
Uranium-bearing francolites present in organic-rich limestones
of NW Greece: a preliminary study using synchrotron radiation
and fission track techniques

I. T. Tzifas1 • U. A. Glasmacher2 • P. Misaelides1 • A. Godelitsas3 •

P. N. Gamaletsos4,5 • J. Goettlicher4 • D. Françoso de Godoy6
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Abstract Synchrotron radiation techniques (l-XRF and l-

XANES) were applied to the study of organic-rich phos-

phatized limestones of NW Greece (Epirus). The results

revealed uranium accumulation in areas of the material

containing, among others, carbonate apatite (francolite)

and organic matter. The UL3-edge of l-XANES spectra

showed that uranium was present in tetravalent form.

U-bearing francolite crystals were separated from the rock

and characterized by Raman spectroscopy and microprobe.

The analysis of the crystals also indicated the presence of

sodium and sulfur. The uranium presence in the crystals

was also visualized, after neutron irradiation and etching,

by the observation of the fission tracks.
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Introduction

Apatite is a group of phosphate minerals containing high

concentration of OH-, F- and Cl- in their crystals. The

naturally occurring apatite has as general chemical formula

Ca10(PO4)6(OH,F,Cl)2. Apatite is the tenth most abundant

mineral on Earth and the most abundant naturally occurring

phosphate [1, 2].

The uniqueness of apatite lies in the ability of its

structure to accommodate and adapt to substitution in both

cation and anion sites [1, 3, 4]. Rakovan et al. [5] reported

the structural characterization of U6? in apatite as the first

step in the investigation of U and Th incorporation in its

structure [6, 7]. The study of this group of minerals as

potential solid-state radioactive waste repository was also

reported in the literature [8, 9] and for this reason, many

studies based on the sorption/adsorption of U and other

radionuclides in the apatite structure have been carried out

[10–13]. Apatite, a mineral fundamental in controlling the

rare-earth and trace element variation in rocks [14], is

valuable in the fission-track determination of rates and

dates in geologic processes [15–17].

Francolite [18] is a particular species of the apatite

group corresponding to carbonate apatite. The mineral was

named after its occurrence at Wheal Franco, Devon, Eng-

land. The information about the presence and role of car-

bonate in the structure of this mineral is still rather limited

[19, 20]. Perdikatsis [21] studying pure francolite from the

Epirus region (Greece) by X-ray diffraction (XRD), con-

cluded that there is a phosphate substitution by carbonate

groups. His results also agree with previous findings

[22–24]. Schuffert et al. [25] tried to explain the substitu-

tion of phosphates by carbonates in natural francolites

modelling the results obtained from the investigation of 37

samples of synthetic francolite with CO3
2--concentration
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between 0.0 and 9.0 wt%. Infrared absorption spectra of a

natural carbonate fluorapatite were presented in the litera-

ture in 1990 however without further chemical and X-ray

diffraction information and data [26]. On the other hand,

Ivanova et al. [27] and Fleet and Liu [28–31] presented

Rietveld and single-crystal X-ray diffraction data describ-

ing a possible substitution mechanism of phosphate by

carbonate ions in synthetic fluor- and hydroxy-apatite.

Petkova and Yaneva [32] evidenced by infrared spec-

troscopy (IR), X-ray diffraction (XRD) and thermo-

gravimetry/diffrential thermal analysis (TG/DTA) the

isomorphic substitution of phosphate by carbonate groups

in Syrian carbonate apatite upon mechanochemical acti-

vation and Kostova et al. [33] the positional redistribution

of carbonate ions in the structure of sedimentary apatite as

effect of high energy milling. The role of the water pres-

ence in the structure of francolite is also rather controver-

sial and not completely understood. According to literature,

the association of water with apatites may be a key factor

in the preference of syn-thetic low temperature apatites for

B-type carbonate substitution for phosphate [34, 35]. On

the other hand, for particular species of apatite, such as

Ca10(PO4)6(OH)2 or Sr10(PO4)6F2, presenting nearly total

B-type carbonate substitution, there is no correlation

between the number of water molecules in the channels and

the weight percentage of carbonate. This lack of correlation

would be expected only when there is no competition

between water and carbonate in the apatite channels [36].

