.3. Optically relevant constituents (ORCs)

Water samples were collected in situ to measure Chl-a, TSS,
inorganic suspended solids (ISS) and organic suspended solids
(OSS) concentrations. 250 ml water was filtered through each glass
fiber GF/F Whatman, 47 mm diameter and 0.7 lm pore size filter. A
vacuum pressure pump and a filter holder were used to help in the
filtration process. The filter was frozen and kept in the dark until
further analysis. The residue on the filter was used to estimate
the Chl-a concentration in the laboratory. Extraction by acetone
was the method adopted to estimate the Chl-a concentration
(Golterman, 1975).

Water samples were filtered in glass fiber filter GF/F Whatman
(47 mm diameter and 0.7 lm pore size) and stored frozen and in
the dark to estimate TSS. The filters were dried in an oven at
105 �C for 12 h, desiccated and weighed to obtain the TSS. The fil-
ters were ignited at 550 �C for 30 min in the muffle furnace, and
then desiccated and weighed to acquire the ISS. Subtracting the
ISS from the TSS yielded the OSS, and dividing each component
of solids by filtered volume provided the concentrations of each
constituent (APHA, 1998).
2.4. Inherent optical properties (IOPs)

ap(k), aCDM(k) and au(k) were estimated in laboratory and were
used to assess the QAA performance. Water samples were collected
from 20 sampling locations during both field trips (May 2014 and
October 2014). 250 ml of water from each location was filtered
using GF/F Whatman glass fiber filters with 0.7 lm pore size and
47 mm diameter, kept frozen and in the dark until the analysis to
estimate ap(k), aCDM(k) and au(k). The measurements were acquired
over 280 – 800 nm spectral range at 1 nm interval by using a 2600
UV–Vis spectrophotometer (Shimadzu, Kyoto, Japan) with dual
beam and an integrating sphere. The optical density of the partic-
ulate materials was obtained from the first reading. After, the pig-
ment in the filter was extracted with sodium chloride, the filter
was measured again to determine the optical density of detritus.
These optical densities were corrected for multiple scattering
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effects caused by the glass-fiber filter (Cleveland and Weidemann,
1993). The ap and ad were estimated from the corrected optical
densities (Tassan and Ferrari, 1995, 1998, 2002). Finally, the au
was obtained by subtracting the ad from ap.

Water samples were filtered through a nylon membrane What-
man filter with 0.22 lm pore size and 47 mm diameter to measure
the CDOM (colored dissolved organic material) optical density
(ACDOM). The filtrates were stored, kept cool and in the dark until
the analysis. The samples were measured at room temperature
using a quartz cuvette with 10 cm optical path. The measurements
were acquired in a spectral range of 280 – 800 nm using a 2600
UV–Vis spectrophotometer (Shimadzu, Kyoto, Japan) with a single
beam. Milli-Q water was used as blank reference. From the ACDOM,
CDOM absorption coefficients (aCDOM) were calculated by using Eq.
(3) (Bricaud et al., 1981).

aCDOM ¼ 2:3
ACDOMðkÞ

l
ð3Þ

where ACDOM (k) is the optical density at wavelength (k) and l is the
cuvette path length in meters (Bricaud et al., 1981).

2.5. Quasi-Analytical Algorithm (QAA)

QAA is used to retrieve a(k) and bb(k) coefficients from Rrs and is
based on the principle that Rrs behavior depends on the IOPs of the
ORCs present in the water (Lee et al., 2002). Table 5 shows the
altered steps of the inversion model to derive a(k) and bb(k).
Several existing versions of the QAA were tested in this study,
however, only five QAAs were further analyzed. Two criteria were
used in selecting existing QAAs for further analysis, first, the QAA
should be able to retrieve au at MERIS bands or at least at wave-
lengths typically associated with au and suitable for inland waters
applications; and second, the QAA should not perform poorly, i.e.,
consistent under- or overestimation in retrieving au for this study
site. Three out of the five were developed for open ocean and
coastal waters: QAA_v4 (IOCCG, 2006), QAA_v5 (Lee et al., 2009),
and QAA_v6 (Lee, 2014). QAA_v4 and QAA_v5 are recommended
for water with low absorption coefficients, where, Rrs(670)
< 0.0065 sr�1 (Lee et al., 2009; Lee, 2014). QAA versions developed
for inland waters by Mishra et al. (2013, 2014) were also tested and
were labeled as QAA_M13 and QAA_M14, respectively. Both
QAA_M13 and QAA_M14 used 708 nm as the reference wavelength
(k0) and were parametrized to quantify PC concentration (Mishra
et al., 2013, 2014). In turbid waters, the k0 should be shifted to
longer wavelengths where water absorption is predominant in
order to avoid strong interference from other ORCs (Lee et al.,
2002, 2009; Mishra et al., 2014). Both QAA_M13 and QAA_M14
were parametrized and calibrated for waters with characteristics
somewhat similar to BBHR. QAA_M13 and QAA_M14 were origi-
nally parametrized and calibrated using data collected at aquacul-
ture ponds in Thad Cochran National Warmwater Aquaculture
Center, Mississippi, USA. Ponds were used for catfish aquaculture
and presented characteristics of high algal turbidity and primary
productivity. A dataset comprising of 24 samples was used to cal-
ibrate QAA_M13, whereas, 20 samples were used to calibrate
QAA_M14. Chl-a concentration varied from 59.4 mg m�3 to
1376.6 mg m�3 and average of 293.3 mg m�3, while a(443) range
was of 4.99 m�1 to 47.21 m�1.

2.5.1. Parameterization and calibration of the QAA
These different versions of QAA found in the literature fre-

quently point to the fact that the IOPs for the water system must
be taken into account in order to develop an accurate QAA. In
inland waters, the bio-optical parameters depend on the geological
and soil characteristics and runoff activities of the drainage basin.
Therefore, it is expected that the versions found in the literature
may not be suitable for reservoirs in tropical regions. Re-
parameterization and calibration of existing QAA may be the only
option to improve their performances (Lee et al., 2009; Mishra
et al., 2013, 2014; Lee, 2014). In this paper, empirical steps of the
QAA were tuned based on the bio-optical characteristics of BBHR.
Empirical steps were modified to improve the performance of the
QAA and are indicated in Table 5. The version proposed in this
paper retains the basic framework of QAA_v5 and is referred to
as QAA_BBHR. a(k) and bb(k) were retrieved from rrs measure-
ments. The rrs can be analytically derived from u (ratio of bb to
the sum of a and bb) or empirically from Rrs as shown in Eqs. (4)
and (5).

rrs ¼ g0uðkÞ þ g1½uðkÞ�2 ð4Þ

rrs ¼ Rrs=ð0:52þ 1:7RrsÞ ð5Þ
where, g0 = 0.0895 and g1 = 0.125 are average of the values pro-
posed by Gordon et al. (1988) and Lee et al. (1999) that vary with
the phase function of particle and are not remotely measured (Lee
et al., 2002). u can be derived from rrs (Eq. (4)) as shown
in Eq. (7).

u ¼ bb

aþ bb
ð6Þ

u ¼
�g0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0Þ2 þ 4g1 � rrsðkÞ

q
2g1

ð7Þ

Re-parameterization and calibration of QAA began by determin-
ing the k0. According to Lee et al. (2002), k0 is the position where
the elastic scattering can be accurately measured and a(k0) can
be estimated from rrs(k0). In this study, 709 nm was selected as
k0, assuming at(709) equals to aw(709) (Lee et al., 2002, 2009;
Mishra et al., 2014). At 709 nm, the aw has a greater contribution
toward the at(k). The average aw(709) contributed 75% toward
the at(709) in our dataset. That contribution was much higher in
May (84.4%) compared to October (65.5%), whereas, the average
aw(560) and aw(670) contributed 9.2% and 28.6% toward the corre-
sponding at. aw(k) proposed by Pope and Fry (1997) and bbw(k) pro-
posed by Smith and Baker (1981) were adopted for the
parameterization of QAA_BBHR.

