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Abstract. In this paper we study a real scalar field as a possible candidate to explain the
dark matter in the universe. In the context of a free scalar field with quadratic potential,
we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark
matter density parameter to set a lower limit on the dark matter mass as m ≥ 0.12H−1

0 eV
(c = ~ = 1). For the recent value of the Hubble constant indicated by the Hubble Space
Telescope, namely H0 = 73± 1.8 km s−1Mpc−1, this leads to m ≥ 1.56× 10−33 eV at 99.7%
c.l. Such value is much smaller than m ∼ 10−22 eV previously estimated for some models.
Nevertheless, it is still in agreement with them once we have not found evidences for a upper
limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free
real scalar field as a viable candidate for dark matter in agreement with previous studies in
the context of density perturbations, which include scalar field self interaction.

Keywords: dark matter theory, supernova type Ia - standard candles, dark matter experi-
ments

ArXiv ePrint: 1504.04037

c© 2016 IOP Publishing Ltd and Sissa Medialab srl doi:10.1088/1475-7516/2016/08/046

mailto:jfjesus@itapeva.unesp.br
mailto:shpereira@gmail.com
mailto:malatrasi440@gmail.com
mailto:felipe.oliveira@port.ac.uk
http://arxiv.org/abs/1504.04037
http://dx.doi.org/10.1088/1475-7516/2016/08/046


J
C
A
P
0
8
(
2
0
1
6
)
0
4
6

Contents

1 Introduction 1

2 The dynamics of the model 2

3 Alternative derivation — change of variables 5

4 Constraining dark matter mass 6

5 Concluding remarks 9

A The motion equation 10

1 Introduction

Nowadays the most accepted model in cosmology is known as ΛCDM model, where CDM
stands for Cold Dark Matter and Λ is the cosmological constant term, the latter being the
main candidate to explain the current phase of acceleration of the universe and the former
having a central role for the structure formation in the standard cosmology. The pressureless
matter represents about 30% of the total material content of the universe, where about 5%
is baryonic matter and 25% is nonbaryonic dark matter (DM). The cosmological constant
stands for the 70% remaining part, sometimes also associated to a dark energy (DE) exotic
fluid (see [1–5] for a review).

The idea of an accelerating universe is indicated by type Ia Supernovae observations [6–
9], in agreement with ΛCDM, but the nature and origin of the dark matter is still a mystery
(see [10, 11] for a review and [12] for a ten-point test that a new particle has to pass in order
to be considered a viable DM candidate).

The first candidate to DM as a scalar field is the axion, one of the solutions for the
Charge-Parity problem in QCD [13, 14]. The axion is essentially a scalar field with mass of
about 10−5 eV, which has its origin at 10−30 seconds after the big bang. This candidate is until
now one of the most accepted candidates to DM particles. Among others candidates for DM
particles in the universe, the so called scalar field dark matter (SFDM) model [15–23] is one of
the most studied models in quantum field theory, and its applicability in cosmology to explain
the different processes in the evolution of the universe has been investigated in the last decades
(see [24–26] for a review and references therein). In [27] it is proposed a cosmological scalar
field harmonic oscillator model, in agreement to ΛCDM model. Scalar fields are also used to
drive the inflationary phase of the universe [28, 29]. One of the first applications of a complex
scalar field for structure formation of the universe was given by Press and Madsen [30, 31].
Most recently, in [32] it was studied structure formation by assuming that dark matter can be
described by a real scalar field. It was also investigated the symmetry breaking and possibly
a phase transition of this scalar field in the early Universe. At low temperatures, scalar
perturbations of SFDM leads to formation of gravitational structures. In [33–35] it has been
shown that such model agree with rotation curves of dwarf galaxies and small and large low
surface brightness (LSB) galaxies. The model was also extended to include the dark matter
temperature and finite temperature corrections up to one-loop in the perturbative regime.

– 1 –
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Gravitational constraints imposed to dark matter halos in the context of finite temperature
SFDM has been investigated in [36]. In [37] it was studied the Sextans dwarf spheroidal
galaxy, embedded into a scalar field dark matter halo. In [38] the quantum creation of scalar
particles was studied in the context of an alternative accelerating model of the universe.