The presence of carbonate apatites as mineral compo-

nent of vertebrate bones, teeth and kidney stones is also

still quite controversial and not completely clarified.

The objective of this study was to investigate the pres-

ence of uranium in organic-rich phosphatized limestones of

Epirus region (NW Greece) and especially its association

with apatites and francolite crystals as well as with organic

matter. It should be noted that there is no generally

accepted structural study of the U location in naturally

occurring apatites and in particular in francolites. The

results of the study are expected to contribute to a better

understanding of the geochemistry and migration/immo-

bilization of uranium into the geological environment of

NW Greece and additionally to the elucidation of the redox

phenomena taking place.

Experimental part

Sampling area and treatment of the samples

The sampling region was mainly selected on the basis of

previous unpublished internal reports by the Greek Atomic

Energy Commission (GAEC) and Institute of Geology and

Mineral Exploration (IGME) concerning radiometric

irregularities in the Mesozoic sedimentary rocks of NW

Greece and particularly in the mountainous Epirus region

[37] The region under investigation, which belongs to the

Ionian geotectonic zone of NW Greece (Epirus), is shown

in Fig. 1 [38, 39]. The sedimentary formation, where the

samples were collected is an organic rich brecciated

phosphatized limestone. This particular formation extends

in 2 km approximately along the road of the region of

Perivleptos, which is located 10 km N—NW of the city of

Ioannina. The sampling (in total six samples of 1–2 kg

weight each) was performed from the outcrop of the first

appearance of the formation to its end. Specifically, the

sampling locations were selected by surveying the sus-

pected sedimentary formations by means of a portable ra-

diation counter with NaI(Tl) detector (Canberra-MCB2).

The specimens presenting enhanced radiation consisted of

brecciated phosphatized limestones and were partially rich

in organic matter.

The samples were crushed using a jaw crusher, pulver-

ized by milling and washed with water. Heavy mineral

separation was carried out in four steps in order to obtain

concentrates of apatite crystals. In the first step, heavy

liquid separation was performed using 80 % sodium

polytungstate (LST Fastfloat, density: 2.8 kg/m3). This step

was followed by magnetic separation of the[2.8 kg/m3

fraction by means of a Frantz magnetic separator. The non-

magnetic fraction was further processed by a solution of

Fig. 1 Location of the studied region (modified after Robertson et al.

[40])
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methylene iodide and acetone (density: 3.2 kg/m3) in order

to separate the apatite crystals and finally by pure methy-

lene iodide (density: 3.3 kg/m3) to receive the zircon

(ZrSiO4) microcrystals.

Sample characterization

The chemical characterization of the separated crystals was

performed on a JEOL JXA-8230 Superprobe Electron

Probe Microanalyzer at the Department of Petrology and

Metalogenesis of the Institute of Geosciences and Sciences

of the Paulista State University (Brasilia). Energy Disper-

sive Spectra (EDS) were acquired with a silicon drift

detector with energy resolution (FWHM) of 129 eV for

Mn-Ka, at 3000 cps; Wavelength Dispersive Spectroscopy

(WDS) qualitative scans were performed with LDE1, TAP,

PETL and LIFH crystals and dwell time of 60 ms in

position steps of 50 lm. The standardization was per-

formed measuring the FKa, CaKa and PKa in F-apatite,

SiKa in wollastonite, UMa in UO2, ClKa in sodalite and

SKa in pyrite and using acceleration voltage of 15 kV,

current of 20 nA, intergration time of 10 s for peak and 5 s

for background. For WDS quantitative analyses accelera-

tion voltage was applied at 15 nA in order to minimize

destruction of the crystals under investigation. The beam

diameter was 10 lm.

Raman spectroscopy measurements were performed at

the University of Heidelberg using a Horiba iHR320

Raman Spectrometer, equipped with a 532 nm Laser

(green) and a Horiba Superhead as optional confocal optic.