Fig. 3 shows the average au and aCDM acquired from BBHR, in (a)
May 2014 and (b) October 2014. It is noticeably clear that au(k) and
aCDM(k) determine the shape and magnitude of at(k) at 555 nm and
665 nm as opposed to at 709 nm. Contribution of au(k) was 48.3%
at 560 nm and 63.2% at 670 nm, whereas, CDM absorption was
43.4% and 9.9% of at at 560 nm and 670 nm, respectively. It was
also observed that aCDM(k) has consistently higher influence than
au(k) toward at(k). Finally, the pigment absorption features were
mainly, related to Chl-a and PC.

a(k0) is composed by the sum of aw(k0), au(k0) and aCDM(k0) (Eq.
(8)) and can be empirically derived from Eq. (9) (Lee et al., 2009).

aðk0Þ ¼ awðk0Þ þ auðk0Þ þ aCDMðk0Þ ð8Þ

aðk0Þ ¼ awðk0Þ þ 10h0þh1vþh2v2 ð9Þ
where v is a value obtained from the ratio of rrs at different wave-
lengths associated with spectral features of pigments and CDOM
(Eq. (10)) (Lee et al., 2009), h0, h1 and h2 are the calibration coeffi-
cients of the polynomial fit between at-w(k0) and v. Overall, rrs at
wavelengths associated with absorption of pigments performs most
accurately for the estimation of a(k0).

v ¼ log10
rrsðk1Þ þ rrsðk2Þ

rrsðk0Þ þ rrsðk3Þ2 � rrsðk4Þ�1

 !
ð10Þ



Fig. 3. Average absorption coefficient by phytoplankton (au) (dotted line), CDM (aCDM) (dashed line), and pure water (aw) (continuous line) (Pope and Fry, 1997) measured in
(a) May 2014 and (b) October 2014.
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where rrs(k0) is below surface remote sensing reflectance at refer-
ence wavelength; k1, k2, k3, and k4 are wavelengths associated with
dominant spectral features of the pigments and/or CDOM. Parame-
terization and calibration of v was performed based on the band
center of MERIS and Sentinel 2&3 sensors. The wavelengths (k1,
k2, k3 and k4) associated with the absorption by Chl-a and PC
(443, 620, and 665 nm) showed the best performance (Table 5). Dif-
ferent combinations were tested and the selection of the most ade-
quate combination was based on NRSME and MAPE obtained in
estimating a(k) spectrum.

bbp(k0) was retrieved from a(k0) analytically (Eq. (11)).

bbpðk0Þ ¼ uðk0Þaðk0Þ
1� uðk0Þ � bbwðk0Þ ð11Þ

where u(k0) was calculated using Eq. (7) and bbw(k0) was adopted
from Smith and Baker (1981).

bbp(k) was derived from bbp(k0) based on Smith and Baker
(1981).

bbpðkÞ ¼ bbðk0Þ k0
k

� �g

ð12Þ

Spectral power for bbp(k) (Table 5) was also parametrized,
changing the wavelength of denominator in Eq. (13). Based on cal-
ibration, the coefficients of gwere changed and evaluated to deter-
mine the most accurate coefficients. A value range of 1.0 to 1.9 was
tested for a, 1.3 to 1.5 for b, and 0.1 to 0.8 for c. Although alter-
ations were tested, the g proposed by Lee et al. (2009) showed
the best performance.

g ¼ a b� c � exp �d
rrsð443Þ
rrsðkÞ

� �� �
ð13Þ

Spectral curve of a(k) was analytically estimated (Eq. (14)) from
u(k), bbp(k) and bbw(k).

aðkÞ ¼ ð1� uðkÞÞðbbwðkÞ þ bbpðkÞÞ
uðkÞ ð14Þ

au(k) and aCDM(k) were estimated from a(k). f and n (Table 5) values
depend on pigment composition, humic versus fulvic acids, and
abundance of detritus. f is related to Chl-a concentration or pigment
absorption, while n is related to the CDM absorption (Lee et al.,
2002). f and n were derived empirically based on Eqs. (15) and
(16). Miscalibration of f and n can lead to under- or overestimation
of aCDM and au.

f ¼ auð411Þ
auð443Þ ¼ aþ b

c þ rrsð443Þ=rrsð560Þ ð15Þ

n ¼ aCDMð411Þ
aCDMð443Þ ¼ eSð443�411Þ ð16Þ
n was modified based on the aCDM spectral slope (S) values obtained
from laboratory analysis. Empirically, S was also derived from the
band ratio of absorption by pigments and CDOM (560 nm and
443 nm, respectively) (Eq. (17)). A magnitude difference was
detected between measured and estimated S, with average values
of 0.161 nm�1 and 0.171 nm�1, respectively, and NRMSE (Normal-
ized Root Mean Square Error) of 15.5%. Thus, an alteration was
applied to the intercept of the equation (Table 5) as presented in
Eq. (17). Even after changing S, aCDM still produced negative values,
consequently, au presented high overestimation, therefore, f
(Table 5) also was calibrated. f works as multiplicative factor,
always associated with a subtractive term. Therefore, f was likely
being overestimated. Different values of offset (equation of Table 5)
were tested, varying from 0.1 to 0.9.

S ¼ aþ b
c þ rrsð443Þ=rrsð560Þ ð17Þ

aCDM(443) was analytically derived (Eq. (18)) by removing the influ-
ence of au and aw from a and by defining the proportion of CDM and
phytoplankton absorption at wavelengths 411 nm and 443 nm.
aCDM is stronger at 411 nm than at 443 nm and phytoplankton
absorbs more at 443 nm than at 411 nm (Carder et al., 1999). There-
fore, the proportion of CDM and phytoplankton absorption can be
determined using f and n values. The spectral curve of aCDM(k) can
be analytically expressed by Eq. (19). au(k) was derived from a(k)
and aCDM(k) using Eq. (20).

aCDMð443Þ ¼ ðað411Þ � fað443ÞÞ � ðawð411Þ � fawð411ÞÞ
n� f

ð18Þ

aCDMðkÞ ¼ aCDMð443Þe�Sðk�443Þ ð19Þ

auðkÞ ¼ atðkÞ � awðkÞ � aCDMðkÞ ð20Þ
2.6. Application of derived IOPs to retrieve Chl-a concentration

One of the interests in retrieving absorption coefficients of each
ORC is to estimate their concentrations. Therefore, IOPs derived by
QAA were used to parametrize bio-optical models for estimating
Chl-awhich can be used as bio-indicator of phytoplankton biomass
(Goodin et al., 1993). Phytoplankton absorbs strongly at 443 nm
and commonly used ocean color algorithms utilize the blue-
green ratio to estimate Chl-a (O’Reilly et al., 1998; Carder et al.,
1999). However, in eutrophic water bodies such as BBHR, absorp-
tion coefficients at blue region can be highly influenced by other
components such as CDOM. Therefore, red-NIR wavelengths have
been used in several bio-optical algorithms to estimate Chl-a
because these wavelengths have low interference from the absorp-
tion or backscattering coefficients of CDOM and detritus (Gitelson
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et al., 2008; Mishra and Mishra, 2012; Le et al., 2013; Matsushita
et al., 2015). In highly turbid waters, 754 nm can also be used to
minimize the effects from detritus and CDOM (Gitelson et al.,
2008; Matsushita et al., 2015).