It is important to notice that some models [22, 23, 37] points to a mass of the scalar
field of about 10−22 eV, while a recent work [27] points to 10−32 eV. As we shall see, our
model is in agreement to the last one.

In this work we study a real scalar field evolving in a Friedmann-Robertson-Walker
background as a possible candidate to explain the dark matter in the universe. In section II,
we develop the dynamics of the model and analyse the stability of the resulting system of
equations. In section III, we make an alternative derivation based on a change of variables,
more suitable for numerical integration. In section IV, we constrain the free parameters of
the model by using observational SN Ia data. We conclude in section V and deduce the scalar
field motion equation in the appendix.

2 The dynamics of the model

We are interested in the study of the action of the form

S = Sgrav + Smat , (2.1)

where

Sgrav = − 1

16πG

∫

d4x
√−g(R+ 2Λ) (2.2)

is the standard Einstein-Hilbert action for the gravitational field, R stands for the Ricci
curvature scalar, Λ is the cosmological constant parameter and G is Newton’s gravitational
constant.

The second term in (2.1) stands for the matter content of the universe, namely,

Smat =

∫

d4x
√−gLsm +

∫

d4x
√−gLφ , (2.3)

which is composed of the Lagrangian density of the standard matter contributions (radiation,
baryons, neutrinos etc.), Lsm, in addition to the Lagrangian density of a real massive scalar
field φ minimally coupled to gravity, Lφ, given by

Lφ =
1

2
∂µφ∂µφ− V (φ) , (2.4)

where V (φ) is the potential.
Variation of the action S with respect to φ leads to the equations of motion for the real

scalar field. The equations of motion for the gravitational field are obtained by varying the
action with respect to the metric gµν , which leads to

Rµν −
1

2
gµνR = 8πGTµν , (2.5)

where Tµν , the energy-momentum tensor of the matter fields, is defined as

Tµν ≡ 2√−g

δSmat

δgµν
= T sm

µν + T φ
µν . (2.6)

– 2 –
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Here we are assuming that the standard matter term in the above equation can be
approximated by a perfect fluid characterized by its energy density ρsm, pressure psm and
four-velocity usmµ . Therefore, we have

T sm
µν = (ρsm + psm)uµuν − psmgµν . (2.7)

On the other hand, the scalar field part of the energy-momentum tensor is

T φ
µν = ∂µφ∂νφ− 1

2
gµν

[

∂αφ∂αφ− V (φ)
]

, (2.8)

which can be rewritten in the form of a perfect fluid (2.7) using the definitions

ρφ ≡ 1

2
∂αφ∂αφ+ V (φ) , pφ ≡ 1

2
∂αφ∂αφ− V (φ) , uµ ≡ (∂µφ)/

√

∂αφ∂αφ . (2.9)

In particular, assuming that the field is homogeneous (∂iφ = 0), we have

ρφ =
1

2
φ̇2 + V (φ) , pφ =

1

2
φ̇2 − V (φ) . (2.10)

We restrict our treatment to a universe composed of a single baryonic component with
energy density ρb, a cosmological constant term with energy density ρΛ, and the scalar field
dark matter component ρφ. The equations of state of those components are respectively
pb = 0, pΛ = −ρΛ, and pφ = ωφρφ, where

ωφ =
pφ
ρφ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (2.11)

The Friedmann equations obtained from this approach are (in units c = ~ = 1).

Ḣ = −κ2

2

(

φ̇2 + ρb

)

, (2.12)

φ̈ + 3Hφ̇+
dV

dφ
= 0, (2.13)

ρ̇b + 3Hρb = 0, (2.14)

ρ̇Λ = 0, (2.15)

with the Friedmann constraint

H2 =
κ2

3
(ρφ + ρb + ρΛ) , (2.16)

where κ2 ≡ 8πG and H ≡ ȧ/a is the Hubble parameter.
In order to study the system of equations (2.12)–(2.15), we define the following dimen-

sionless variables (accordingly to the variable transformations adopted in [21] to a similar set
of equations):

x ≡ κ√
6

φ̇

H
, u ≡ κ√

3

√
V

H
, b ≡ κ√

3

√
ρb

H
, l ≡ κ√

3

√
ρΛ

H
. (2.17)

Consequently, the Friedmann constraint (2.16) reduces to

x2 + u2 + b2 + l2 = 1 . (2.18)