Fission track measurements

The apatite and francolite grains were embedded in epoxy

resin, cut and polished in order to reveal their internal

surface. Uranium free mica foils were attached to the

samples, which were irradiated by neutrons, along with

CN5 neutron dosimeter glasses, at the FRM II high flux

research reactor of the Technical University of Munich at

Garching. After the irradiation and decay of the induced

radioactivity, the mica foils were etched for 20 min by

48 % HF in ambient temperature (20 �C). The fission

tracks were then visualized by optical microscopy.

Synchrotron radiation measurements

Synchrotron radiation (SR) micro-X-ray fluorescence (l-

XRF) and X-ray absorption near edge structure (l-

XANES) spectra were obtained using powders and pol-

ished sections in the SUL-X beamline of the Laboratory for

Environmental Studies of the ANKA facility (Karlsruhe

Institute of Technology, Germany) [41]. The sample area

of the thin polished section of the phosphatized limestone

to be analyzed by l-VRF was selected using an optical

microscope. The intensities of the Ca, P, S, Y and U flu-

orescence emission lines excited by 17.5 keV X-rays were

simultaneously determined by a 7-element Si(Li) solid

state detector. On areas with elevated uranium concentra-

tion l-XANES data were recorded at the UL3-edge (about

17.170 keV). The powder samples measured as pellets

were prepared by mixing the sample with a binding agent

(cellulose). The uranium minerals uraninite (UO2) and

shoepite [UO2(OH)2] as well as Durango fluorapatite were

used as reference materials.

Results and discussion

The geological formation under investigation seems to be a

matrix supported poorly sorted monomictic breccia pro-

duced by rock fragmentation due to faulting or other tec-

tonic processes. The matrix of the breccia consists

primarily of the cementing material, but it also contains

sand and/or silt sized clasts cemented together among the

coarser clasts. According to previous work [37], the cement

binding the clasts consists of black organophosphate

material (organic matter and apatite) and calcite.

She separated inorganic phases were mainly calcite,

apatites and francolites (carbonate apatites). The latter had

optically different appearance than the classic apatite and,

more specifically, appeared as opaque crystals without a

specific shape showing different shades of brown. The

francolites were identified by Raman spectroscopy com-

bined with SEM/EDS microanalysis. The Raman spectra

obtained (Fig. 2) were characterized by bands belonging to

both carbonates and phosphates groups [42, 43].

The brown color of the francolite crystals was probably

due to a coating created by the interaction of their surface

with the organic matter [44, 45] or originating from the

high participation of carbonate part in its lattice. The

Fig. 2 Raman spectrum of francolite
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microprobe analysis of the crystals showed that the mineral

was a uranium-enriched sulfur- and sodium bearing car-

bonate fluorapatites. The presence of uranium in the fran-

colite crystals was additionally evidenced by the enhanced

number of fission tracks revealed in the attached uranium

free mica foils after neutron irradiation and etching

(Fig. 3). The number of fission tracks originating from the

francolite crystals could not be quantified because of their

enhanced uranium content. This finding confirming the

uranium presence in sedimentary francolite crystals has not

been, to our knowledge, previously reported in the

literature.

On the other hand, only few studies on the chemical

composition of francolites have appeared so far in the lit-

erature [22, 46, 47]. The elemental mapping of the studied

francolite performed by microprobe showed that Ca, P, S,

and Na were not homogenously distributed in the crystals

(Fig. 4).

SR-based measurements of the U-bearing organic rich

phosphatized limestone were performed in order to obtain

information about the uranium oxidation state in the sam-

ples. SR l-XRF maps were used to examine the distribu-

tion of uranium in the samples in order to select the target

areas for l-XANES measurements. The SR l-XRF study

(Fig. 5) revealed that U was accumulated, along with P, Y

and most likely S, in certain areas of the dark organic-rich

part of the rock containing, according to previous XRD-

and SEM/EDS measurements, enhanced concentrations of

apatites and amorphous organic matter. The areas with very

low U and high Ca concentrations mainly consisted of

calcite and, in a lesser extent, of dolomite.

The position of the UL3-edge (2p3/2 orbital) in prelimi-

nary l-VANES spectra indicated the presence of U4?

associated to apatite-group minerals and/or organic matter.

