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Cross sections for the charm-production reactions pp → Λ−
cΣþ

c , ΣcΣc, ΞcΞc, and Ξ
0
cΞ0

c are presented, for
energies near their respective thresholds. The results are based on a calculation performed in the meson-
exchange framework in close analogy to earlier studies of the Jülich group on the strangeness-production

reactions pp → ΛΣ, ΣΣ, ΞΞ by connecting the two sectors via SU(4) flavor symmetry. The cross sections
are found to be in the order of 0.1–1 μb at energies of 100 MeV above the respective thresholds, for all
considered channels. Complementary to meson exchange, where the charmed baryons are produced by the
exchange of D and D� mesons, a charm-production potential derived in a quark model is employed for
assessing uncertainties. The cross sections predicted within that picture turn out to be significantly smaller.
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I. INTRODUCTION

The FAIR project at the GSI laboratory has an extensive
program with the aim of a high-accuracy spectroscopy of
charmed hadrons, along with heavy quarkonia including
the exotic X, Y, Z mesons, and of exploring the interaction
of these particles with ordinary matter [1]. For the fea-
sibility of such studies, specifically those of the PANDA
experiment [2,3] the production rate for charmed hadrons
in antiproton-proton (pp) collisions is a key factor. Indeed,
issues discussed in the literature over the last few years like
charmed hypernuclei [4], J=ψ binding to nuclei [5,6] and
D-mesic nuclei [7–9] or in-medium changes of charmed
hadrons [10–13] cannot be addressed experimentally with-
out a sufficient production rate. However, presently very
little is known about the strength of the interaction of
charmed hadrons with ordinary baryons and mesons. In
view of that, over the last few years we have looked at the
exclusive charm-production reactions pp → Λ−

cΛþ
c [14]

and pp → DD,DsDs [15,16] close to their thresholds with
the objective to provide with our predictions estimations for
the pertinent cross sections.
In the present paper we extend our study of the reaction

pp → Λ−
cΛþ

c [14] to the production of other charmed
baryons such as the Σc, the Ξc and the Ξ0

c. The projected
antiproton beam momentum available for the PANDA
experiment reaches up to 15 GeV=c corresponding to a
center-of-mass energy of

ffiffiffi
s

p ¼ 5.5 GeV [17]. Thus, the
production of most of the charmed members of the lowest
SU(4) JP ¼ 1=2þ baryon 20-plet is possible at PANDA,
including the Ξc and Ξ0

c and even the Ω0
c [18]. While there

is a large number of calculations for pp → Λ−
cΛþ

c [19–25]
this cannot be said for the production of other charmed
baryons. Khodjamirian et al. [23] published cross sections

for Λ−
cΣþ

c and ΣcΣc. Titov and Kämpfer provided results for
dσ=dt, for Λ−

cΣþ
c and ΣcΣc in [21] and for ΞcΞc in [26].

However, their analysis focuses on the region of small
momentum transfer and integrated cross sections are not
given. The earliest study we are aware of where integrated
cross sections for Σ−−

c Σþþ
c were presented is the one by

Kroll, Quadder, and Schweiger [19]. Wang and collabora-
tors [25] calculated total and differential cross sections for
pp → Λ−

cΛþ
c in the energy region relevant for the exotic

charmoniumlike state Yð4630Þ.
Our analysis of charm production is done in complete

analogy to that of the reactions pp → ΛΛ, ΛΣ, ΣΣ, ΞΞ
performed by the Jülich group some time ago [27–30]. In
those studies the hyperon-production reaction is considered
within a coupled-channel model. This allows one to take
into account rigorously the effects of the initial (pp) and
final (YY) state interactions which play an important role
for energies near the production threshold [27,28,31,32].
The microscopic strangeness production is described by
meson exchange and arises from the exchange of the K and
K� mesons. The elastic parts of the interactions in the initial
(pp) and final (YY) states are likewise described by meson
exchange, while annihilation processes are accounted for
by phenomenological optical potentials. Specifically, the
elastic parts of the initial- (ISI) and final-state interactions
(FSI) are G-parity transforms of a one-boson-exchange
variant of the Bonn NN potential [33] and of the hyperon-
nucleon model A of Ref. [34], respectively. With this
model a good overall description of the pp → ΛΛ,
pp → ΛΣþ c:c:, and pp → ΣΣ data obtained in the
P185 experiment at the low-energy antiproton ring
LEAR (CERN) [35] could be achieved and its results
are also in line with the scarce experimental information for
pp → ΞΞ [30].
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The extension of the model to the charm sector is based
on SU(4) flavor symmetry. Accordingly, the elementary
charm-production process is described by t-channel D and
D� meson exchanges. Note that the symmetry is invoked
primarily as a guideline for providing constraints on the
pertinent baryon-meson coupling constants. Though we do
not expect that the SU(4) symmetry should hold, recent
calculations of the relevant coupling constants within QCD
light-cone sum rules suggest that the actual deviation from
the SU(4) values could be only in the order of a factor 2 or
even less [23]; even smaller deviations have been obtained
[36] in a constituent quark model calculation using the 3P0

pair-creation mechanism. We examine the sensitivity of the
results to variations in the elastic and annihilation parts of
the initial pp interaction. Furthermore, as already done
for Λ−

cΛþ
c [14], we investigate the effect of replacing the

meson-exchange transition by a charm-production potential
derived in a quark model. Again this serves for assessing
uncertainties in the model, since one could question the
validity of a meson-exchange description of the transition
in view of the large masses of the exchanged mesons. In
this context we want to note that meson exchange as well as
the quark model lead to rather short-ranged transition
potentials. Thus, practically speaking those can be viewed
as being contact interactions where the pertinent coupling
constants are simply saturated [37] by the dynamics
underlying the two considered approaches.
In the next two sections we introduce the basic ingre-

dients of the model. In Sec. IV we present numerical results
for total cross sections for the various YcYc channels,
utilizing for the charm-production mechanism meson
exchange as well as the quark model. A summary of our
work is presented in Sec. V. Details on the transition
potential in the quark model and on the SU(4) coupling
constants that enter the meson-exchange transition poten-
tial are collected in Appendixes.

II. THE MODEL

We calculate the charm-production reactions pp →
YcYc in close analogy to the original Jülich coupled-
channel approach [27–30] to strangeness production.
The transition amplitude is obtained from the solution of
a multichannel Lippmann-Schwinger (LS) equation,

T ¼ V þ VG0T; ð1Þ

which reads explicitly in terms of the channels μ (ν)
corresponding to NN, Λ−

cΛþ
c , Λ

−
cΣþ

c , Σ−
cΛþ

c , ΣcΣc, and
ΞcΞc,

Tμνðpμ;pν; zÞ ¼ Vμνðpμ;pν; zÞ þ
X
γ

Z
d3pγVμγðpμ;pγ; zÞ

×Gγ
0ðpγ; zÞTγνðpγ;pν; zÞ: ð2Þ

Here z is the total energy and pν (pμ) the relative
momentum in the initial (final) state in the center of mass.
The propagator G0ðp; zÞ is given by