We used the au derived by QAA in redesigning the red-NR based
Chl-a algorithms to retrieve Chl-a concentration. Comparison
between the models was used as a way of evaluating the perfor-
mance of the estimated au. The two-band (2B), three-band (3B)
indices (Gitelson et al., 2003) and normalized difference chloro-
phyll index (NDCI) (Mishra and Mishra, 2012) were tested. 2B
and 3B indices were decomposed in terms of au and aw (semi-
analytical approaches) as proposed by Le et al. (2013). Similarly,
an index based on absorption coefficients was proposed to replace
NDCI. Wavelengths at 665, 709 and 754 nm (Gitelson et al., 2008;
Mishra and Mishra, 2012) were used based on MERIS/Sentinel
band configuration. Eqs. (21) and (22) show the structure of 2B
index (Gitelson et al., 2008) using au and aw (Le et al., 2013). Sim-
ilarly, Eqs. (23) and (24) show the 3B index (Gitelson et al., 2008)
and Eqs. (25) and (26) show the architecture of NDCI (Mishra
and Mishra, 2012). The models were calibrated by the least square
method using a prediction interval with a confidence level of 0.95.

2B ¼ Rrsð709Þ=Rrsð665Þ ð21Þ

w1 ¼ auð665Þ þ awð665Þ
� �

=awð709Þ ð22Þ

3B ¼ R�1
rs ð665Þ � R�1

rs ð709Þ
h i

� Rrsð754Þ ð23Þ

w2 ¼ auð665Þ þ awð665Þ � auð709Þ � awð709Þ
� �

=awð754Þ ð24Þ

NDCI ¼ Rrsð709Þ � Rrsð665Þ
Rrsð709Þ þ Rrsð665Þ ð25Þ

w3 ¼ awð665Þ þ auð665Þ � awð709Þ
awð665Þ þ aCDMð665Þ þ auð665Þ þ awð709Þ þ aCDMð709Þ

ð26Þ
2.7. Validation

Validation of the models was performed using the statistic met-
rics: root mean square error (RMSE) (Eq. (27)), normalized root
mean square error (NRMSE) (Eq. (28)), mean absolute percentage
error (MAPE) (Eq. (29)) and bias (Eq. (30)).

RMSE ¼
Pn

i¼1 xestimated
i

� �� xmeasured
i

� �� �2
n

( )1=2

ð27Þ

NRMSE ¼ RMSE
xmeasured
max � xmeasured

min

� 100ð%Þ ð28Þ

MAPE ¼
Pn

i¼1
xestimated
i

�xmeasured
i

xmeasured
i

				
				

� �
n

ð29Þ

Bias ¼ 1
n

Xn
i¼1

xestimated
i � xmeasured

i

� � ð30Þ
3. Results and discussion

3.1. Water quality parameters

BBHR presents characteristics of highly productive waters with
an average Chl-a concentration of 120 mg m�3 in May and
428.0 mg m�3 in October (Table 2). Elevated trophic levels
occurred from May (Austral Autumn) to October (Austral Spring),
2014. The Chl-a concentration showed a range of 17.7 mg m�3 to
279.9 mg m�3 in May, 2014 and a range of 263.2 mg m�3 to
797.8 mg m�3 in October, 2014. The minimum Chl-a in October
was close to the maximum Chl-a concentration in May. An average
OSS/TSS ratio of 0.83 in May and 0.9 in October was found, which
explains the dominance of organic matter in the total particulate
material in BBHR. au(k) values were much higher than aCDM(k) from
May to October, corroborating that turbidity and TSS were mainly
associated with phytoplankton biomass in BBHR. There was a con-
siderable increase in the average au(440) from May to October,
with a range of 1.25 m�1 to 2.81 m�1, whereas, average aCDM(412)
ranged from 1.86 m�1 to 2.12 m�1. In other words, average au(440)
increased 55.5% and aCDM(412) increased only 12.3%. Average au(k)
and aCDM(k) (Fig. 3) and au(440)/aCDM(440) (Table 2) show that the
contribution of aCDM(k) to the a(k) was higher than au(k), in May, in
contrast to October when the contribution of au(k) was higher. The
elevated levels of Chl-a led to rising algal turbidity with an average
of 5.2 NTU in May and 18.6 NTU in October as a result the Secchi
disk depth decreased significantly with maximum value of 2.3 m
in May and a maximum of 0.8 m in October. On the other hand,
the dataset collected in September 2015 exhibited very similar val-
ues when compared with May dataset (Table 2).

3.2. a(k) retrieval

Table 5 shows the parameterizations and calibrations accom-
plished in QAA_BBHR. Among the four alterations carried out,
two of them are very important for accurate estimation of at(k).
First, the selection of the wavelength suitable to estimate the
absorption coefficient of the pigments, detritus and CDOM made
a difference as well as the calibration of v. Fig. 4 shows the at(k)
spectra determined by the spectrophotometer (Fig. 4a), QAA_v4
(Fig. 4b) (Lee et al., 2009), QAA_v5 (Fig. 4c) (Lee et al., 2009),
QAA_v6 (Fig. 4d) (Lee, 2014), QAA_M13 (Fig. 4e) (Mishra et al.,
2013), QAA_M14 (Fig. 4f) (Mishra et al., 2014) and QAA_BBHR
(Fig. 4g). Among all the versions of QAA tested, based on NRMSE,
MAPE and bias parameters, the most recent version of the QAA
proposed by Mishra et al. (2014) presented the best performance
in estimating at(k), because this version was fitted for waters with
bio-optical status somewhat similar to BBHR. Meanwhile, QAA_v4,
QAA_v5 and QAA_v6 underestimated at(k), since they were devel-
oped for waters with very low at(k). Although QAA_M13 is similar
to QAA_M14, it overestimated at(k) most likely due to the
parametrization of v which has been fitted for more productive
waters than BBHR. As expected, the version fitted with BBHR data-
set (QAA_BBHR) showed the best performance, because it is con-
sidered the bio-optical status of the reservoir itself.

Parameterization and calibration of v presented considerable
change in at(k) estimation, even though v is defined as importance
of second order (Lee et al., 2002). The QAA versions parametrized
for oceanic and coastal waters highly underestimated at(k) across
all wavelengths. QAA_v4, QAA_v5 and QAA_v6 showed an average
bias ranging from �1.31 m�1 to �1.04 m�1. The most underestima-
tion was observed at 412 nm (range of �3.18 m�1 for QAA_v4 to
�2.79 m�1 for QAA_v5), and the least was observed at 560 nm
(range of�0.5 m�1 for QAA_v4 to �0.36 m�1 for QAA_v5). The least
accurate performance to retrieve at(k) was exhibited by QAA_v4,
due to parameters used to determine v. The main difference
between QAA_v4 and QAA_v5 is the wavelength used, 640 nm in
QAA_v4 and 667 nm in QAA_v5. Taking into account the maximum
Chl-a absorption in red light is at 675 nm, 667 nm is more repre-
sentative that pigment than 640 nm. Both versions used 555 nm
as k0 to estimate v (Lee et al., 2009), which has been shown as
inappropriate for inland waters (Le et al., 2009; Mishra et al.,



Table 2
Descriptive statistics of the optical and water quality parameters measured insitu and in the laboratory: Chl-a concentration; Secchi disk depth; turbidity; TSS concentration; OSS/
TSS ratio; ISS/TSS ratio; au at 440, 620 and 665 nm; aCDM at 412 and 440 nm; and au(440)/aCDM(440) ratio. Statistical metrics used: minimum value (Min), maximum value (Max),
mean, median, standard deviation (SD) and coefficient of variation (CV) in percentage (%), that is CV = (SD/mean) ⁄ 100.