– 3 –
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Specializing to a quadratic scalar potential V (φ) = m2φ2/2, where m is the mass of the
scalar field, the background evolution of the universe is given by the equations (2.12)–(2.15) as

x′ = −3x− su+
3

2
Πx, (2.19)

u′ = sx+
3

2
Πu, (2.20)

b′ =
3

2
(Π− 1) b, (2.21)

l′ =
3

2
Π l, (2.22)

s′ =
3

2
Π s, (2.23)

where a prime denotes derivatives with respect to the e-folding number N = ln a,

s ≡ m/H , (2.24)

and
3

2
Π ≡ − Ḣ

H2
=

3

2
(2x2 + b2). (2.25)

In order to study the stability of the system (2.19)–(2.23) from a dynamical system
approach [39, 40], we define the vector ~v = (x, u, b, l, s) and consider a linear perturbation of
the form ~v → ~v+δ~v. Thus, the linearized system reduces to δ~v′ = Mδ~v, where M is given by

M =













−3 + 9x2 + 3
2b

2 −s 3bx 0 −u
6xu+ s 3

2b
2 + 3x2 3bu 0 x

6xb 0 9
2b

2 + 3x2 − 3
2 0 0

6xl 0 3bl 3
2b

2 + 3x2 0
6xs 0 3bs 0 3

2b
2 + 3x2













(2.26)

and represents the Jacobian of ~v′.
The equilibrium points or fixed points {xc, uc, bc, lc, sc} of the phase space are:

(I) {±1, 0, 0, 0, 0};

(II) {0, 0, ±1, 0, 0};

(III) {0, ±
√
1− l2, 0, l, 0};

(IV) {0, 0, 0, 1, s}.

According to the Friedmann constraint (2.18), the case (I) represents a totally kinetic
energy scalar dominated universe, the case (II) characterizes a totally baryonic dominated
universe, the case (III) represents a mixture of scalar potential energy contribution and
cosmological constant and the case (IV) a totally cosmological constant dominated universe.
The case (IV) is the only one that admits s > 0, leading to a mass m > 0 for the dark matter
particles from (2.24). The eigenvalues of the matrix M at the fixed points above are:

(I) {6, 3
2 , 3, 3, 3};

(II) {3, −3
2 ,

3
2 ,

3
2 ,

3
2};

– 4 –
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(III) {0, 0, 0, −3, −3
2};

(IV) {0, 0, −3
2 + 1

2

√
9− 4s2, −3

2 − 1
2

√
9− 4s2, −3

2}.

As it is well known from the dynamical system approach [39, 40], when the real parts of
the eigenvalues are positive the fixed point is unstable, and when the real parts are negative
the fixed point is stable. When positive and negative real terms are present, the fixed point
is a saddle point. Finally, when some of the eigenvalues are null, nothing can be said about
the stability, and more accurate methods should be applied, as the center manifold theory.

For the above set of eigenvalues, the most interesting one for us is the case (IV), where
the stability is not completely discarded due to the null values of the two first eigenvalues.
Beside that such case admits s > 0, leading to a non-null mass to the dark matter particle.
Although such case corresponds to a completely cosmological constant dominated universe
at the fixed point, it is possible to estimate the mass as m ∼ H0 ∼ 10−33 eV if we assume
s ∼ 1. The case (III) is also interesting, since it also has some of the eigenvalues negative and
others null, but it corresponds to s = 0, leading to m = 0. This case is also interesting since
it admits the possibility of coexistence of cosmological constant and a potential part of φ.

The limit of large mass can also be studied. From (2.11), we have ωφ → −1 when
m → ∞ or equivalently V (φ) ≫ φ̇2/2, which corresponds to x ≪ u. Taking the limit x = 0,
the fixed point of interest of the dynamical system is {0, 0, 0, 1, s}, indicating that the large
mass limit corresponds to the ΛCDM model, with l = 1 and s → ∞.

In order to study the above system quantitatively we should try to integrate the dy-
namical system (2.19)–(2.23). Nonetheless, we will do an alternative treatment in the next
section, aiming the numerical integration.