Gγ
0ðpγ; zÞ ¼ 1=ðz − Eγ

pγ
þ iϵÞ ð3Þ

with E1
p1

¼ EN
pNN

þ EN
pNN

, etc., being the relativistic ener-
gies of the two baryons in the intermediate state. The
calculations are performed in isospin basis, which is
sufficient for an exploratory study. Moreover, the mass
splitting between Σþþ

c , Σþ
c , and Σ0

c is rather small [18]. This
is different in the strangeness sector where there is a sizable
mass difference between the Σþ, Σ0, and Σ− which made a
calculation in the particle basis mandatory [29].
The transition potential from NN to the YcYc channel is

given by t-channel D and D� exchanges; see Fig. 1 (upper
row). The expressions for the transition potentials are the
same as for K and K� exchange and can be found in
Ref. [34]. They are of the generic form

VYcYc;NNðtÞ ∼
X

M¼D;D�
gNYcM

gNYcM

FNYcM
ðtÞFNYcMðtÞ
t −m2

M
; ð4Þ

where gNYcM are coupling constants and FNYcMðtÞ are form
factors. Under the assumption of SU(4) symmetry the
coupling constants are identical to those in the correspond-
ing strangeness-production reaction for NN → Λ−

cΛþ
c ,

NN → Λ−
cΣþ

c , Σ−
cΛþ

c , and NN → ΣcΣc but differ for
ΞcΞc; see Appendix B. With regard to the vertex form
factors we use here a monopole form with a cutoff mass Λ
of 3 GeV, at the NYcD as well as at the NYcD� vertex, as in
our study of Λ−

cΛþ
c production [14].

The ΞcΞc channel cannot be reached from NN via single
meson exchange, and the same is also the case for Σ0

cΣ0
c

FIG. 1. Upper row: Contributions to the N̄N → ȲcYc transition
potential Vμν in the meson-exchange picture (left) and the quark
model (right). Lower row: Selected contributions to the p̄p →
Σ̄0
cΣ0

c and p̄p → Ξ̄0
cΞ0

c transition amplitude generated by the
coupled-channel framework.
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from an initial pp state. The corresponding transition
potentials Vμν are zero. However, the employed coupled-
channel framework [cf. Eq. (2)] generates automatically
multistep processes so that the corresponding transition
amplitudes Tμν are no longer zero. Some contributions that
arise at the first iteration in the LS equation are depicted in
the lower row of Fig. 1. In principle, there are also
contributions from noniterative two-meson exchanges.
However, we expect those to be much less important in
comparison to iterated one-meson exchange. In the latter
case the two baryons in the intermediate states can go on
shell and the pertinent contributions are accordingly
enhanced [38].
The diagonal potentials Vμμ are given by the sum of an

elastic part and an annihilation part. For theNN channel we
use again the set of potentials introduced and described in
Refs. [14,15]. Their elastic part is loosely connected (via
G-parity transform) to a simple, energy-independent one-
boson-exchange NN potential (OBEPF). However, since at
the high energies necessary for charm production any NN
potential has to be considered as being purely phenom-
enological several variants were constructed in order to
explore how strongly the results on charm production
depend on the choice of the NN interaction. In two of
those variants (called A and A0 in [14,15]) only the longest-
ranged (and model-independent) part of the elastic NN
interaction, namely one-pion exchange, was kept. Models
B and C include also some short-range contributions; see
the discussion in [14].
All variants are supplemented by a phenomenological

spin-, isospin-, and energy-independent optical potential of
Gaussian form, in order to take into account annihilation,

VNN→NN
opt ðrÞ ¼ ðU0 þ iW0Þe−r2=2r20 : ð5Þ

The free parameters (U0, W0, r0) were determined by a fit
to NN data in the energy region relevant for the reactions
pp → Λ−

cΛþ
c and pp → DD, i.e. for laboratory momenta

of plab ¼ 6–10 GeV=c. (Their actual values can be found
in Table 1 of Ref. [14].) The data set comprises total cross
sections and integrated elastic and charge-exchange
(pp → nn) cross sections. With all four variants a rather
satisfying description of the NN data in that energy region
could be obtained as documented in Refs. [14,15]. Even at
plab ¼ 12 GeV=c, i.e. at a momentum that corresponds
roughly to the ΞcΞc threshold, the differential cross section
is nicely reproduced by all models, as exemplified in Fig. 2.
Evidently, not only the magnitude at very forward angles
but also the slope is reproduced well by all considered NN
interactions. We want to emphasize that differential cross
sections were not included in the fitting procedure and are,
therefore, predictions of the models.
Note that yet another NN model was considered in [14],

namely model D, which is based on the full G-parity

transformed OBEPF. However, its results disagree consid-
erably with the empirical pp differential cross sections as
well as with the integrated charge-exchange cross sections
and, thus, cannot be considered to be realistic. Because of
that it was no longer utilized in our study of pp → DD
[15,16] and we will not use it here either.
In Ref. [14] the interaction in the final Λ−

cΛþ
c system was

assumed to be the same as the one in ΛΛ. Specifically, this
means that the elastic part of the interaction is fixed by
coupling constants and vertex form factors taken from the
hyperon-nucleon model A of Ref. [34], while the annihi-
lation part is again parameterized by an optical potential
which contains, however, spin-orbit and tensor components
in addition to a central component [27]:

VΛ−
c Λ

þ
c →Λ−

c Λ
þ
c

opt ðrÞ ¼ ½Uc þ iWc þ ðULS þ iWLSÞL · S

þ ðUt þ iWtÞσΛc
· rσΛc

· r�e−r2=2r20 : ð6Þ

The free parameters in the optical ΛΛ potential were
determined in Ref. [27] by a fit to data on total and
differential cross sections and analyzing powers for
pp → ΛΛ. As already emphasized in [14], we do not
expect that the Λ−

cΛþ
c interaction will be the same on a

quantitative level. But at least the bulk properties should be
similar, because in both cases near threshold the inter-
actions will be governed by strong annihilation processes.
In the present study we need also interactions in the final
Λ−
cΣþ

c , ΣcΣc, and ΞcΞc systems. Those interactions have
been fixed by adopting the same philosophy as for Λ−

cΛþ
c

and the parameters are likewise taken over from corre-
sponding studies in the strangeness sector [29,30].
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FIG. 2. Differential cross section for elastic p̄p scattering at
plab ¼ 12 GeV=c as a function of t. The curves represent results
based on the N̄N potentials A (dash-dotted line), A0 (dotted), B
(dashed) and C (solid); see text for details. The experimental
information is taken from Foley et al. [39].
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III. TRANSITION POTENTIAL FROM THE
CONSTITUENT QUARK MODEL

As an alternative to meson exchange we consider a
charm-production potential inspired by quark-gluon
dynamics. The strange-hadron production in pp reactions
has been studied extensively within the constituent quark
model in the past. The best known works are perhaps those
of Kohno andWeise [31], Furui and Faessler [40], Burkardt
and Dillig [41], Roberts [42] and Alberg et al. [32]. For an

extensive list of references see the review [35] and for a
fairly recent work Ref. [43]. In the present study we adopt
the interaction proposed by Kohno and Weise, derived in
the so-called 3S1 mechanism. In this model the ss (or cc)
pair in the final state is created from an initial uu or dd pair
via s-channel gluon exchange; see Fig. 1. After quark
degrees of freedom are integrated out the potential has the
form [31]

