
Pattern Recognition Letters 87 (2017) 117–126

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Optimum-Path Forest based on k -connectivity: Theory and

applications

�

João Paulo Papa

a , ∗, Silas Evandro Nachif Fernandes b , Alexandre Xavier Falcão

c

a Department of Computing, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP 17033-360, Brazil
b Department of Computing, Federal University of São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
c Institute of Computing, University of Campinas, Av. Albert Einstein, 1251, Campinas, SP 13083-852, Brazil

a r t i c l e i n f o

Article history:

Available online 10 August 2016

Keywords:

Pattern classification

Optimum-Path Forest

Supervised learning

a b s t r a c t

Graph-based pattern recognition techniques have been in the spotlight for many years, since there is a

constant need for faster and more effective approaches. Among them, the Optimum-Path Forest (OPF)

framework has gained considerable attention in the last years, mainly due to the promising results ob-

tained by OPF-based classifiers, which range from unsupervised, semi-supervised and supervised learning.

In this paper, we consider a deeper theoretical explanation concerning the supervised OPF classifier with

k -neighborhood (OPF k), as well as we proposed two different training and classification algorithms that

allow OPF k to work faster. The experimental validation against standard OPF and Support Vector Machines

also validates the robustness of OPF k in real and synthetic datasets.

© 2016 Elsevier B.V. All rights reserved.

1

i

o

e

n

w

i

m

h

k

p

i

t

h

t

m

i

f

(

r

c

e

s

r

m

a

t

t

a

k

o

a

b

i

s

t

c

a

c

t

h

0

. Introduction

Roughly speaking, pattern recognition techniques aim at learn-

ng a function that maps the input data to a set of predicted labels

r continuous-valued outputs. Depending on the amount of knowl-

dge we have about the training set, we can classify pattern recog-

ition techniques in two main approaches: (i) supervised learning,

hich refers to situations one has full knowledge about the train-

ng data, and (ii) unsupervised learning, where we have no infor-

ation about the dataset [7] . Recently, a new sort of approaches

ave been referred to semi-supervised ones, which feature some

nowledge about a small subset of the training data. Such ap-

roaches make use of the active learning theory, which aims at

mproving data classification by means of user interaction.

Cutting edge research on pattern recognition may have con-

ributed with its prominent works in the last years. Advances in

ardware technology have allowed complex mathematical theories

o be in lockstep with machine learning-based software develop-

ent. Probabilistic models, techniques based on statistical learn-

ng theory and neural networks have been always the forerunners

or pattern recognition-like applications. Support Vector Machines

SVM) [6] , for instance, may be considered the hallmark with

espect to kernel-based learning techniques. Since we can face
� This paper has been recommended for acceptance by Cheng-Lin Liu.
∗ Corresponding author. Fax: +55 14 3103 6079.

E-mail addresses: papa@fc.unesp.br , papa.joaopaulo@gmail.com (J.P. Papa).

p

d

s

n

I

ttp://dx.doi.org/10.1016/j.patrec.2016.07.026

167-8655/© 2016 Elsevier B.V. All rights reserved.
omplex and overlapped feature spaces, it might be interesting to

mploy kernel functions to map the data onto a higher dimen-

ional representation.

Neural networks still play an important hole in the pattern

ecognition research field, since there is always room for improve-

ents in the old fashion techniques [15,21,23] . In the last years,

 special attention has been devoted to deep learning architec-

ures [2,13] , since they can be very robust to changes in scale, rota-

ion and brightness in regard to image classification tasks. Recent

dvances in Bayesian networks [4,10] , k -means [14] and the well-

nown Gaussian Mixture Models [5] have maintained the tradition

f such techniques.

Another interesting framework that leads to a very interesting

nd powerful tool for pattern recognition concerns with graph-

ased methods. Basically, such methods model the machine learn-

ng task as a problem formulated in the graph theory: the dataset

amples, which are represented by their corresponding feature vec-

ors, are the graph nodes, that are further connected by an adja-

ency relation. Without loss of generality, a graph-based method

ims at removing or adding edges using some heuristic in order to

reate connected components, which stand for a group of samples

hat share some similar characteristics [3] .

Papa et al. [19,20] presented a new framework for graph-based

attern recognition named Optimum-Path Forest (OPF), which ad-

resses the graph partition task as a competition process among

ome key (prototype) samples in order to conquer the remaining

odes according to a path-cost function. The idea is based on the

mage Foresting Transform (IFT) [8] , which works similarly to OPF,

http://dx.doi.org/10.1016/j.patrec.2016.07.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.07.026&domain=pdf
mailto:papa@fc.unesp.br
mailto:papa.joaopaulo@gmail.com
http://dx.doi.org/10.1016/j.patrec.2016.07.026

118 J.P. Papa et al. / Pattern Recognition Letters 87 (2017) 117–126

p

S

2

a

2

Z

s

e

a

(

c

d

g

G

H

d

(

W

c

c

T

s

e

i

g

p

m

m

a

w

a

c

a

w

p

d

i

r

a

e

i

t

p

p

a

c

t

t

O

b

p

n
but in the context of designing image processing-like operators.