3 Alternative derivation — change of variables

The system of differential equations derived in last section is useful for dynamical system
analysis, as we had discussed in the last section. In order to constrain the SFDM mass we
should solve these equations numerically. However, we must stress that this choice of variables
may generate high frequency solutions in the variables x and u, as already presented in ref. [22]
and shown in figure 1. For huge values of the mass m, these high frequency solutions require
high computational efforts (as an illustration, one single evaluation for m ∼ 1010H−1

0 takes
more than 24 hours with an Intel i5 processor), being desirable to avoid such parametrization.

Given that the behaviour of Ωφ and Ωφ = x2 + u2 are smooth even for large values of
the mass m, a reasonable choice of variables is r ≡

√

Ωφ, such that r2 = x2 + u2, and the
“angle” θ ≡ tan−1 u

x
. Thus, the new variables are:

x = r cos θ (3.1)

y = r sin θ . (3.2)

In some sense we are changing from cartesian to polar coordinates. The resulting system of
equations is now:

r′ = −3r cos2(θ) +
3

2
Πr, (3.3)

θ′ = s+
3

2
sin2(θ), (3.4)

– 5 –
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Figure 1. Panel a) Evolution of variables (x, u, b, l) in function of redshift for µ = 107 and u0 = 0.
Panel b). Evolution of variable s in function of redshift for µ = 107 and u0 = 0.

b′ =
3

2
(Π− 1) b, (3.5)

l′ =
3

2
Π l, (3.6)

s′ =
3

2
Π s (3.7)

where Π = 2r2 cos2(θ) + b2. As can be seen, the equations are now even simpler on r and
θ, and the system is invariant under the transformation θ → θ1 + π, in such a way that it
is periodic over θ with a period π. Thus, we seek to solve this system of equations over the
vector of variables ~r = (r, θ, b, l, s) with the corresponding initial conditions at N = 0:

~r0 =
(

√

Ωφ0, θ0,
√

Ωb0,
√

1− Ωφ0 − Ωb0, µ
)

(3.8)

where θ0 becomes a free parameter, θ0 ∈
[

−π
2 ,

π
2

]

, we have used the normalization condition
Ωm +Ωφ +ΩΛ = 1 and we have defined the parametrization of the mass:

µ ≡ m

H0
(3.9)

It is also interesting to notice that in these new variables, the ωφ EOS assumes a nicely
simple expression:

ωφ = cos(2θ) (3.10)

In figure 2, we may see that none of the “polar” variables present oscillations for higher
mass values (µ = 107 on figure 2).

4 Constraining dark matter mass

In order to obtain limits to the dark matter mass, we have to constrain the set of free
parameters of the SFDM model, namely, s = (Ωφ0, θ0,Ωb0, µ,H0). Hence, even imposing
spatial flatness, as predicted by inflation and indicated by CMB observations, we end up
with 5 free parameters. Among these parameters, Ωb0 is the most well constrained to date,
with compatible limits from BBN and CMB. We therefore choose to fix it at the value given
by Planck and WMAP: Ωb0 = 0.049 [41], reducing the number of free parameters to 4.

– 6 –
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Figure 2. Panel a) Evolution of variables (r, b, l) in function of redshift for µ = 107 and θ0 = 0.
Panel b). Evolution of variables (s, θ) in function of redshift for µ = 107 and θ0 = 0. We have plotted
θ + µ here in order for both variables stand on same axis scale.

As a first attempt to constrain these free parameters we have considered the measure-
ment of the Hubble parameter H(z) in different redshifts. These kind of observational data
are quite reliable because in general such observational data are independent of the back-
ground cosmological model, just relying on astrophysical assumptions. However, even using
the current most complete compilation of H(z) data, with 34 measurements [42], it was not
enough to constrain the 4 free parameters, mainly because of the oscillatory behaviour of the
model along with the relatively small number of degrees of freedom (ν = n− p = 30).

Next, we considered a SNe Ia data sample, which, although being more dependent on
the fiducial cosmological model, it consists of a large data sample and has passed recently
through more refined and model independent methods of light curve fitting [43].

The parameters dependent distance modulus for a supernova at a redshift z can be
computed through the expression

µSN (z|~p) = mSN −MSN = 5 log dL + 25, (4.1)

where mSN and MSN are respectively the apparent and absolute supernova magnitudes,
~p ≡ (Ωφ0, θ0, µ,H0) is the set of free parameters of the model and dL is the luminosity
distance in units of Megaparsecs.