Vpp→ΛΛðrÞ ¼ 4

3
A1ðα; βÞ3=2

4π ~α

m2
G
δS1

�
3

4πhr2i
�

3=2
exp

�
−
3

4
B1ðα; βÞ

r2

hr2i
�
; ð7Þ

Vpp→ΛΣ0;Σ0ΛðrÞ ¼ −
4

3
ffiffiffi
3

p A1ðα; βÞ3=2
4π ~α

m2
G

�
δS0 þ

2

3
δS1

��
3

4πhr2i
�

3=2
exp

�
−
3

4
B1ðα; βÞ

r2

hr2i
�
; ð8Þ

Vpp→Σ0Σ0ðrÞ ¼ 8

27
A1ðα; βÞ3=2

4π ~α

m2
G

�
δS0 þ

21

18
δS1

��
3

4πhr2i
�

3=2
exp

�
−
3

4
B1ðα; βÞ

r2

hr2i
�
; ð9Þ

Vpp→Σ−ΣþðrÞ ¼ 2Vpp→Σ0Σ0ðrÞ; Vpp→ΣþΣ−ðrÞ ¼ 0: ð10Þ

The corresponding expressions for the transitions to
charmed baryons (pp → Λ−

cΛþ
c , etc.,) are formally identi-

cal. The quantity ~α=m2
G in Eqs. (7)–(9) is an effective

(quark-gluon) coupling strength, hr2i is the mean square
radius associated with the quark distribution in the nucleon
and S is the total spin in the pp system. The effective
coupling strength is practically a free parameter that was
fixed by a fit to the pp → ΛΛ data [28]. Contrary to
Ref. [31] and to our initial study [14] now we take into
account the quark-mass dependence of the intrinsic wave
functions of the baryons. This dependence is encoded in the
functions A1ðα; βÞ and B1ðα; βÞ for which explicit expres-
sions can be found in Appendix A, together with the
transition potentials to other channels such as ΞΞ. For equal
quark masses A1 and B1 reduce to 1 so that one recovers the
result of Kohno and Weise. However, considering the
difference in the constituent quark masses of the strange
and the charmed quark one arrives at somewhat different
strengths and ranges for the transition potentials in the
strangeness and charm sectors. Choosing hr2i1=2 ¼
0.571 fm and ~α=m2

G ¼ 0.252 fm2 ensures agreement with
the parameters used in our studies of pp → ΛΛ [28] and
pp → ΛΣ [29].
The effective coupling strength depends explicitly on the

effective gluon propagator m2
G, i.e. on the square of the

energy transfer from initial to final quark pair;
cf. Refs. [40,41,44]. Heuristically this energy transfer
corresponds roughly to the masses of the produced con-
stituent quarks, i.e. mG ≈ 2mq, so that we expect the

effective coupling strength ~α=m2
G for charm production

to be reduced by the ratio of the constituent quark masses of
the strange and the charmed quark squared, ðms=mcÞ2 ≈
ð550 MeV=1600 MeVÞ2 ≈ 1=9 as compared to the one for
pp → ΛΛ. This reduction factor is adopted in our calcu-
lation for the charm sector.
In the calculation for the quark-model transition potential

the same diagonal interactions (NN → NN;ΛΛ → ΛΛ;…)
as described in the last section are employed. However, the
parameters in the optical potentials forΛΛ [cf. Eq. (6)] have
been readjusted in order to ensure a reproduction of the
pp → ΛΛ data [28] and the same has been done in
Ref. [29] for ΛΣ+c.c. and now for the new data on the
ΣΣ channels. For the extension to the charm sector we
assume again that the YcYc interactions are the same as
those for YY.

IV. RESULTS

Before we present our results for charm production let us
discuss briefly the reaction pp → ΣΣ. When the Jülich
group published their results back in 1993 [29] the only
experimental information on the ΣΣ channel at low
energies consisted in a preliminary data point for Σ−Σþ.
In the meantime the final result for Σ−Σþ has become
available [45] and also a measurement for ΣþΣ− [46]. The
latter channel is of particular interest because it requires a
double charge exchange and, therefore, at least a two-step
process. In our model calculation such processes are
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generated automatically by solving the LS equation (2), and
it had been predicted in Ref. [29] that ΣþΣ− production is
by no means suppressed at low energies as one could have
expected. The actual measurement of the cross section,
published several years after our calculation [46], nicely
confirmed this prediction; see Fig. 3 (left). Results for
pp → ΣΣ based on the constituent quark model had not
been presented in Ref. [29]. This is done here for the
first time; see Fig. 3 (right). Information on the model
results for pp → ΛΛ and pp → ΛΣ can be readily found in
Refs. [27–29] (for meson exchange and for the quark
model) and we refrain from reproducing those here.
It is instructive to recall the kinematical situation for the

production of strange and charmed baryons in pp colli-
sions. This is done in Fig. 4 where the thresholds of the
various channels are indicated. One can see that the
openings of the ΛΛ, ΛΣ, and ΣΣ channels are much closer

together than those of their charmed counterparts. On the
other hand, the ΞΞ threshold is much farther away than that
of ΞcΞc. And in the charmed case there are in addition
thresholds involving the Ξ0

c. We indicate also the thresholds
of channels that involve the 3=2þ baryons Σ�ð1385Þ and
Σ�
cð2520Þ. Those channels are not included in the present

study which aims at a rough and qualitative estimation of
the (strangeness and) charm-production cross section. It
should be said, however, that their presence could have a
sizable quantitative impact on the production cross sec-
tions, specifically in those reactions whose thresholds lie
above the ones for the production of 3=2þ baryons.
Predictions for the charm-production reactions pp →

Λ−
cΛþ

c and pp → Λ−
cΣþ

c are shown in Fig. 5. The meson-
exchange result for pp → Λ−

cΛþ
c is identical to the one

presented in Ref. [14]. However, as already said in Sec. III
we no longer consider the unrealistic NN model D because
it predicts a too large pp cross section and, as a conse-
quence, leads to a much stronger reduction of the pp →
Λ−
cΛþ

c amplitude as compared to the other NN potentials
(A–C) that reproduce the NN data in the relevant energy
region very well [14,15]. Accordingly, the variation of the
predicted production cross section due to differences in the
employed NN ISI, represented by bands in Fig. 5, is now
much smaller, namely less than a factor 2. Thus, for NN
potentials that not only reproduce the integrated cross
sections but also describe the pp differential cross in the
forward direction satisfactorily the resulting uncertainty in
the predicted charm-production cross sections remains
modest. Evidently, now the bands from the meson-
exchange and quark-model transition potentials are clearly
separated. Note that for the latter in the present work the
dependence of the mean square radius hr2i on the quark
masses is taken into account (cf. Sec. III), and because of
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FIG. 3. Cross sections for p̄p → ΣΣ̄. On the left results based on the meson-exchange transition potential are displayed while on the
right those for the quark model are shown. The solid, dashed, and dash-dotted lines correspond to Σ̄−Σþ, Σ̄0Σ0, and Σ̄þΣ−, respectively.
Data taken at plab ¼ 1.922 GeV=c are from Refs. [45,46]. The symbols are placed at slightly lower and higher momenta, respectively,
so that the error bars do not overlap.
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that the predictions are slightly increased as compared to
the ones shown in Ref. [14].
In order to facilitate a quantitative comparison between

the two model approaches, but also between the predictions
for charm production with those for the strangeness sector,
we provide tables with results corresponding to the excess
energies of 25 (Table I) and 100 MeV (Table II) in the
respective channels. One can see from those tables that the
quark model yields pp → Λ−

cΛþ
c cross sections that are

roughly a factor 2–3 smaller than the ones based on meson
exchange.
The pp → Λ−

cΣþ
c (Σ−

cΛþ
c ) cross sections predicted by the

meson-exchange model are more or less an order of
magnitude smaller than those for pp → Λ−

cΛþ
c ; cf. Fig. 5

and Tables I and II. This could be somehow expected based
on the corresponding ratio in the strangeness sector. On the
other hand, the predictions based on the quark model are
much smaller. In particular, they are roughly a factor 100
smaller than the pertinent results for the Λ−

cΛþ
c channel, and

they are a factor 30 smaller than the Λ−
cΛþ

c results in the
meson-exchange picture.
For the ease of comparison we include in Fig. 5 also

results from Khodjamirian et al. [23] (solid curve; the
dashed curves indicate the uncertainty). In that study,
following Kaidalov and Volkovitsky [20], a nonperturba-
tive quark-gluon string model is used where, however, now
baryon-meson coupling constants from QCD light-cone
sum rules are employed. Interestingly, those results
obtained in a rather different framework are more or less
in line with our quark-model predictions.
Results for the pp → ΣcΣc channels are presented in