Min Max Mean Median SD CV (%)

May 5–9, 2014 dataset, n = 18 stations
Chl-a, mg m�3 17.7 279.9 120.4 101.3 70.3 58.4
Secchi disk depth, m 0.8 2.3 1.5 1.4 0.4 26.7
Turbidity, NTU 1.7 12.5 5.2 5 2.4 46.2
TSS, g m�3 3.6 16.3 7.2 6.5 3.3 45.8
OSS/TSS 0.45 0.98 0.83 0.87 0.12 14.5
ISS/TSS 0.02 0.55 0.17 0.13 0.12 7.1
au (440), m�1 0.31 2.62 1.25 1.05 0.63 50
au (620), m�1 0.12 0.78 0.34 0.31 0.18 51.9
au (665), m�1 0.2 1.26 0.61 0.52 0.28 45.1
aCDM (412), m�1 1.57 2.68 1.86 1.78 0.27 14.5
aCDM (440), m�1 1.06 1.91 1.26 1.21 0.21 16.5
au(440)/aCDM(440) 0.3 2.15 0.99 0.84 0.49 49.8

October 13–16, 2014, n = 20 stations
Chl-a, mg m�3 263.2 797.8 428.7 368.9 154.5 36
Secchi disk depth, m 0.4 0.8 0.6 0.6 0.1 16.7
Turbidity, NTU 11.6 33.2 18.6 17.6 5.3 28.5
TSS, g m�3 10.8 44 22 21.2 7 31.8
OSS/TSS 0.8 0.96 0.9 0.9 0.1 11.1
ISS/TSS 0.04 0.2 0.1 0.1 0.05 40
au (440), m�1 1.56 5.59 2.81 2.57 1.03 36.8
au (620), m�1 0.44 1.56 0.79 0.76 0.31 39.4
au (665), m�1 0.63 2.1 1.16 1.08 0.43 36.8
aCDM (412), m�1 1.6 3.26 2.12 2.11 0.36 16.8
aCDM (440), m�1 1.02 2.6 1.45 1.42 0.33 22.6
au(440)/aCDM(440) 0.64 2.61 1.36 1.2 0.56 48.9

September 13–15, 2015, n = 24 stations
Chl-a, mg m�3 62.8 245.7 127.1 106.5 51.3 40.4
Secchi disk depth, m 1 1.6 1.3 1.2 0.2 16.6
Turbidity, NTU 3.1 6.8 4.2 4.1 0.8 20.3
TSS, g m�3 1.6 8.4 5.6 5.8 1.8 32
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2013, 2014). The other wavelengths used to parametrize v were
absorption bands of Chl-a at 443 nm and 490 nm (Lee et al.,
2009). On the other hand, QAA_v6 do not use the v factor to esti-
mate the absorption coefficients of ORCs [au(k) and aCDM(k)]. To
estimate at(k0), QAA_v6 considered a power function (y = xn) using
Rrs at wavelengths 443, 490 and 670 nm to represent the sum of
au(k0) and aCDM(k0) (Lee, 2014). QAA_v6 was proposed for situa-
tions where Rrs(670) > 0.0065 sr�1 (Lee, 2014) and showed lower
accuracy than QAA_v5 in BBHR, where the overall average
Rrs(670) was of 0.0059 sr�1 (average of 0.004 sr�1 in May and
0.0076 sr�1 in October). The use of 670 nm as k0 may have
impaired its performance in inland waters, since this wavelength
is highly influenced by the ORCs absorption.

The models proposed for inland water such as QAA_M13 and
QAA_M14 were parametrized and calibrated in highly turbid pro-
ductive waters (Mishra et al., 2013, 2014). In such waters, there
is a high influence of au(k0) and aCDM(k0) over at(k0) at 555 nm
and 667 nm. Thus, 555 nm and 667 nm are not suitable as k0 in
those waters (Le et al., 2009; Mishra et al., 2013, 2014; Li et al.,
2013, 2015). For that reason, 708.75 nm (red edge region and cen-
tral wavelength of band 9 of the MERIS sensor) has been used as k0;
where aw(k0) is expected to dominate at(k0) (Lee et al., 2002;
Mishra et al., 2014, 2013). Other researchers also tuned QAA using
wavelength around 708.75 nm as k0. For example, Le et al. (2009)
conducted a study in Taihu Lake, China where they used 710 nm
as k0. The shifting of k0 to red-edge region produced a major
improvement in at(k0) estimation accuracy. In their research (Li
et al., 2013, 2015), a k0 was not adopted at every step. Neverthe-
less, the estimation of at-w(k) was performed using Rrs(709) and
bb(709). 753 nm was also used as k0 in three turbid Asian lakes,
and k0 was shifted to prevent the interference of the high turbidity
on at(k0) (Yang et al., 2013). This modification produced good
results in a(k) estimation for BBHR, similar to QAA_M2014, show-
ing that longer wavelengths are more appropriate for eutrophic
inland waters.

QAA_M13 and QAA_M14 overestimated at(k) in BBHR (Fig. 4).
Although both models were originally developed to quantify PC
in hyper-eutrophic waters (k1 = 443 nm, k2 = 620 nm, k3 = 620 nm
and k4 = 443 nm) (Mishra et al., 2013, 2014) and share the same
wavelengths to parametrize v, QAA_M13 showed higher overesti-
mation than QAA_M14. QAA_M13 yielded an average bias of
0.65 m�1 with minimum and maximum being 0.21 m�1 (709 nm)
and 1.1 m�1 (620 nm), whereas, QAA_M14 yielded an average bias
of 0.41 m�1, with minimum and maximum of 0.12 m�1 (709 nm)
and 0.88 m�1 (620 nm). The suitable calibration and parameteriza-
tion of v played an important role, changing significantly the esti-
mation of at(k). Even though samples used to calibrate QAA_M13
and QAA_M14 were collected in the same environment, they pro-
duced different results for each dataset, due to fits carried out in
the empirical steps (Mishra et al., 2013, 2014).

Different wavelength combinations were tested to parametrize
v with the final aim of estimating Chl-a concentration. The best
combinations of bands were 709 nm as k0 and the wavelengths
representing absorption by Chl-a and PC such as k1 = 443 nm,
k2 = 665 nm, k3 = 620 nm and k4 = 443 nm. Parameterization and
calibration coefficients are presented in Table 5. Although
620 nm is associated with the absorption by PC and the band com-
bination using only 443, 665 (Weaver and Wrigley, 1994; Mishra
et al., 2009) and 709 nm presented good results, 620 nm was kept
in v calibration. Inclusion of 620 nm improved the estimation as
shown in Fig. 5. This improvement can be associated with the pre-
dominance of cyanobacteria in BBHR. The absorption by PC pig-
ment is clearly observed in Rrs spectra at 620 nm (Fig. 2). Both
Chl-a and PC are present in cyanobacteria, consequently, these pig-
ments can be highly correlated in environments where cyanobac-
teria is the predominant species (Simis et al., 2005; Mishra et al.,



Fig. 4. a spectra (a) measured spectra in the laboratory, (b) QAA_v4 (Lee et al., 2002), (c) QAA_v5 (Lee et al., 2009), (d) QAA_v6 (Lee, 2014), (e) QAA_M13 (Mishra et al., 2013),
(f) QAA_M14 (Mishra et al., 2014) and (g) QAA_BBHR.

Fig. 5. Comparison of the total absorption coefficients measured in laboratory and
obtained using QAA_BBHR and QAA parametrized without 620 nm.
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2009, 2014). Parameterization and calibration of QAA_BBHR
(Fig. 4g) considerably improved the estimation of at(k). Comparing
the at(k) spectra between laboratory measurements and
QAA_BBHR showed a clear underestimation at shorter wave-
lengths with a maximum bias of �1.42 m�1 at 412 nm. Addition-
ally, there was a slight overestimation at 681 nm, with a bias of
0.06 m�1. Overall, the model showed an average bias of �0.11 m�1.

Fig. 6 shows the relationship between the measured versus esti-
mated a at 560, 665 and 705 nm, wavelengths commonly used in
estimating TSS concentration in inland waters. Despite of that,
the analysis was conducted considering nine MERIS/Sentinel-
2A/3A central wavelengths (412, 443, 510, 560, 620, 665, 681
and 709 nm). QAA_v4 and QAA_v5, proposed for sites where
Rrs(670) < 0.0065 sr�1 (Lee, 2014), produced maximum R2 at
709 nm (0.21 and 0.19, respectively) and minimum R2 at 443 nm
(0.0001 and 0.0037, respectively). QAA_v6 presented the maxi-
mum R2 of 0.33 at 681 nm associated with Chl-a fluorescence
(Gordon, 1979), and inexpressible R2 (of 2 � 10�16) at 665 nm. Both
QAA_M13 and QAA_M14 presented the maximum R2 at 681 nm
(0.43 and 0.51, respectively) and minimum R2 at 709 nm (0.17
and 0.24, respectively). QAA_BBHR indicated slight improvement
in terms of R2 with maximum of 0.55 at 681 nm. Surprisingly,
709 nm showed the worst fit with an inexpressible R2.