Both OPF and IFT follow the idea of the ordered communities for-

mation, in which an individual (node) will belong to the commu-

nity (cluster) that gives him/her the best reward (path-cost func-

tion value).

In order to create an OPF-based classifier, we have to face three

main questions: (i) how to connect samples, (ii) how to find out

prototypes, and (iii) what sort of path-cost function one should

employ in the competition process. Papa et al. [19,20] and Papa

and Falcão [17,18] have addressed the above questions in two dis-

tinct ideas: (i) using a complete graph as adjacency relation, a Min-

imum Spanning Tree (MST)-based approach to find out prototypes,

and a path-cost function (f max) that computes the maximum arc-

weight along a path (sequence of nodes) [19,20] ; and (ii) using a

k -nearest neighbors (k -nn) adjacency relation, a density-based ap-

proach to estimate prototypes, and a path-cost function (f min) that

computes the minimum value between the cost of a training node

and the density of the test sample [17,18] . This latter formulation is

based on the unsupervised OPF [22] , which was proposed to han-

dle data clustering problems. Recently, Souza et al. [24] proposed

a new variant called k -OPF, which essentially assigns the most fre-

quent label of the k -lowest path-costs to a given sample, instead

of the lowest path-cost only.

The main differences regarding the OPF with complete graph

and its version that employs an adjacency relation based on k -

connectivity (OPF knn) rely on: (i) the naïve OPF weights only edges,

while (OPF knn) weights both edges and nodes; (ii) the prototypes

estimated by OPF are located at the frontier of the classes, and

the key nodes estimated by OPF knn are positioned at the regions

with highest density (center of clusters), and (iii) the classification

process adopted by traditional OPF aims to minimize the cost of

every sample using a path-cost function that computes the max-

imum arc-weight along a path; and the classification process of

OPF knn tries to maximize the cost of every sample using a path-

cost function that computes the minimum value between the cost

of a training sample and the density of a test node. Notice k -OPF

and OPF knn are different to each other, since the first one uses the

complete graph as adjacency relation, it computes the prototypes

using the Minimum Spanning Tree approach, and uses f max as the

path-cost function. The latter approach employs a k -nn graph, it

computes prototypes based on a probability density function, and

uses f min as the path-cost function.

In this paper, we extend the research of Papa and Fal-

cão [17,18] by addressing in more details the working mechanism

of OPF knn , as well as we propose to model the problem of finding

the size of the k -neighborhood as an optimization task using meta-

heuristics. Since Papa and Falcão [17] proposed to use an exhaus-

tive search for finding the best value of k , i.e., the one that max-

imizes the accuracy over the training set, our approach can speed

up the original work, as well as we can reduce the overtraining,

since the proposed optimization process is conducted over a vali-

dating set. Another contribution of this work is to take advantage

of the cost of each training sample, which has been computed dur-

ing the training phase already, when classifying samples, i.e., we

can simply halt the classification process earlier without affecting

the theoretical basis of the algorithm. Therefore, the main contri-

butions of this paper are three-fold: (i) to present a deeper for-

mulation with respect to OPF knn , (ii) to propose a meta-heuristic-

based approach to automatically estimate the neighborhood size

for density computation purposes, and (iii) to propose a faster

classification process for the OPF knn technique. In addition, we

have compared OPF knn against traditional OPF and Support Vector

Machines.

The remainder of the paper is organized as follows.

Sections 2 and 3 present the OPF knn background theory and

the proposed approach to speed up both the training and testing
hases, respectively. Experiments are discussed in Section 4 , and

ection 5 states conclusions and future works.

. Optimum-Path Forest with knn -connectivity

In this section, we describe the theory related to OPF knn , as well

s the basis of OPF-based classifiers.

.1. Theoretical background

Let Z be a labeled dataset such that Z = Z 1 ∪ Z 2 ∪ Z 3 , where

 1 , Z 2 and Z 3 stand for a training, validating and testing sets, re-

pectively. A graph G = (V, A) can be derived from Z such that

ach s ∈ Z becomes a graph node v (s) ∈ V, where v (·) stands for

 function that extracts the feature vector of given dataset sample

e.g., image, pixel, voxel or signal). Additionally, A denotes an adja-

ency relation that connects the samples in V, and d : V × V → �

+

efines a function that is used to weight the edges in A . Analo-

ously to the construction of G , we can also derive G 1 = (V 1 , A 1) ,

 2 = (V 2 , A 2) and G 3 = (V 3 , A 3) from Z 1 , Z 2 and Z 3 , respectively.

owever, as the adjacency relation is the same for the entire

ataset, we can adopt A for all graphs.