Fig. 6. The cross sections predicted by the meson-exchange
model are all of similar magnitude, even the one for Σ0

cΣ0
c

where a two-step process is required. The magnitude is also
comparable to the cross section for pp → Λ−

cΣþ
c . Also here

the results based on the quark model are significantly
smaller, i.e. even by roughly 3 orders of magnitude. Again
we include here the results from Khodjamirian et al. [23].
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FIG. 5. Cross sections for p̄p → Λ̄−
cΛþ

c (left) and p̄p → Λ̄−
cΣþ

c (right) as a function of plab. The solid (red) bands are results based on
the meson-exchange transition potential, and the hatched (blue) bands are for the quark model. The solid and dashed lines are results
taken from Ref. [23]; see text.

TABLE I. Production cross sections for strange and charmed baryons at the excess energy ε ¼ 25 MeV in microbarns. The
corresponding laboratory momenta are indicated in the table. The variations in the charm case are those due to the N̄N models A–C.
Note that the results for Ξ0

cΞ0
c are from a truncated coupled-channel calculation; see text.

Strangeness Charm

plab Meson Quark plab Meson Quark
(GeV=c) exchange model (GeV=c) exchange model

p̄p → Λ̄Λ (Λ̄−
cΛþ

c ) 1.507 24.7 27.7 10.28 2.65–4.00 0.66–1.27
p̄p → Λ̄Σ (Λ̄−

cΣþ
c ) 1.724 5.84 6.38 11.12 0.32–0.49 0.01–0.02

p̄p → Σ̄−Σþ (Σ̄−−
c Σþþ

c ) 1.942 3.51 3.67 11.98 0.63–1.09 0.001
p̄p → Σ̄0Σ0 (Σ̄−

cΣþ
c ) 1.942 1.40 1.45 11.98 0.19–0.29 0.001

p̄p → Σ̄þΣ− (Σ̄0
cΣ0

c) 1.942 2.65 2.86 11.98 0.26–0.40 0.001
p̄p → Ξ̄0Ξ0 (Ξ̄−

cΞþ
c ) 2.677 0.21 0.45 12.15 0.42–0.60 0.003–0.005

p̄p → Ξ̄þΞ− (Ξ̄0
cΞ0

c) 2.677 0.17 0.32 12.15 0.17–0.26 0.003–0.005
p̄p → Ξ̄0−

c Ξ0þ
c 13.32 0.15–0.22 ð0.5–0.7Þ × 10−4

p̄p → Ξ̄00
c Ξ00

c 13.32 0.05–0.08 ð0.5–0.7Þ × 10−4
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In this case only isospin averages results are available. Let
us mention that Kroll, Quadder, and Schweiger [19] have
already published integrated cross sections for Σ−−

c Σþþ
c

more than two decades ago. Their predictions amount to
about 10−3 μb at plab ¼ 16 GeV=c and, thus, are more or
less compatible with those by Khodjamirian et al..

Production cross sections for pp → ΞcΞc are displayed
in Fig. 7. The results exhibit a similar pattern to what we
already observed for the ΣcΣc case. Once again the cross
sections based on the meson-exchange transition potential
are in the order of 0.1–1 μb while the predictions for
the quark model are orders of magnitude smaller. We

TABLE II. Production cross sections for strange and charmed baryons at the excess energy ε ¼ 100 MeV in microbarns. The
corresponding laboratory momenta are indicated in the table. The variations in the charm case are those due to the N̄N models A–C.
Note that the results for Ξ0

cΞ0
c are from a truncated coupled-channel calculation; see text.

Strangeness Charm

plab Meson Quark plab Meson Quark
(GeV=c) exchange model (GeV=c) exchange model

p̄p → Λ̄Λ (Λ̄−
cΛþ

c ) 1.719 72.6 70.6 10.66 5.65–8.37 2.22–3.49
p̄p → Λ̄Σ (Λ̄−

cΣþ
c ) 1.937 10.6 9.5 11.50 0.60–0.91 0.02–0.04

p̄p → Σ̄−Σþ (Σ̄−−
c Σþþ

c ) 2.157 5.63 8.48 12.38 0.91–1.58 0.002
p̄p → Σ̄0Σ0 (Σ̄−

cΣþ
c ) 2.157 2.35 2.77 12.38 0.30–0.46 0.002

p̄p → Σ̄þΣ− (Σ̄0
cΣ0

c) 2.157 3.27 3.66 12.38 0.38–0.58 0.002
p̄p → Ξ̄0Ξ0 (Ξ̄−

cΞþ
c ) 2.904 0.40 0.94 12.55 0.62–0.87 0.007–0.010

p̄p → Ξ̄þΞ− (Ξ̄0
cΞ0

c) 2.904 0.29 0.76 12.55 0.31–0.45 0.007–0.010
p̄p → Ξ̄0−

c Ξ0þ
c 13.74 0.27–0.39 ð0.1–0.2Þ × 10−3

p̄p → Ξ̄00
c Ξ00

c 13.74 0.08–0.13 ð0.1–0.2Þ × 10−3
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FIG. 6. Cross sections for p̄p → Σ̄cΣc as a function of plab. Top left, Σ̄−−
c Σþþ

c ; top right, Σ̄−
cΣþ

c ; bottom, Σ̄0
cΣ0

c. The same description of
curves as in Fig. 5.
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performed also exploratory calculations for the reaction
pp → Ξ0

cΞ0
c. Its threshold lies significantly higher than

those of the other charmed baryons and several more
channels are already open; see Fig. 4. Therefore, in this
case only a very rough estimate can be expected from our
model study. Because of that we omitted the ΞcΞc and
ΞcΞ0

c;Ξ
0
cΞc channels in that calculation for simplicity

reasons. The corresponding results are quoted in Tables I
and II.
There is a clear trend that the cross sections in the quark

model become more and more suppressed as compared to
those from meson exchange for channels with higher-lying
thresholds. The main reason for the stronger suppression is
presumably related to the exponential r dependence of the
potential; see the expressions in Sec. III and Appendix A. It
amounts to VμνðqÞ ∝ expð−q2hr2i=3Þ in momentum space
with q ¼ pμ − pν being the transferred momentum. With
increasing masses of the baryons there is an increasing
momentum mismatch between the on-shell momenta in the
initial (NN) and final states and, because of the exponential
q2 dependence, the on-shell matrix elements are strongly
reduced for transitions to higher channels. In the meson-
exchange picture the potential is given by VμνðqÞ ∝ 1=
ð−q2 −m2

MÞ; see Eq. (4). Since mM is already of the order
of 2 GeV variations in q2 due to the different charm
thresholds have only a moderate effect on the strength of
the (on-shell) potential.