QAA_BBHR primarily overestimated at shorter wavelengths.
Three points 3, 7, and 19 (P3, P7 and P19, respectively) collected
in October 2014 (Fig. 2a) fell farthest from the 1:1 line at 412
and 443 nm (Fig. 6f). The P3 is located in the largest region of the



Fig. 6. Measured vs. estimated a plot (line 1:1) using (a) QAA_v4 (Lee et al., 2002), (b) QAA_v5 (Lee et al., 2009), (c) QAA_v6 (Lee, 2014), (d) QAA_M13 (Mishra et al., 2013), (e)
QAA_M14 (Mishra et al., 2014) and (f) QAA_BBHR.
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reservoir before the channel narrows (see Fig. 1 for location),
which produces algal blooms, mainly during austral summer. This
point exhibited the highest at(k) in October, associated with the
maximum au(k) found in BBHR. According to laboratory measures,
P7 presented the second highest at(k); however, in this case related
to the greatest absorption by CDOM. On the contrary, P19 located
in Tietê River before its confluence with Piracicaba River presented
a unique at(k) spectrum, with strong absorption at blue and red
regions, but intermediate absorption from 560 to 630 nm. Different
at(k) at P19 is a combination of high aCDM(k) and au(k). In addition,
P19 exhibited a greater absorption at 460 nm, which is not
observed at other locations.

Fig. 7 shows the NRMSE and MAPE produced by all models in
estimating at(k). QAA_v4, QAA_v5 and QAA_v6 presented similar
NRMSE and MAPE values, being that the highest average errors
were yielded by QAA_v4. 412 and 709 nm exhibited the highest
errors, while intermediate wavelengths presented the lowest
errors, with minimum at 560 nm. QAA_v5 presented the lowest
NRMSE and MAPE at 620 nm (PC absorption feature) among all
models (NRMSE of 30.84% and MAPE of 32.63%). QAA_v5 presented
better performance than QAA_v6, due to the selection of k0 at
670 nm, because it is highly influenced by ORCs absorption, mainly
Chl-a, and one of the criterion for selection of k0 is that the influ-
ence of ORCs absorption should be minimum.

Among all five published QAA, QAA_M14 proposed by Mishra
et al. (2014) presented the best performance to estimate at(k), with
the lowest average NRMSE of 33.81% and MAPE of 46.55%. Errors
were the lowest at 709 nm, with NRMSE of 20.19% and MAPE of
16.47%. Prediction at the PC absorption band was highly erroneous
with a NRMSE of 56.54% and MAPE of 88.9%. Although QAA_M13
was parametrized with the same data as QAA_M14 from turbid
productive waters, this version did not produce the same satisfac-
tory results. QAA_M13 presented similar errors as QAA_v5, with an
average NRMSE of 49.58% and MAPE of 56.6%; however, QAA_v5
underestimated at(k), whereas, QAA_M13 overestimated the vari-
able. QAA_turbid proposed by Yang et al. (2013) exhibited inter-
mediate results between QAA_M14 and QAA_M13, with average
NRMSE of 37.32% and MAPE of 59.37%. However, QAA_turbid
was not included for comparison mainly because of consistency
purposes. All QAAs compared in this study predict IOPs including
au at MERIS wavelengths except QAA_turbid which retrieves au
at just one wavelength, at 443 nm, where there is a strong influ-
ence of aCDOM, and a wavelength not commonly used for au estima-
tion in inland waters. The difference between QAA_M13 and
QAA_M14 is basically the calibration parameters h0, h1 and h2
(Eq. (9)), showing the importance of a suitable calibration during
this step. Overall, QAA_M13 performed better at shorter wave-
lengths (NRMSE: 28.7% and MAPE: 27.1% at 412 nm) and the poor-
est results were obtained at 620 nm (NMRSE: 78.95% and MAPE:
103.93%). QAA_M13 (Mishra et al., 2013) and QAA_M14 (Mishra
et al., 2014) were originally designed to quantify PC; however, sur-
prisingly, these versions produced high errors at 620 nm in BBHR.
A possible reason for the overestimation of absorption by pigments
could be the package effect. The package effect or pigment packag-
ing flats au(k) spectrum with the increase of phytoplankton bio-
mass (Roesler et al., 1989; Bricaud et al., 1995; Carder et al.,
1999; Ciotti et al., 2002). This effect is clearly observed in laborato-
rial measurements where samples with high Chl-a concentration
exhibited low au(k). Therefore, QAA did not predict the flattening
in at(k), showing the increase the pigment absorption features pro-
portionally with the elevation of phytoplankton biomass. The
above analysis reiterates the fact that calibration of v plays a cru-
cial role to retrieve at(k).

The combinations of wavelengths to parametrize v and the cal-
ibration parameters obtained to derive at-w(k0), and consequently
at(k0) was essential for the accurate estimation of at(k). The new
parametrization yielded an average NRMSE of 21.88% and MAPE
of 28.27%, with best performance at 681 nm, the wavelength asso-
ciated with Chl-a fluorescence (Gordon, 1979), with a NRMSE of
16.53% and a MAPE of 17.43%. On the other hand, the algorithm
exhibited its poorest performance at 620 nm (NRMSE: 37.29%
and MAPE: 117.78%) as QAA_M13 and QAA_M14, likely associated
with pigment packaging (Roesler et al., 1989; Bricaud et al., 1995).

3.3. aCDM(k) retrieval

Fig. 8 shows the aCDM(k) spectra estimated by each QAA version
tested in this study. None of the existing QAA versions yielded sat-
isfactory results for aCDM(k) in BBHR. It indicated the necessity of
accurately parameterizing and calibrating the steps leading to



Fig. 7. NRMSE and MAPE of estimated a(k) using (a) QAA_v4 (Lee et al., 2002), (b) QAA_v5 (Lee et al., 2009), (c) QAA_v6 (Lee, 2014), (d) QAA_M13 (Mishra et al., 2013), (e)
QAA_M14 (Mishra et al., 2014) and (f) QAA_BBHR.
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aCDM(k) estimation in the QAA. Accurate retrieval of aCDM(k) and
au(k) depends basically on the accurate estimation of at(k) (Lee
et al., 2010; Mishra et al., 2014), as well as suitable parameteriza-
tion and calibration of n and f.

QAA_v5, QAA_v6, QAA_M13, and QAA_M14 versions yielded
negative values for samples P4, P5, P10, P11 and P16 at shorter
wavelengths. With the exception of P5, the negative values were
computed for samples collected during the second field campaign
(October 2014) when the aCDM(k) were higher. Lee et al. (2010) and
Mishra et al. (2014) have discussed obtaining negative values for
aCDM(k) in their QAA. Mishra et al. (2014) verified that negative
aCDM(k) did not impair the retrieval of au(k) using red and NIR
bands; however, the use of aCDM(k) derived by QAA is preventable.
QAA_v5, QAA_v6, QAA_M13 and QAA_M14 practically adopted the
same model to estimate f and n (Eqs. (15) and (16), respectively)
unlike QAA_v4. Although the models adopted by QAA_v4 to esti-
mate f and n have not yielded negative values, they still were not
suitable to estimate aCDM(k) in BBHR, showing a high underestima-
tion, with a negative bias of �0.53 m�1. Thus, the underestimation
of aCDM(k) cannot only be associated with the underestimation
associated with at(k), since QAA_M13 and QAA_M14 have overes-
timated at(k) and also yielded negative values. According to
Mishra et al. (2014), overestimation of n and underestimation of
f can also underestimate aCDM(443). Therefore, QAA_BBHR was cal-
ibrated to fit f and n and solve the problem of underestimation of
aCDM(k) and, consequently, overestimation of au(k).