Figure 6 presents the position of the uranium edge of the

investigated phosphatized limestone in comparison with

those obtained for uraninite (UO2) and shoepite

[UO2(OH)2] used as reference materials. Under oxidizing

conditions, typical of surface waters and groundwater

systems, the aqueous speciation of U6? determine the

partitioning of uranium onto mineral surfaces or in their

structure by the reduction of U6?–U4?. Oxidized U6? is

highly soluble as the uranyl ion UO2
2?, whereas the sol-

ubility of U4? is controlled by insoluble oxides such as

uraninite. Oxidation state analyses contribute to a better

understanding of the geochemistry and migration/immo-

bilization of uranium into the geological environment and

additionally to the elucidation of the redox phenomena

taking place.

The ability of apatite to accommodate several foreign

elements, including actinides, in its lattice is well-known

and of great environmental importance. Monovalent (Na?,

K?), divalent (Sr2?, Pb2?, Ba2?, Mn2?, Cd2?), trivalent

(REE3?), as well as tetravalent (Th4?, U4?) and hexavalent

(U6?) cations have been reported to substitute calcium in

the apatite structure [3, 5–7, 48]. Rakovan et al. [5],

observed, analyzing extended X-ray absorption fine struc-

ture (EXAFS) data, the Ca-substitution (Ca1 site) by U6?

Fig. 3 Apatite (a) and

francolite (c) crystals and the

corresponding induced fission

tracks (b) and (d) in the attached

uranium free mica foils after

neutron irradiation
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in synthetic apatite grown at 1350 �C. In addition, Luo

et al. [6] reported, also based on XRD and XANES data,

that U4? can also be incorporated in Ca-sites of U-doped

synthetic fluorapatite. Structure refinements indicated that,

in this case, U substitutes Ca almost exclusively into the

Ca2 sites with site occupancy ratios UCa2/UCa1 ranging

from 5.00 to 9.33. The occurrence of U4? in calcite, formed

at low temperatures, is considered to be less possible.

Combining the SR l-XRF maps of the bulk rock with

those of the francolites carried out by SEM/EDS—could be

concluded that the uranium was concentrated in the organic

rich part of the phosphatized limestones and more specif-

ically in the francolite structure. The positive correlation

between uranium and phosphor additionally strengthen this

conclusion [49, 50]. Previous attempts to explain the

presence of uranium in sedimentary apatite (e.g. [51]) were

based on the similarity of the ionic radii of the elements

and on the assumption that uranium may partly substitute

calcium in the carbonate apatite lattice. At this point, it

should also be emphasized that all the studies about

Fig. 4 Microprobe elemental

maps of a francolite crystal

J Radioanal Nucl Chem (2017) 311:465–472 469

123



uranium in apatite structure concerned fluorapatites and

chloroapatites [5, 6] and there were no specific studies

about uranium in carbonate apatite/francolite

([Ca5(PO4,CO3)3(F,OH)]) occurring, along with fluor- and

hydroxy-apatite.

Conclusions

The organic rich limestones of NW Greece (Epirus region)

exhibit radioactivity due to the enhanced uranium content.

Organic matter, apatites, francolites (carbonate apatites)

and calcite are the main phases of the rock. Francolites

were identified by combining microprobe data with Raman

spectroscopy. l-XRF elemental mappings applied to pol-

ished thin section of the sample showed that the uranium

exclusively existed in the organic rich part

Fig. 5 Optical image of the

polished section of the

U-bearing limestone (upper left)

and qualitative SR l-XRF

elemental maps. The dark side

corresponds to the organic-rich

component, where (U and P) is

mostly accumulated, while the

bright one to Ca-carbonate

Fig. 6 Preliminary UL3-edge l-XANES spectra

470 J Radioanal Nucl Chem (2017) 311:465–472

123



(apatites ? francolites ? organic matter). Moreover, ura-

nium was positively correlated with the P, while S was also

present. The density of homogenously distributed fission

tracks highlighted the high U content. l-XANES study

revealed that the uranium existed in the U4? oxidation

state. Furthermore, the fission track results showed that

francolites could be a perfect candidate for ther-

mochronology dating due to their high U content.
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