In addition also the interactions in the final YcYc states
play a more important role. For Λ−

cΛþ
c production we had

found that the results are rather insensitive to the FSI [14],
leading to a reduction of the cross section in the order of
only 10%–15% when it is switched off altogether. This is
no longer the case for channels with higher-lying thresh-
olds. Indeed, an increased sensitivity is not too surprising in
view of the fact that some channels like Σ0

cΣ0
c and, of

course, ΞcΞc can only be reached by two-step processes,
which means via YcYc FSI effects. We explored the
sensitivity by (arbitrarily) increasing the annihilation in
the ΣcΣc channel by multiplying the strength parameters of
the ΣcΣc annihilation potential with a factor 2 and found
that this reduces the pertinent charm-production cross
sections by one order of magnitude. Note that specifically
for the quark model, where the on-shell transition matrix
elements are rather small as discussed above, off-shell
rescattering in the various transitions becomes very
important.
The charm-production cross sections based on the

meson-exchange picture depend also sensitively on the
form-factor parameters at the NYcD and NYcD� vertices.
As said in Sec. II, for the results discussed above a cutoff
mass of Λ ¼ 3 GeV has been used. When reducing this
value to 2.5 GeV the cross sections for pp → Λ−

cΛþ
c drop

by roughly a factor 3 [14]. For the other charm-production
channels considered in the present paper such a decrease of
the cutoff mass in the transition potential yields a reduction
of a factor 5 in the cross sections. One can view that
variation as a further uncertainty of the predictions based on
the meson-exchange model. If so, one can conclude that the
results of the meson-exchange and quark transition poten-
tials for pp → Λ−

cΛþ
c are indeed compatible with each

other. However, this is definitely not the case for the other
charm-production channels considered. In principle,
employing even smaller cutoff masses would further
decrease the cross sections of the meson-exchange
charm-production mechanism. However, as argued in
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FIG. 7. Cross sections for ΞcΞ̄c as a function of plab. Left, Ξ̄−
cΞþ

c ; right, Ξ̄0
cΞ0

c. The same description of curves as in Fig. 5.

TABLE III. Color-spin-flavor factors χ0 and χ1 for the tran-
sitions to double-strange baryons Ξ̄ð0;þÞΞð0;−Þ.

Initial state → Λ̄Λ Σ̄0Σ0 Λ̄Σ0 Σ̄−Σþ Final state ↓

S ¼ 0 8
9

− 16
27

4

9
ffiffi
3

p − 32
27

Ξ̄0Ξ0

8
9

− 16
27

− 4

9
ffiffi
3

p 0 Ξ̄þΞ−

S ¼ 1 28
27

52
81

16

9
ffiffi
3

p 104
27

Ξ̄0Ξ0

28
27

52
81

− 16

9
ffiffi
3

p 0 Ξ̄þΞ−
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Ref. [14], in view of the fact that the exchanged mesons
have a mass of around 1.9–2 GeV we consider values
below 2.5 GeV as being not really realistic.
Finally, a comment on the SU(4) flavor symmetry which

is used here as a guideline for providing constraints on the
pertinent baryon-meson coupling constants. As already
said in the introduction, recent calculations of the relevant
(D and D�) coupling constants within QCD light-cone sum
rules suggest that the actual deviation from the SU(4)
predictions could be in the order of a factor 2 or smaller; see
Table 1 in Ref. [23]. Indeed, in several cases the ratio of the
NYcM to NYM coupling constants turned out to be
practically consistent with SU(4) symmetry (where that
ratio is 1) within the quoted uncertainty. In any case, since

the coupling constants enter quadratically into the potential
[see Eq. (4)] and with the 4th power into the cross sections
it follows that a factor 2 (1.5) in the coupling constant
implies roughly a variation in the order of a factor 16 (5) in
the cross section. Such variations are larger than those from
the pp ISI represented by the bands. However, they are well
within the difference we observe between the predictions
based on the meson-exchange transition potential and those
of the quark model.

V. SUMMARY

In this paper we presented predictions for the charm-
production reaction pp → Λ−

cΛþ
c , Λ

−
cΣþ

c , ΣcΣc, and ΞcΞc.
The production process is described within the meson-
exchange picture in close analogy to our earlier studies on
pp → ΛΛ [27], ΛΣ, ΣΣ [29], and ΞΞ [30] by connecting
the dynamics via SU(4) symmetry. The calculations were
performed within a coupled-channels framework so that the
interaction in the initial pp interaction, which plays a
crucial role for reliable predictions, can be taken into
account rigorously. The interactions in the various YcYc
channels and the transitions between those channels are
also included.
The obtained Λ−

cΣþ
c (Σ−

cΛþ
c ) production cross sections

are in the order of 0.5–1 μb for energies not too far from the
threshold. Thus, they are about a factor 10 smaller than the
corresponding cross sections for Λ−

cΛþ
c . The ΣcΣc cross

sections are likewise in the order of 0.5–1 μb where those
for Σ−−

c Σþþ
c are predicted to be somewhat larger than those

for Σ−
cΣþ

c and Σ0
cΣ0

c. The cross sections for ΞcΞc produc-
tion, for which the threshold is only slightly higher than the
one for ΣcΣc, are found to be around 0.5 μb.
In order to shed light on the model dependence of our

results we investigated the effect of replacing the meson-
exchange transition potential by a charm-production
mechanism derived in a quark model. In our earlier work
on the reaction pp → Λ−

cΛþ
c we had found that both

pictures lead to predictions of essentially the same order
of magnitude [14]. Thus, it seemed that the details of the
production mechanism do not matter; only the involved

TABLE V. Coupling constants and cutoff masses at the ΞΛK,
ΞΞπ, etc., and the corresponding ΞcΛcK, ΞcΞcπ, etc., vertices.
The coupling constants are obtained from SU(4) relations with
gNNπ=

ffiffiffiffiffi
4π

p ¼ 3.795, gNNρ=
ffiffiffiffiffi
4π

p ¼ 0.917, and fNNρ=
ffiffiffiffiffi
4π

p ¼
5.591 and the F=ðF þDÞ ratios αps ¼ 2=5, αev ¼ 1 and
αmv ¼ 2=5.

Strangeness Charm
Vertex gα=

ffiffiffiffiffi
4π

p
fα=

ffiffiffiffiffi
4π

p
Λα (GeV) gα=

ffiffiffiffiffi
4π

p
fα=

ffiffiffiffiffi
4π

p

ΞΛK 1.315 2.0 −1.859
ΞΣK −3.795 2.0 2.147
ΞΛK� 1.588 0.666 2.2 −3.188
ΞΣK� −0.917 −5.591 2.2 1.297 2.385
ΞΞπ −0.759 1.3 1.518
ΞΞρ 0.971 −2.219 1.3 0.917 1.686
ΞΞω 1.491 −2.800 2.0 1.491 1.398
ΞΞϕ −4.216 −3.953 −2.108 −1.977
ΞΞJ=ψ 2.108 −3.953
ΞΞσ 3.162 1.7 3.162
Ξ0
cΣK 2.0 1.859

Ξ0
cΛK� 2.2 1.297 −1.297

Ξ0
cΣK� 2.2 1.682 1.682

Ξ0
cΞ0

cρ 1.3 0.917 −0.917
Ξ0
cΞ0

cω 2.0 1.491 −1.398
Ξ0
cΞ0

cϕ −2.108 1.977
Ξ0
cΞ0

cJ=ψ 2.108 3.953
Ξ0
cΞ0

cσ 1.7 3.162

TABLE IV. Color-spin-flavor factors χ0 and χ1 for the transitions to Ξ̄ð0;−Þ
c Ξð0;þÞ

c and Ξ̄0ð0;−Þ
c Ξ0ð0;þÞ

c final states.