The slight overestimation of S was the first problem detected.
The existing versions tested in this study use models that produce
S value around 0.015 nm�1. QAA_v4 uses a fixed value of S equals
to 0.015 to estimate n. Although QAA_v5, QAA_v6, QAA_M13 and



Fig. 8. aCDM spectra (a) measured in the laboratory, (b) QAA_v4 (Lee et al., 2002), (c) QAA_v5 (Lee et al., 2009), (d) QAA_v6 (Lee, 2014), (e) QAA_M13 (Mishra et al., 2013), (f)
QAA_M14 (Mishra et al., 2014) and (g) QAA_BBHR.
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QAA_M14 do not use fixed S values, they use models that consider
an intercept of the function that equate to a value of S around
0.015. This value is adopted because studies have shown that S var-
ies between 0.01 and 0.02 nm�1 (Hoogenboom et al., 1998); hence,
the average value of 0.015 nm�1 is used (Lee et al., 2002; Lee and
Carder, 2004). However, this value is considerably high when com-
pared to minimum values of S obtained from laboratory measure-
ments of aCDM in BBHR, yielding a NRMSE of 15.5%. A magnitude
difference of 0.1 was observed between the averaged measured
and estimated S, with a NRMSE of 15.5%. In this study, the intercept
value was replaced with 0.014, which yielded better results, deriv-
ing an average S of 0.016 nm�1, with a low NRMSE of 14.4%.

QAA_BBHR produced negative values of aCDM(k) even after the
calibration of n. Hence, Eq. (15) was also tuned to improve the esti-
mation of f. QAA versions tested in this research yielded an average
of 0.91 for f which is much closer to the f produced by au(411)/
au(443) ratio using au obtained in laboratory. According to
Mishra et al. (2014), underestimated values of f can lead to under-
estimation of aCDM(k); however, the opposite was observed. f
derived from au(411)/au(443) ratio yielded negative values of
aCDM(k). Therefore, we concluded that the previously used ratio of
au(411)/au(443) may not be suitable to represent the pigments in
inland waters. Combinations of wavelengths were tested and
au(665)/au(709) emerged as the ratio that generated lowest
NRMSE and MAPE. The new ratio produced an average f of about
0.50 and adjustments were made in QAA_BBHR to estimate f accu-
rately. These modifications to f estimation improved the prediction
accuracy of aCDM(k) and, consequently, au(k).

Fig. 9 shows the plots of the measured versus estimated aCDM at
443 nm, a wavelength commonly used in CDOM prediction.
Although aCDM was retrieved for other MERIS/Sentinel-2A/3A
bands, the result is not presented in the paper. All tested QAA ver-
sions underestimated aCDM(k), with negative average bias varying
from �0.58 m�1 (QAA_v5 and QAA_v6) to �0.53 m�1 (QAA_v4).
412 nm produced the highest bias, due to uncorrected fit of f and
n, while 709 nm showed the lowest bias. Although QAA_v4 did
not produce negative aCDM(k), this version showed a considerably
high average bias of �0.53 m�1, with maximum of �1.67 m�1 at
412 nm, and minimum of �0.14 m�1 at 709 nm. QAA_M13 and
QAA_M14 versions presented intermediate average bias of �0.55
and �0.54 m�1, respectively.

The modification proposed in QAA_BBHR to estimate f and n
significantly improved the estimation of aCDM(k). QAA_BBHR pro-
duced a considerably low average bias of �0.03 m�1 and did not
show underestimation at 443, 510 and 560 nm unlike other ver-
sions. Fig. 9f highlights a systematic error rated to sampling loca-
tion P7, collected in October 2014, which exhibited higher
underestimation at every wavelength and created a line almost
parallel to 1:1 line. It was not possible to isolate bias observed
for P7 in other QAA versions because of the overall severe underes-



Fig. 9. Estimated versus measured aCDM using (a) QAA_v4 (Lee et al., 2002), (b) QAA_v5 (Lee et al., 2009), (c) QAA_v6 (Lee, 2014), (d) QAA_M13 (Mishra et al., 2013), (e)
QAA_M14 (Mishra et al., 2014) and (f) QAA_BBHR.
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timation. P7 measured in the laboratory presented a different
behavior from other samples, with very high aCDM(k) values and a
low S of 0.0124 nm�1, while the mean was of 0.0161 nm�1. Elimi-
nating the sample P7 and recalculating the bias substantially
improved the errors; however, the removal of P7 at the calibration
worsened the QAA_BBHR fit.

Fig. 10 shows the NRMSE and MAPE obtained for aCDM for each
QAA version. QAA_BBHR showed a consistently lower NRMSE and
MAPE compared to other QAA versions, whereas, QAA_v4, QAA_v5,
QAA_v6, QAA_M13 and QAA_M14 produced similar error pattern.
Higher NRMSE was observed at shorter wavelengths (412 and
443 nm) and higher MAPE at longer wavelengths (709 nm), due
to severe underestimation of these spectral regions. The negative
values produced at shorter wavelengths reflected considerably in
errors obtained for other IOPs. Among the existing tested models,
none yielded a MAPE lower than 88%. aCDM(k) estimation accuracy
by QAA_v4 was comparatively higher than other models with a
mean NRMSE of 42.39% and MAPE of 88.16% because it did not
generate negative values. QAA_v5 was the least accurate in esti-
mating aCDM(k) among all algorithms, resulting an average NRMSE
of 45.54% and MAPE of 95.46% across the visible spectrum; how-
ever, it produced good estimates at longer wavelengths, with
NRMSE of 22.08% at 681 nm and 24.38% at 620 nm.

The algorithms for inland waters, QAA_M13 and QAA_M14, also
produced similar errors values, with an average NRMSE of up to
44.52% and MAPE up to 92.12%. These versions also presented sim-
ilar error patterns to QAA versions for marine waters, because they
also yielded negative values of aCDM(k). As expected, the highest
NRMSE was observed at 412 nm (106.03%) and lowest at 665 nm
(22.03%).

On the contrary, MAPE presented higher values at longer wave-
lengths. Divergence between NRMSE and MAPE occurs when the
difference of estimated and measured values is high and the vari-
ance of the observations also is high, i.e., when the measured value
is close to minimum value. In this case, such behavior is associated
mainly with variance observed in aCDM(k) caused by high aCDM(k) at
P7. QAA_BBHR was successful in producing accurate estimation of
aCDM(k) with an average NRMSE of 21.71% and MAPE of 47.41%. The
best results were obtained in the red region, with a NRMSE of
20.3% at 620 nm and 20.2% at 665 nm. Shorter wavelengths pro-
duced higher errors, mainly at 412 nm where NRMSE was 27.5%
and MAPE 18.23%.
3.4. au(k) retrieval

Fig. 11 shows the au spectra estimated by spectrophotometer
(Fig. 11a), QAA_v4 (Fig. 11b), QAA_v5 (Fig. 11c), QAA_v6 (Fig. 11d),
QAA_M13 (Fig. 11e), QAA_M14 (Fig. 11f) and QAA_BBHR (Fig. 11g).
An accurate estimation of au(k) is entirely dependent on estimation
accuracies of at(k) and aCDM(k). In addition, errors in estimating f
and n can result in large errors of estimation for aCDM(k) and
au(k), generating negative or zero values (Lee et al., 2010). The
underestimation of at(k) by QAA_v4, QAA_v5 and QAA_v6 conse-
quently underestimated au(k) producing negative values, while
QAA_M13 and QAA_M14 overestimated at(k) and au(k). The main
problem of existing versions was the estimation of f and n. There-
fore, such values (f and n) were fitted considering bio-optical status
of the BBHR, where the red spectral region exhibited higher au(k)
contribution to at(k) than the blue spectral region, due to high
influence of CDOM at shorter wavelengths. nwas calibrated in rela-
tion to S (spectral slope of CDOM) observed in BBHR, while f was
parametrized in order to represent better the pigments variation;
in other hands, au(411)/au(443) ratio was replaced with au(665)/
au(709) ratio to define f. The revised fits of f and n improved the
estimation of aCDM(k) and au(k) significantly. Even then, QAA_BBHR
still produced an underestimation of au(k) at shorter wavelengths
such as 412 and 443 nm, and at 709 nm (Fig. 11g).