Let π s be a path in G with terminus in node s ∈ V, and 〈 π s ·
 s , t) 〉 be the concatenation between path π s and the arc (s, t) ∈ A .

e also denote 〈 t 〉 as being a trivial path. The idea of an OPF-based

lassifier is to use a smooth path-cost function f in order to rule a

ompetition process in G among a set of prototype nodes S ⊆ V .

he OPF algorithm aims at minimizing/maximizing f (s) for every

ample s ∈ V, being the smoothness of f defined as follows [8] : for

very sample t ∈ V, there exists an optimum-path π t which is triv-

al or can be represented by 〈 π s · (s , t) 〉 , where

• f (π s) ≤ f (π t);
• π s is optimum; and

• for every optimum-path τ s , f (〈 τs · (s, t) 〉) = f (πt) .

The OPF proposed by Papa et al. [19,20] adopts A as a complete

raph, the prototype set S is designed as being the connected sam-

les in an MST computed over the training set, and f outputs the

aximum arc-weight along a path (f max). Such OPF configuration is

otivated by the fact that an Optimum-Path Forest computed over

 graph using f max follows the shape of an MST computed over it,

hich means we can obtain the very same Optimum-Path Forest

s previously computed using OPF by just removing the arcs that

onnect samples from different classes in the MST, and then prop-

gating their costs using f max . This behavior was observed by the

ork of Alléne et al. [1] , and it has been used to make OPF training

hase faster [11] . If one has an unique MST, i.e., all arc-weights are

ifferent to each other, the OPF classification error over the train-

ng set would be reduced to zero.

The main problem in reducing the error over the training set is

elated to a possible data overfitting. Therefore, motivated by such

ssumption, Papa and Falcão [17] proposed the OPF knn , which mod-

ls A as being an adjacency relation that connects each sample to

ts k -nearest neighbors (say that A k); the prototypes are now es-

imated as the nodes located at the highest density regions, and a

ath-cost function that aims at maximizing the cost of every sam-

le is now employed. Roughly speaking, OPF knn has two phases:

 training and a classification step. The former is responsible for

omputing the density of each training node using A k ∗ , being k ∗

he best value of k that maximizes some criterion, and then to start

he competition process among prototypes. After that, we have an

ptimum-Path Forest computed over the training set, which will

e used to classify each test sample. The classification process just

icks up a sample from the test set, connects it to its k ∗-nearest

eighbors in the Optimum-Path Forest generated by the training

J.P. Papa et al. / Pattern Recognition Letters 87 (2017) 117–126 119

Fig. 1. OPF knn training step workflow. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

p

p

i

a

t

2

P

P

p

p

t

i

F

s

c

p

F

m

t

i

g

d

i

ρ

w

|

N

s

w

p

V

i

a

b

I

a

t

t

t

a

Algorithm 1 OPF knn algorithm.

Require: A k neighborhood graph G 1 = (V 1 , A k) , and a path-cost

function f .

Ensure: An oOtimum-Path Forest P , a label map L and a cost map

C.

1: for every s ∈ V 1 do

2: Compute ρ(s) using Eq. (1) .

3: P (s) ← ∅ , C(s) ← ρ(s) − 1 , L (s) ← λ(s)

4: Insert s in the priority queue Q .

5: end for

6: while Q � = ∅ do

7: Remove s from Q such that C(s) is maximum.

8: if P (s) = ∅ then

9: C(s) ← ρ(s) .

10: end if

11: for each t ∈ A k (s) do

12: tmp ← f (C(s) , ρ(t)) .

13: if t mp > C(t) then

14: L (t) ← L (s) , P (s) ← s , C(t) ← tmp.

15: end if

16: end for

17: end while

∀

c

e

c

7

O

d

t

n

(

o

L

w

L

s

t

g

b

1

p

k

1 For the sake of explanation purposes, Line 12 of Algorithm 1 implements

tmp ← min { f (C (s), ρ(s))} when one considers the path-cost f .
hase, and then uses the same OPF knn rule employed in the com-

etition process to conquer that sample. After that, the test sample

s then removed from the graph, and the above process starts over

gain for each test sample. The next sections describe in more de-

ails the aforementioned procedures.

.2. Training

The training phase is responsible for generating the Optimum-

ath Forest, which encodes the cost C and the predecessor map

 of each sample, i.e., the optimum-path from each training sam-

le to its most strongly connected prototype. The OPF knn training

hase is composed of three modules: (i) the estimation of k ∗, (ii)

he computation of a probability density function for each train-

ng sample, and (iii) the competition process between prototypes.

ig. 1 depicts the above steps.