Initial state → Λ̄Λ Σ̄0Σ0 Λ̄Σ0 Λ̄−
cΛþ

c Σ̄−
cΣ−

c Λ̄−
c Σþ

c Σ̄−−
c Σþþ

c Final state ↓

S ¼ 0 − 2
9

0 0 2
3

− 2
9

0 0 Ξ̄0
cΞ0

c

0 0 0 2
3

− 2
9

0 − 4
9

Ξ̄−
cΞþ

c
4
9

4
9

11
27

− 2
9

10
27

4

9
ffiffi
3

p 0 Ξ̄00
c Ξ00

c
4
9

4
27

− 4

9
ffiffi
3

p − 2
9

10
27

− 4

9
ffiffi
3

p 20
27

Ξ̄0−
c Ξ0þ

c

S ¼ 1 2
27

2
3

− 2

3
ffiffi
3

p 2
3

2
27

0 0 Ξ̄0
cΞ0

c
2
9

2
3

− 2

3
ffiffi
3

p 2
3

2
27

0 4
27

Ξ̄−
cΞþ

c
14
27

14
27

14
27

2
27

62
81

− 4

27
ffiffi
3

p 0 Ξ̄00
c Ξ00

c
14
27

14
81

− 14

27
ffiffi
3

p 2
27

62
81

4

27
ffiffi
3

p 124
81

Ξ̄0−
c Ξ0þ

c
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scales and these are fixed by the masses of the exchanged
mesons or, correspondingly, the constituent masses of the
produced charmed quarks. Now, it turned out that our
conclusion drawn from that work was perhaps too optimis-
tic. The extension of the study to other charmed baryons in
the present work revealed drastic differences between the
predictions of the two production mechanisms for channels
with higher thresholds. Specifically, for pp → Λ−

cΣþ
c

(Σ−
cΛþ

c ) the quark model yields results that are more than
one order of magnitude smaller than those obtained for the
meson-exchange model and in case of pp → ΣcΣc or pp →
ΞcΞc the differences even amount to 3 orders of magnitude.
Clearly, this large difference or uncertainty in our

predictions is a bit disillusioning. But to some extent it
does not really come unexpected. While for the lowest
channel, Λ−

cΛþ
c , the magnitude of the cross section is

mostly influenced by the initial pp interaction (which is
known and fixed from experimental data) this is no longer
the case for the other reactions. Here two-step processes of
the form pp → Λ−

cΛþ
c → ΣcΣc, pp → Λ−

cΣþ
c ðΣ−

cΛþ
c Þ →

ΣcΣc, etc., become increasingly important. Accordingly,
the influence of the interactions in the Λ−

cΛþ
c ;Λ

−
cΣþ

c ;…,
channels become more significant and those are not con-
strained by any empirical information. Specifically, for the
quark-model results these interactions play a decisive role
because direct transitions are suppressed due to the large
momentum mismatch. Accepting the difference between
the predictions based on meson exchange and those for the
quark model as the basic uncertainty of our model
calculation leaves ample room and, thus, might be not
so encouraging for pertinent measurements. The results for
meson exchange taken alone convey a much more opti-
mistic perspective for experimental efforts. In any case,
which of those scenarios is closer to reality can be only
decided by performing concrete experiments that will
hopefully be pursued at FAIR in the future.
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APPENDIX A: QUARK MODEL

The microscopic quark-model interaction of the strange-
and charm-baryon production potentials is inspired by an
s-channel one-gluon exchange amplitude for light quark-
antiquark ll pair annihilation and heavy quark-antiquark hh
pair creation that can be parametrized in terms of an
effective quark-gluon coupling strength ~α=m2

G as

Vðll→ hhÞ¼−
4π ~αs
m2

G
CS2δ3ðrl − rlÞδ3ðrh − rhÞδ3ðrh − rlÞ;

ðA1Þ

where C is the color matrix

Cðll → hhÞ ¼ 1

6

X8
a¼1

��
λa

2

�
ll
−
�
λa

2

��

hh

�
2

ðA2Þ

and S is the total spin of the light quark-antiquark pair (or of
the heavy antiquark-quark pair; any quark mass factors
involved in either case are absorbed in the effective
coupling). Also, l stands for ðu; dÞ and, depending on
the case, h for s or c. For example, while in the process
pp → ΛΛðΛcΛcÞ, h ¼ sðcÞ, in ΛΛ → ΞcΞc, l ¼ ðu; dÞ and
h ¼ c, and so on.
To evaluate the transition potential, we need quark-

model wave functions for the baryons and antibaryons. For
simplicity, we use harmonic oscillator wave functions, that
for the ground states are given by

ϕBðr1; r2; r2Þ ¼ ϕBðρ; λÞ

¼
�

1

πb2ρ

�
3=4

�
1

πb2λ

�
3=4

× exp

�
−

1

2b2ρ
ρ2 −

1

2b2λ
λ2
�
; ðA3Þ

where ρ and λ are the Jacobi coordinates ρ ¼ r1 − r2 and
λ ¼ r3 − ðm1r1 þm2r2Þ=ðm1 þm2Þ, respectively, with
m1, m2 and m3 being the quark masses. For example,
for the proton we have m1 ¼ m2 ¼ mu and m3 ¼ md (in
the present paper, we take mu ¼ md ≡m), bpρ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2hr2i

p
,

and bpλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2hr2i

p
, where hr2i is the proton mean square

radius. For Λ (Σ), m1 ¼ m2 ¼ m, m3 ¼ ms, and the size
parameters bΛρ and bΛλ are related to those of the proton as
bΛρ ¼ bpρ and bΛλ ¼ ffiffiffi

α
p

bpλ (and analogous for Σ), where α
depends on the quark masses as

α2 ¼ ms þ 2m
3ms

: ðA4Þ

ForΛc (Σc),ms in Eq. (A4) is to be replaced by the charmed
quark mass mc. For Ξ one has m1 ¼ m2 ¼ ms and m3 ¼ m
and, analogous to Λ, one can relate the respective size
parameters to those of the proton as bΞρ ¼ bpρ and
bΞλ ¼ ffiffiffi

β
p

bpλ , with

β2 ¼ mþ 2ms

3m
: ðA5Þ

Finally, for the Ξc and Ξ0
c states, which involve uðdÞ, s and

c quarks, in order to keep the calculation simple we define
an average mass m ¼ ðmþmsÞ=2 so that in the wave
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function (A3) the size parameters are related to those of the

proton as bΞc
ρ ¼ bpρ and bΞc

λ ¼
ffiffiffi
β

p
bpλ , with

β2 ¼ mc þ 2m
3mc

: ðA6Þ

Given the microscopic interaction and the baryon and
antibaryon wave functions, one can evaluate rather easily
the transition potentials. For the transitions pp → ΛΛ,
Σ0Σ0, ΛΣ0, Σ−Σþ the potentials have been given explicitly
in Eqs. (7)–(10), where the functions A1ðα; βÞ and B1ðα; βÞ
take into account the different sizes of the baryons due to
quark-mass differences encoded in the parameters α and β
defined above:

A1ðα; βÞ ¼
2

1þ α
; B1ðα; βÞ ¼

1þ α

2α
: ðA7Þ

The expressions for the corresponding charm-production
potentials pp → Λ−

cΛþ
c ;…, are identical. But α and β differ

and, accordingly, the values of the factors A1 and B1. And,
of course, also the effective coupling constant is different.
The transition potentials for double-strange baryon pro-
duction, ΛΛ, Σ0Σ0, ΛΣ0, Σ−Σ0 → Ξ0Ξ0, ΞþΞ−, can be
written generically as

V2-s prodðrÞ ¼ A2ðα; βÞ3=2
�
4π ~α

m2
G

�
ðχ0δS0 þ χ1δS1Þ

×

�
3

4πhr2i
�

3=2
exp

�
−
3

4
B2ðα; βÞ

r2

hr2i
�
;

ðA8Þ

where

A2ðα; βÞ ¼
29α4β

½3þ 5β þ αð5þ 3βÞ�½3þ 5β þ 6α2ð−1þ βÞ þ 12α3β þ α4ð3þ 9βÞ� ; ðA9Þ

B2ðα; βÞ ¼
2α3½3þ 5β þ αð5þ 3βÞ�

3þ 5β þ 6α2ð−1þ βÞ þ 12α3β þ α4ð3þ 9βÞ ; ðA10Þ

and χ0 and χ1 are color-spin-flavor coefficients whose
values are given in Table III (we use the phase conventions
of Ref. [47] for the spin-flavor wave functions).
In the production of the charmed antibaryon-baryon

states Ξð0;−Þ
c Ξð0;þÞ

c and Ξ0ð0;−Þ
c Ξ0ð0;þÞ

c , there are two situations
to distinguish, those with strange antibaryon-baryon
ðΛΛ;Σ0Σ0;ΛΣ0;Σ0ΛÞ in the initial states and those with
charmed antibaryon-baryon ðΛ−

cΛþ
c ;Σ−

cΣþ
c ;Λ

−
cΣþ

c ;Σ−
cΛþ

c ;
Σ−−
c Σþþ

c Þ. While in the first case an anticharm-charm quark
pair is created, in the second an antistrange-strange quark
pair is created and the symmetry of the wave functions
leads to different transition potentials in the two cases. The
corresponding transition potentials are of the generic form
given in Eq. (A8), with the coefficients χ0 and χ1 given in
Table IV, and the functions A2 and B2 replaced by

A3ðα; βÞ ¼ A2ðα; βÞ; B3ðα; βÞ ¼ B2ðα; βÞ ðA11Þ
for the strange antibaryon-baryon initial states and

A4ðαc; βÞ ¼
24α4cβ

ðαc þ βÞð3α4c þ 2β þ 3α3cβÞ
; ðA12Þ

B4ðαc; βÞ ¼
4α3cðαc þ βÞ

3α4c þ 2β þ 3α3cβ
ðA13Þ

for the charmed antibaryon-baryon initial states, with αc
being the charmed counterpart of α:

α2c ¼
mc þ 2mu

3mc
: ðA14Þ

Though we provide here all transition potentials between
the strangeness and the charm sectors for completeness
reasons, it should be said that only transitions of the form
pp → Λ−

cΛþ
c → ΞcΞc, etc., are included in the actual

coupled-channel calculation. Transitions via strange bary-
ons like pp → ΛΛ → ΞcΞc are ignored. We expect such
processes to be less significant. At least, in our study of the
production of the charm-strange mesonDs in pp → Dþ

s D−
s

it had turned out that two-step processes involving strange
hadrons are practically negligible [15].

APPENDIX B: SU(4) CONSIDERATIONS

For calculating the baryon-baryon-meson coupling
constants within the assumed SU(4) symmetry we utilize
here the tensors ψμνλ (μ, ν, λ ¼ 1;…; 4) introduced
by Okubo [48] for representing the baryon 20-plet; see
also the Appendix of Ref. [49]. These tensors fulfill the
conditions

ψμνλ þ ψνλμ þ ψλμν ¼ 0; ψμνλ ¼ ψνμλ: ðB1Þ

In terms of the baryon fields the tensor is given
by [48]
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ψ111 ¼ p; ψ221 ¼ n; ψ123 ¼ 1ffiffi
2

p Σ0;

ψ231 ¼ 1
2

�
− 1ffiffi

2
p Σ0 þ

ffiffi
3
2

q
Λ
�
; ψ312 ¼ 1

2

�
− 1ffiffi

2
p Σ0 −

ffiffi
3
2

q
Λ
�
; ψ113 ¼ Σþ;

ψ223 ¼ Σ−; ψ331 ¼ Ξ0; ψ332 ¼ Ξ−;

ψ124 ¼ 1ffiffi
2

p Σþ
c ; ψ241 ¼ 1

2

�
− 1ffiffi

2
p Σþ

c þ
ffiffi
3
2

q
Λþ
c

�
; ψ412 ¼ 1

2

�
− 1ffiffi

2
p Σþ

c −
ffiffi
3
2

q
Λþ
c

�
;

ψ114 ¼ Σþþ
c ; ψ224 ¼ Σ0

c; ψ134 ¼ 1ffiffi
2

p Ξþ
c ;

ψ341 ¼ 1
2

�
− 1ffiffi

2
p Ξþ

c −
ffiffi
3
2

q
Ξ0
c
þ
�
; ψ413 ¼ 1

2

�
− 1ffiffi

2
p Ξþ

c þ
ffiffi
3
2

q
Ξ0
c
þ
�
; ψ234 ¼ 1ffiffi

2
p Ξ0

c;

ψ342 ¼ 1
2

�
− 1ffiffi

2
p Ξ0

c −
ffiffi
3
2

q
Ξ0
c
0
�
; ψ423 ¼ 1

2

�
− 1ffiffi

2
p Ξ0

c þ
ffiffi
3
2

q
Ξ0
c
0
�
; ψ334 ¼ Ω0

c;

ψ441 ¼ Ξþþ
cc ; ψ442 ¼ Ξþ

cc; ψ443 ¼ Ωþ
cc:

The SU(4) 15-plet of the mesons is represented by the tensor

M1
1 ¼ π0ffiffi

2
p þ η8ffiffi

6
p þ η15ffiffiffiffi

12
p ; M2

1 ¼ πþ; M3
1 ¼ Kþ; M4

1 ¼ D0;

M1
2 ¼ π−; M2

2 ¼ − π0ffiffi
2

p þ η8ffiffi
6

p þ η15ffiffiffiffi
12

p ; M3
2 ¼ K0 M4

2 ¼ D−;

M1
3 ¼ K−; M2

3 ¼ K0; M3
3 ¼ −

ffiffi
2
3

q
η8 þ η15ffiffiffiffi

12
p ; M4

3 ¼ D−
s ;

M1
4 ¼ D0; M2

4 ¼ Dþ M3
4 ¼ Dþ

s ; M4
4 ¼ − 3η15ffiffiffiffi

12
p :

Note that the structure for vector mesons is identical
and, therefore, we do not give its form explicitly. It
can be obtained via the obvious replacements π → ρ,
K → K�, etc.,
In terms of those tensors the SU(4) invariant interaction

Lagrangian is given formally by

L ¼ gðaψ�αμνMβ
αψβμν þ bψ�αμνMβ

αψβνμÞ: ðB2Þ

In the actual evaluation of the baryon-baryon-meson
coupling constants for the SU(4) case we take as reference
the standard SU(3) calculation. There those couplings are
obtained from [50]