Measured versus estimated au(k) plots for wavelengths at 412,
443, 620 and 665 nm, the wavelengths associated with phyto-
plankton pigment absorption and, commonly used in pigment pre-
diction, are shown in Fig. 12. As expected, all QAA versions
developed for open ocean waters (QAA_v4, QAA_v5, and QAA_v6)
underestimated au(k), since a(k) already was lower than in situ
au(k).

QAA_v4 and QAA_v5 retrieved negative au(k) values at longer
wavelengths. However, the negative predictions were not
restricted to algorithms developed for coastal and ocean waters
only. QAA_turbid proposed by Yang et al. (2013) for turbid lakes



Fig. 10. NRMSE and MAPE of estimated aCDM(k) using (a) QAA_v4 (Lee et al., 2002), (b) QAA_v5 (Lee et al., 2009), (c) QAA_v6 (Lee, 2014), (d) QAA_M13 (Mishra et al., 2013), (e)
QAA_M14 (Mishra et al., 2014) and (f) QAA_BBHR.
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also produced negative estimations at 443 nm. These results
demonstrate that au retrieval is affected by the bio-optical state
of the water body and reinforce the importance of calibration of
the empirical steps in a QAA. The empirical steps in these algo-
rithms were calibrated for sites with Chl-a concentration much
lower than BBHR and, therefore, did not produce accurate estima-
tions in BBHR. Among the three versions for ocean waters, QAA_v5
showed the least underestimation, with an average bias of
�0.46 m�1 and a bias range of �0.94 m�1 (412 nm) to �0.05 m�1

(560 nm). On the other hand, among the versions parametrized
for inland waters, QAA_M13 showed the highest overestimation
of au(k) at every wavelength with a large average bias of 1.2 m�1,
maximum of 1.69 m�1 at 443 nm and minimum of 0.36 m�1 at
709 nm. QAA_M14 also overestimated au at every wavelength with
a high average bias of 0.95 m�1.
Overall, QAA_BBHR showed a slight underestimation with an
average bias of �0.08 m�1 mainly due to the low bias of
�1.13 m�1 observed at 412 nm. Sample P3 collected in October
2014 produced the highest underestimation at 412 and 443 nm
as observed in Fig. 12f. P3 exhibited the highest Chl-a concentra-
tion of 797.8 mg m�3 and, consequently, the highest in situ au(k).
Likely, the calibration of QAA_BBHR using the sample mean was
not capable of estimating accurately the extreme values of au(k).
Other sample significantly underestimated was P14 collected also
in October, with the second highest Chl-a concentration of
723.5 mg m�3 and high au(k). The main peculiarities of au(k) for
this sample is the greatest gradient between 412 and 443 nm,
and the median absorption at 665 nm compared to samples with
lower concentrations.



Fig. 11. au spectra (a) measured in the laboratory, (b) QAA_v4 (Lee et al., 2002), (c) QAA_v5 (Lee et al., 2009), (d) QAA_v6 (Lee, 2014), (e) QAA_M13 (Mishra et al., 2013), (f)
QAA_M14 (Mishra et al., 2014) and (g) QAA_BBHR.

Fig. 12. Estimated versus measured au spectra using (a) QAA_v4 (Lee et al., 2002), (b) QAA_v5 (Lee et al., 2009), (c) QAA_v6 (Lee, 2014), (d) QAA_M13 (Mishra et al., 2013), (e)
QAA_M14 (Mishra et al., 2014) and (f) QAA_BBHR.
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Fig. 13. NRMSE and MAPE of estimated au using (a) QAA_v4 (Lee et al., 2002), (b) QAA_v5 (Lee et al., 2009), (c) QAA_v6 (Lee, 2014), (d) QAA_M13 (Mishra et al., 2013), (e)
QAA_M14 (Mishra et al., 2014) and (f) QAA_BBHR.
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Fig. 13 shows the NRMSE and MAPE obtained for au(k) using
QAA_v4 (Fig. 13a), QAA_v5 (Fig. 13b), QAA_v6 (Fig. 13c), QAA_M13
(Fig. 13d), QAA_M14 (Fig. 13e) and QAA_BBHR (Fig. 13f). QAA_v4,
QAA_v5 and QAA_v6 showed considerably low NRMSE and MAPE,
except at 709 nm. Among the three versions for ocean waters,
QAA_v5 showed the lowest errors and QAA_v6 yielded the highest
average errors. Surprisingly, QAA_M13 and QAA_M14 presented
higher NRMSE and MAPE compared to open ocean versions, due
to overestimation, mainly at intermediate wavelengths. Among
all five previous QAA versions, QAA_M13 presented the highest
average NRMSE (77.63%) and MAPE (182.91%). With the exception
of 412 and 443 nm, every wavelength presented NRMSE higher
than 65% with maximum value of 113% at 620 nm as well as MAPE
range of 88.83% (412 nm) to 278.47% (709 nm).

Similarly, QAA_M14 yielded a high average NRMSE of 56.25%
and MAPE of 163.32%. Overall, QAA_BBHR considerably improved
the accuracy estimation of au(k) with an average NRMSE of
26.08% and MAPE of 78.08%. The most accurate results were
obtained at longer wavelengths such as 681 nm (NRMSE: 18.02%
and MAPE: 37.5%), with a slight improvement at shorter wave-
lengths (NRMSE: 19.6% and MAPE: 32.8% for 443 nm). High errors
were observed at intermediate wavelengths, with maximum at
620 nm (NRMSE: 43.1% and MAPE: 138.1%).

3.5. Chl-a retrieval from au(k)

To further assess the au(k), some Chl-a models were re-
parametrized using au(k) and aw(k), and validated and compared
with their Rrs counterparts. The 2B (Gitelson et al., 2003), 3B
(Gitelson et al., 2008), and NDCI (Mishra and Mishra, 2012) Chl-a
models were tested. The au(k) and aw(k) based models representing
the 2B, 3B, and NDCI were labeled as W1, W2 and W3 as shown in



Fig. 14. Scatter plot showing empirical fit between Chl-a and (a) 2B; (b) 3B; (c) NDCI; (d) W1; (e) W2; and (f) W3.
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Eqs. (22), (24), and (26). Fig. 14 shows the fit of the models for 2B
(Fig. 14a), 3B (Fig. 14b), NDCI (Fig. 14c), W1 (Fig. 14d), W2

(Fig. 14e), and W3 (Fig. 14f). The indices using Rrs exhibited high
correlation with the Chl-a, e.g., 0.88 for 2B, 0.91 for 3B, and 0.81
for NDCI, while the indices based on au(k) and aw(k) presented cor-
relation of 0.88 for W1, 0.88 for W2, and 0.81 for W3. With excep-
tion of W2, models based on QAA au(k) and aw(k) provided equal
correlation with Chl-a compared to their Rrs counterparts. This
serves as an indirect validation of the QAA_BBHR and the derived
IOPs.

Table 3 shows the calibration results in terms of standard error
of estimation (S), determination coefficient (R2, in %), adjusted R2
(Adj-R2, in %), F statistic (F), and p-value. Most of the calibration
variants produced significant results with R2 of approximately
0.7 and p-value equal or close to zero. The linear fits were statisti-
cally more significant than quadratic fits, with the highest F values.