Since we have no analytic expression for H(z), it is necessary to define dL through a
differential equation. The luminosity distance dL can be written in terms of a dimensionless
comoving distance D by:

dL = (1 + z)
H0

c
D . (4.2)

On its turn, the comoving distance can be related to H(z), for a spatially flat Universe,
by the following relation [44]:

dD

dz
≡ 1

E(z)
, (4.3)

where E(z) ≡ H(z)
H0

. Changing to the independent variable N and given that E = µ
s
, we

arrive to:

D′(N) = −e−Ns

µ
(4.4)

– 7 –
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which can be seen as a sixth equation to be solved simultaneously with the system (3.3)–(3.7)
with the initial condition for the comoving distance, D(0) = 0. In order to constrain the free
parameters of the model we considered the Union 2.1 SN Ia dataset from Suzuki et al. [43].
The best-fit set of parameters ~p was estimated from a χ2 statistics with

χ2
SN =

n
∑

i=1

[µSN (zi|~p)− µSN,o,i]
2

σ2
i

(4.5)

where µSN (zi|~p) is given by (4.1), µSN,o,i is the corrected distance modulus for a given SNe
Ia at zi being σi its corresponding individual uncertainty and n = 580 for the Union 2.1 data
compilation.

As usual on this analysis, we marginalize over the H0 dependence by rewriting the
distance modulus:

µSN (z) = 5 logDL(z) +M∗ (4.6)

where DL = (1+ z)D is dimensionless luminosity distance and M∗ ≡ 25+5 log c
H0

comprises
all the dependence over H0. Then, we marginalize the likelihood over M∗:

L̃(Ωφ0, θ0, µ) =

∫ +∞

−∞
N exp

[

−1

2
χ2(M∗,Ωφ0, θ0, µ)

]

dM∗ (4.7)

where N is a normalization constant. The corresponding χ̃2 = −2 ln
(

L̃
N

)

is given by:

χ̃2 = C − B2

A
(4.8)

where A =
∑n

i=1
1
σ2

i

, B =
∑n

i=1
5 log[DL(zi)]−µo,i

σ2

i

, C =
∑n

i=1

{

5 log[DL(zi)]−µo,i

σi

}2
.

Since we are mainly interested on the constraints over the dark matter mass, we have
marginalized L̃ over the parameter θ0. The result of this analysis can be seen in figure 3,
where we have plotted the statistical confidence contours on the plane log10 µ-Ωφ0.

As one may notice, there is a strong degeneracy for Ωφ0 in the range of low DM mass
(10−1 . µ . 10). For higher masses, µ & 102, the degeneracy changes to prevent a mass
determination.

In this case, restricting Ωφ0 to the quite wide range 0.04 < Ωφ0 < 0.6 (flat prior on this
interval), we have found a χ2

min = 560.854, which corresponds to χ2
ν = 0.974. We have found

the best fit Ωφ0 = 0.22+0.38+0.38+0.38
−0.15−0.17−0.18 at ∆χ2 = 2.30, 6.17 and 11.83, respectively. The best fit

for µ was 19.95 and we may infer lower limits to µ as 0.94, 0.51 and 0.13 at the same χ2 levels.
In order to alleviate the degeneracy over Ωφ0, we use a prior over Ωφ0 based on Planck

results in order to constrain the mass m, or, at least, give it an inferior limit. As Planck
(2013) [41] yields the limit Ωdm0 = 0.265 ± 0.011, at 1σ, we use a Gaussian prior of Ωφ0 =
0.265 ± 0.022, which is approximately 2σ of the Planck analysis. The result is shown on
figure 4.

As one may see, Ωφ0 is now better constrained in the interval 0.19 < Ωφ0 < 0.34,
at 3σ. We have found, from this analysis, χ2

min = 561.897, χ2
ν = 0.976. The best fit is

Ωφ0 = 0.252+0.041+0.065+0.086
−0.027−0.045−0.061. The degeneracy remains, however, over the dark matter mass,

whose likelihood now presents two maxima, one for low mass and another for high mass. The
best fit is µ = 19.68, with inferior limits given by 1.12, 0.64 and 0.12 at ∆χ2 = 2.30, 6.17
and 11.83, respectively.