L ¼
	
D
2
BfM;Bg þ F

2
B½M;B�



; ðB3Þ

where B and M are the baryon and meson octets, respec-
tively, in the usual matrix representation [50] and the
brackets h…i denote that the trace has to be taken. The
two independent coupling constants F and D are usually
expressed by the ratios αps ¼ F=ðF þDÞ and 1 − αps,

respectively. The SU(3) relations for the coupling constants
can be read off by regrouping the terms that arise in the
explicit evaluation of Eq. (B3) into multiplets within the
isospin basis; cf. Eq. (2.17) in Ref. [50]. The expressions
based on the SU(4) Lagrangian (B2) can be mapped

onto our SU(3) results with a ¼ ð−4þ 10αpsÞ 49 and

b ¼ ð−5þ 8αpsÞ 49.
The coupling constants at the baryon-baryon-meson

vertices relevant for the present study are given by

gΞcΞcπ ¼ αpsgNNπ; gΞ0
cΞ0

cπ ¼
5αps−2

3
gNNπ;

gΞ0
cΞcπ ¼ 1ffiffi

3
p ðαps − 1ÞgNNπ;

gΞcΞcη8 ¼ − 1ffiffi
3

p αpsgNNπ; gΞ0
cΞ0

cη8 ¼ 1

3
ffiffi
3

p ð2 − 5αpsÞgNNπ;

gΞ0
cΞcη8 ¼ ðαps − 1ÞgNNπ;

gΞcΞcη15 ¼ 1ffiffi
6

p ð3 − 4αpsÞgNNπ; gΞ0
cΞ0

cη15 ¼ 1

3
ffiffi
6

p ð−7þ 4αpsÞgNNπ;

gΞcΛcK ¼
ffiffi
2
3

q
ðαps − 1ÞgNNπ; gΞ0

cΛcK ¼
ffiffi
2

p
3
ð2 − 5αpsÞgNNπ;

gΞcΣcK ¼ ffiffiffi
2

p
αpsgNNπ; gΞ0

cΣcK ¼
ffiffi
2
3

q
ð1 − αpsÞgNNπ;
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gΛcΣcπ ¼ 2ffiffi
3

p ð1 − αpsÞgNNπ; gΣcΣcπ ¼ 2αpsgNNπ;

gΛcΛcη8 ¼ 2
ffiffi
3

p
9
ð−2þ 5αpsÞgNNπ; gΛcΛcη15 ¼ 1

3
ffiffi
6

p ð−7þ 4αpsÞgNNπ;

gΣcΣcη8 ¼ 2ffiffi
3

p αpsgNNπ; gΣcΣcη15 ¼ 1ffiffi
6

p ð3 − 4αpsÞgNNπ;

gΛcND ¼ − 1ffiffi
3

p ð1þ 2αpsÞgNNπ; gΣcND ¼ ð1 − 2αpsÞgNNπ:

In case of pseudoscalar mesons the ratio αps is fixed
from the nonrelativistic quark model [SU(6)], i.e. αps ¼
2=5 [34]. The contribution of the η meson has been
neglected [34,51].
For the isoscalar vector mesons ω, ϕ, and J=ψ we

assume ideal mixing of the ω15, ω8 and ω1 states, i.e.

ω ¼
ffiffiffi
1

2

r
ω1 þ

ffiffiffi
1

3

r
ω8 þ

ffiffiffi
1

6

r
ω15;

ϕ ¼ −
1

2
ω1 þ

ffiffiffi
2

3

r
ω8 −

ffiffiffiffiffi
1

12

r
ω15;

J=ψ ¼ 1

2
ω1 −

ffiffiffi
3

p

2
ω15; ðB4Þ

and fix the coupling constant of the SU(4) singlet by
imposing the Okubo-Zweig-Iizuka rule so that gNNϕ ¼ 0.
This also ensures that gNNJ=ψ ¼ 0.
For the vector coupling constant the F=ðF þDÞ ratio

αeV ¼ 1 is used which then yields the following relations for
the ω coupling constants:

gΛΛω ¼ gΣΣω ¼ gΛcΛcω ¼ gΣcΣcω ¼ 2

3
gNNω;

gΞΞω ¼ gΞcΞcω ¼ gΞ0
cΞ0

cω ¼ 1

3
gNNω; ðB5Þ

gΛΛϕ ¼ gΣΣϕ ¼ −
ffiffiffi
2

p

3
gNNω;

gΞΞϕ ¼ 2gΞcΞcϕ ¼ 2gΞ0
cΞ0

cϕ ¼ −
2

ffiffiffi
2

p

3
gNNω;

gΛcΛcJ=ψ ¼ gΣcΣcJ=ψ ¼
ffiffiffi
2

p

3
gNNω;

gΞcΞcJ=ψ ¼ gΞ0
cΞ0

cJ=ψ ¼
ffiffiffi
2

p

3
gNNω: ðB6Þ

In case of the tensor coupling constants f the SU(3)
relations are actually applied to the combination of the
electric and magnetic coupling, G ¼ gþ f, and with the
F=ðF þDÞ ratio αmV ¼ 2=5 [34]. Taking also into account
that in the full Bonn NN model one has fNNω ¼ 0 [51]
yields then the following relations for the f’s:

fΛΛω ¼ fΛcΛcω ¼ −
1

2
fNNρ;

fΣΣω ¼ fΣcΣcω ¼ þ 1

2
fNNρ;

fΞΞω ¼ −2fΞcΞcω ¼ 2fΞ0
cΞ0

cω ¼ −
1

2
fNNρ; ðB7Þ

fΛΛϕ ¼ −fΣΣϕ ¼ −
ffiffiffi
2

p

2
fNNρ;

fΞΞϕ ¼ 2fΞcΞcϕ ¼ −2fΞ0
cΞ0

cϕ ¼ −
ffiffiffi
2

p

2
fNNρ;

fΛcΛcJ=ψ ¼ −fΣcΣcJ=ψ ¼
ffiffiffi
2

p

2
fNNρ;

fΞcΞcJ=ψ ¼ −fΞ0
cΞ0

cJ=ψ ¼ −
ffiffiffi
2

p

2
fNNρ: ðB8Þ

In the study of strangeness production [27–30] the
contribution of ϕ meson exchange was ignored. Since its
contribution is of rather short range it was argued that it is
effectively included via the real part of the phenomeno-
logical annihilation potential, which is also of short range
and has to be determined by a fit to data anyway. We adopt
the same point of view here, and we also omit the
contribution of the even shorter-ranged contribution from
J=ψ exchange. Exploratory calculations for strangeness
production with inclusion of ϕ exchange resulted in an
increase of the cross sections by a factor of roughly 2.
However, as expected this increase can be easily compen-
sated by an appropriate adjustment of the parameters in the
annihilation potential so that one arrives again at results that
agree with the measurements. A corresponding compensa-
tion takes place also in the charm sector if we include the ϕ
meson but then adopt likewise the readjusted parameters
(from the strangeness sector) for the final-state interaction
in ΛcΛc, etc.,
In the works of the Bonn-Jülich groups the σ meson

stands for the correlated ππ s-wave interaction and is
neither considered to be an SU(3) singlet nor a member
of the 0þ-meson octet. Here, for simplicity reasons we
simply take over the coupling constants used at the ΛΛσ-,
ΣΣσ-, and ΞΞσ vertices in previous works [30,34] for the
corresponding vertices for charmed baryons. Table V
summarizes the values of the coupling constants and cutoff
masses of the vertex form factors employed in the present
calculation.
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