To assess the performance of the fitted models validation was
carried out using a dataset collected on September, 2015. Table 4
shows the validation results of the Chl-a estimation models in
terms of RMSE, NRMSE, MAPE, bias and R2 between measured
and estimated Chl-a. The quadratic adjustment was more suitable
for 2B and NDCI, producing least errors, whereas, the linear fit was
better for 3B index. Among all the models, W1 exhibited the best
performance, with NRMSE = 13.84% and MAPE = 16.22%, while



Table 3
Statistical parameters resulted from model calibration: no. of samples (n), standard error of estimative (S), determination coefficient (R2, in %), F statistic and p-value using the
indices 2B, 3B, NDCI, W1W2 and W3 for retrieving the Chl-a concentration.

Index n Fit S R2 Adj-R2 F p-value

Models calibrated using Rrs
2B 33 Linear 79.82 76.7 76.0 102.15 0.000
2B 33 Quadratic 78.24 78.3 76.9 54.28 0.000
3B 31 Linear 57.94 83.6 83.0 147.96 0.000
3B 31 Quadratic 56.89 84.7 83.7 77.78 0.000
NDCI 33 Linear 83.68 65.6 64.5 59.13 0.000
NDCI 33 Quadratic 81.58 68.4 66.3 32.42 0.000

Models using au and aw derived from QAA_BBHR
W1 33 Linear 78.40 77.5 76.8 107.00 0.000
W1 33 Quadratic 77.06 79.0 77.6 56.43 0.000
W2 33 Linear 78.42 77.5 76.8 106.9 0.000
W2 33 Quadratic 77.02 79.0 77.6 56.51 0.000
W3 34 Linear 87.99 71.7 70.8 78.56 0.000
W3 34 Quadratic 79.32 77.7 76.3 52.40 0.000

Table 4
Validation of the Chl-a estimation models using RMSE, NRMSE, MAPE, bias and R2. The best results were highlighted in bold.

Index Fit RMSE (mg m�3) NRMSE (%) MAPE (%) Bias (mg m�3) R2 (%)

Models calibrated using Rrs
2B Linear 101.46 55.46 88.58 �99.27 83.67
2B Quadratic 69.06 37.75 51.48 �64.21 82.93
3B Linear 69.35 37.91 57.74 �66.41 84.14
3B Quadratic 94.53 51.68 83.94 �91.09 83.57
NDCI Linear 118.60 64.83 107.32 �114.28 82.65
NDCI Quadratic 72.15 39.44 53.27 �67.01 80.41

Models using au and aw derived from QAA_BBHR
W1 Linear 94.59 51.71 81.91 �91.79 81.03
W1 Quadratic 25.31 13.84 16.22 1.01 80.91
W2 Linear 95.01 51.94 82.47 �92.30 81.67
W2 Quadratic 66.24 36.21 49.25 �61.3 81.47
W3 Linear 141.91 77.58 129.11 �134.44 79.0
W3 Quadratic 71.37 39.15 41.95 �47.50 0.59

Table 5
Comparison between empirical steps of the QAA_BBHR and QAA_v5 to derive IOPs from Rrs.

rrsðkÞ ¼ RrsðkÞ=ð0:52þ 1:7RrsðkÞÞ
u ¼ bb=ðaþ bbÞ rrsðkÞ ¼ ðg0 þ g1uðkÞÞuðkÞ

uðkÞ ¼ �g0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0Þ2þ4g1rrsðkÞ

p
2g1

g0 ¼ 0:089; g1 ¼ 0:125
QAA_BBHR QAA_v5

aðk0Þ k0 = 709 nm k0 = 555 nm

v ¼ log rrsð443Þþrrsð665Þ
rrsðk0Þþ5rrs ð620Þ

rrs ð443Þrrs620

� �
v ¼ log rrsð443Þþrrsð490Þ

rrsðk0Þþ5rrs ð667Þ
rrs ð490Þrrsð667Þ

� �

aðk0Þ ¼ awðk0Þ þ 10�0:7702þ0:0999vþ0:0566v2
aðk0Þ ¼ awðk0Þ þ 10�1:146�1:366v�0:469v2

g g ¼ 2:0 1� 1:2exp �0:9 rrsð443Þ
rrsð555Þ


 �
 �
g ¼ 2:0 1� 1:2 exp �0:9 rrsð443Þ

rrsð555Þ

 �
 �

f f ¼ auð665Þ=auð709Þ f ¼ auð411Þ=auð443Þ
f ¼ 0:3þ 0:2

0:8þrrsð665Þ=rrsð709Þ f ¼ 0:74þ 0:2
0:8þrrsð443Þ=rrsðk0Þ

n n ¼ aCDMð411Þ=aCDMð443Þ n ¼ aCDMð411Þ=aCDMð443Þ
n ¼ eSð443�411Þ n ¼ eSð443�411Þ

S ¼ 0:014þ 0:002
0:6þrrsð443Þ=rrsðk0Þ S ¼ 0:015þ 0:002

0:6þrrs ð443Þ=rrsðk0Þ
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the second best performance (2B) presented NRMSE = 35.32% and
MAPE = 44.33%. The improvement shown by W1 compared to 2B
is likely associated with the efficiency of the QAA_BBHR in mini-
mizing the influence of absorption by other ORCs, not totally
removed by Rrs(709)/Rrs(665) ratio. The incorporation of a third
wavelength (754 nm) did not improve the 3B or W2 performance
in relation to 2B and W1. Overall, 754 nm is inserted to minimize
backscattering influence in Chl-a estimating (Gitelson et al.,
2008). Overall, quadratic NDCI, quadratic 2B and linear 3B exhib-
ited similar errors; despite this, a t-student test for paired samples
showed that models are not statistically equal.
4. Conclusion

Different QAA versions have been developed for different envi-
ronments (ocean, coastal waters and highly productive ponds) to
exploit the range the greater variability of ORCs concentrations;
however, these QAA versions were not able to estimate IOPs accu-
rately in a tropical eutrophic reservoir. The results derived from
testing the aforementioned models clearly indicated the need for
re-parametrization. Thereby, QAA_BBHR was developed in this
study to address the gap in performance of QAAs in eutrophic
reservoirs. This study shows a critical breakdown and comprehen-
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sive comparisons of all existing variants of QAAs. The new param-
eterization and calibration developed in QAA_BBHR exhibited sat-
isfactory results in estimating a(k), aCDM(k) and au(k) in a tropical
eutrophic reservoir.

The fine tuning and recalibration of the empirical steps of the
existing QAAs considerably improved the prediction of IOPs. The
use of 709 nm and the calibration of v increased the estimation
accuracy of a(k0) and, consequently, accuracies of aCDM(k) and
au(k) prediction. The novel parameterization of v using the combi-
nation of 443, 665, 709, 620 and 443 nm and the adjustment of the
calibration coefficients (h0, h1 and h2) were crucial changes in
QAA_BBHR to estimate a(k) (Table 5). The use of rrs at 620 and
665 nm exhibited a better performance than rrs(665) nm alone.
Other important modifications were the calibration and parame-
terization of f and n. The changes carried out in these two steps
were essential to reduce the severe underestimation (negative val-
ues) in aCDM(k) and au(k) observed before calibration. In addition,
tests showed that au(k) estimated by QAA_BBHR can be used suc-
cessfully to retrieve Chl-a concentration. The performance of mod-
els based on au(k) and aw(k) were better compared to their Rrs

counterparts. It is due to the fact that QAA_BBHR was successful
in isolating the interference of other optically active components
at phytoplankton absorption bands.

QAA_BBHR could be adopted as an option for frequent mapping
the ORCs in Brazilian reservoirs and other similar environments
around the world. The results obtained by QAA_BBHR showed that
once calibrated the algorithm can be applied for monitoring pur-
poses. QAA_BBHR can be scaled-up using bands of ESA’s Sentinel-
2A and 3A since the re-parametrization was done at MERIS band
centers. Brazil and Sao Paulo State in particular has a tremendous
need for a fast and inexpensive monitoring system for its cascade
reservoirs which have been severely plagued by agriculture and
urban runoff based nutrient pollution and persistent drought.
QAA_BBHR provides a way forward to simultaneously resolve all
ORCs from remotely sensed data.
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