– 8 –
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Figure 3. Confidence contours of SFDM from Union 2.1 SN data. The regions correspond to 68.3%,
95.4% and 99.7% c.l. (green, red and blue regions, respectively).

Figure 4. Confidence contours of SFDM from Union 2.1 SN data + Planck prior over Ωφ0. The
regions correspond to 68.3%, 95.4% and 99.7% c.l. (green, red and blue regions, respectively).

The lowest limit on this context, µ = 0.12, corresponds to a dark matter mass m =
0.12H−1

0 , which corresponds to m = (1.557 ± 0.038) × 10−33 eV for a Hubble constant of
H0 = 73±1.8 km s−1Mpc−1, as indicated by the most recent analysis from the Hubble Space
Telescope [45].

5 Concluding remarks

In this work, we investigated the hypothesis of the dark matter as a scalar field, where we
have analysed the dynamics of a quadratic potential for a single parameter free scalar field.

– 9 –
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Considering the SN Ia observational data, we have found a very low inferior limit to the dark
matter mass, namely, m ≥ 1.56× 10−33 eV. Although such lower limit is much smaller than
the constraints obtained in [22, 23, 37] (of about 10−22 eV), we have shown that any dark
matter mass greater than this one is also compatible with SN Ia observations. Our constraints
are also much similar to the value recently obtained in [27] (m ∼ 10−32 eV), which opens the
question if the mass of the scalar field dark matter could be so small.

A very small mass may be in conflict with the structure formation of the universe, since
it consists of ultra hot dark matter. In the framework of structure formation, hot dark matter
is disfavoured since in this case the galaxy-size density fluctuations would get washed out
by free-streaming leading to an earlier superclusters formation, while observations indicate
early galaxy formation.

Experiments involving dark matter particles detections, e.g DAMA [46], search for par-
ticles with mass in the range (∼ 15–120GeV). More recently [47], an upper bound limit for
dark matter mass of ∼ 197TeV was established, based on relic abundance of thermal dark
matter particles annihilating via a long-range interaction.

Studies of the density perturbation evolution should be made in order to obtain an
upper limit on the scalar field dark matter mass. We may perform this analysis in a future
work. Another forthcoming study is trying to test this result against different potential
dependencies of the scalar field, including self-interaction which could eventually furnish an
upper limit to dark matter mass.
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A The motion equation

Another way to investigate the SFDM model is through the field motion equation. While
it may be numerically intensive, this approach can be useful for dynamical interpretations.
The motion equation for a scalar field is well known and can be obtained from the continuity
equation as (2.13):

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (A.1)

Writing it in terms of the e-folds number, N = ln a, which is more suitable for numerical
integration, we have:

φ′′ +

(

H ′

H
+ 3

)

φ′ +
V ′(φ)

H2
= 0 , (A.2)

where the primes at φ and H denotes derivation with respect to N . Using the fact that ρφ
can be written as ρφ(N) = 1

2H
2φ′(N)2 + V (φ), we can write the Hubble parameter as

H2 =
8πG

[

V (φ) + ρb0e
−3N + ρΛ

]

3− 4πGφ′(N)2
, (A.3)
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where ρΛ =constant. Inserting this result into the motion equation, we arrive at an equation
involving only field derivatives. However, in order to simplify the equations, we apply the
free scalar field potential

(

V (φ) = 1
2m

2φ2
)

and define the dimensionless quantities

Φ ≡
√

8πG

3
φ (A.4)

µ ≡ m

H0
. (A.5)

With these definitions, the Friedmann equation can now be written

(

H

H0

)2

=
1
2µ

2Φ(N)2 +Ωb0e
−3N +ΩΛ0

1− 1
2Φ

′(N)2
. (A.6)

With this expression we may find the motion equation as

Φ′′ +
1

2E2

[

3µ2Φ2Φ′ +
(

3Ωb0e
−3N + 6ΩΛ0

)

Φ′ + 2µ2Φ
]

= 0 , (A.7)

where E2 ≡
(

H
H0

)2
is given by (A.6). This equation can be solved to find the free scalar field

evolution. Furthermore, we have the dark matter density parameter

Ωφ =
8πGρφ
3H2

=
Φ′2

2
+

µ2

2E2
Φ2 . (A.8)

Thus:

Ωφ0 =
Φ′2
0

2
+

µ2Φ2
0

2
. (A.9)
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