The first step is to compute k ∗ (“white” module in Fig. 1), which

tands for the computation of the k value that maximizes some

riterion in order to create the k -nearest neighbors graph. The ap-

roach proposed by Papa and Falcão [17] (“dark gray” module in

ig. 1) searches for a k value within the range [1, k max] that maxi-

izes the OPF knn accuracy over the training set. First of all, an ini-

ial k value is chosen (“green” module in Fig. 1), usually k = 1 be-

ng increased by one unit up to k max , and the k -nearest neighbors

raph is built. After that, the next step is to compute a probability

ensity function (pdf) ρ(s) of each node s ∈ V 1 (“orange” module

n Fig. 1), as follows:

(s) =

1 √

2 πσ 2 |A

∗
k
(s) |

∑

∀ t∈A ∗
k
(s)

exp

(
−d 2 (s, t)

2 σ 2

)
, (1)

here d (s , t) stands for the distance between samples s and t ,

A

∗
k
(s) | = k ∗, σ =

d f
3 , and d f is the maximum arc weight in G 1 .

otice this parameter choice considers all adjacent nodes for den-

ity computation, since a Gaussian function covers most samples

ithin d (s , t) ∈ [0, 3 σ].

Further, the competition process (“blue” module in Fig. 1) takes

lace in G 1 . As aforementioned, a set of prototype samples S ⊆
 1 compete among themselves in order to conquer the remain-

ng samples in V 1 offering to them optimum-paths according to

 path-cost function f min inspired by unsupervised OPF [22] , given

y:

f min (〈 t〉) =

{
ρ(t) if t ∈ S
ρ(t) − 1 otherwise

f min (πs · 〈 s, t〉) = min { f min (πs) , ρ(t) } . (2)

n short, the idea of assigning ρ(t) − 1 to a sample t ∈ S is to

void plateaus nearby the maxima of the pdf. The OPF knn classifier

ries to maximize Eq. (2) for each instance s ∈ V 1 in order to parti-

ion G 1 in an Optimum-Path Forest, being its roots (samples in S)

he nodes with highest density in V 1 . Algorithm 1 implements the

bove idea.
Lines 1–4 are responsible for initializing the cost map C (s),

 s ∈ V 1 , as well as the predecessor map P (s), which contains the

onqueror of s , is set to a null value. In addition, the label map L of

ach instance s is initialized with its true label, given by λ(s). The

ore of Algorithm 1 is given by the main loop in Lines 6–17: Line

 removes from Q the node with maximum density value, since

PF knn considers the prototypes as being the nodes with highest

ensity values, i.e., the ones located in the center of the classes. If

hat removed instance has not been conquered so far, i.e., it has

o predecessor (i.e., P (s) = ∅), its density is set to its original value

steps implemented in Lines 8 and 9 and described by the first part

f Eq. (2)).

The next step concerns to analyze the neighborhood of s in

ines 11–16 of Algorithm 1 , say that ∀ t ∈ A k (s) , in order to check

hether s is capable to conquer the instances that fall in A k (s) .

ine 12 computes the minimum value between C (s) and the den-

ity of t denoted as ρ(t) (this procedure has been described in

he second part of in Eq. (2)), and if this value is better (say that

reater) than C (t), it means s can conquer t assigning to it the la-

el of s , as well as sample s becomes the predecessor of t (Line

4). The cost C (t) is also updated

1 .

However, Eq. (2) may not guarantee one maximum (at least)

er class. Thus, the idea of OPF knn training step is to first find out

∗ using Algorithm 1 , and then to execute it again using a modified
min

120 J.P. Papa et al. / Pattern Recognition Letters 87 (2017) 117–126

C

Fig. 2. Proposed optimization approach to estimate k ∗ .

fi

t

w

r

a

b

t

i

i

g

r

n

i

a

a

r

p

w

t

o

m

c

d

i

e

p

3

S

p

b

w

t

c

s

n

b

s

i

w

s

c

f

2 The values over the nodes stand for their costs estimated though the training

step.
version of function f min called f ′
min

:

f ′ min (〈 t〉) =

{
ρ(t) if t ∈ S
ρ(t) − 1 otherwise

f ′ min (πs · 〈 s, t〉) =

{
−∞ if λ(t) � = λ(s)
min { f ′

min
(πs) , ρ(t) } otherwise.

(3)

Therefore, Eq. (3) penalizes all arcs (s, t) ∈ A

∗
k

such that λ(s) � =
λ(t), avoiding such arcs to belong to some optimum-path. In short,

the OPF knn training step can be summarized as follows: after es-

timating k ∗ (“white” module in Fig. 1), we build the k ∗-nearest

neighbors graph and the pdf of each training node is then com-

puted (“red” module in Fig. 1). After that, the OPF knn algorithm

with f ′
min

is performed over the training set (“yellow” module in

Fig. 1). Algorithm 2 implements the whole OPF knn training phase.

Algorithm 2 OPF knn training step.

Require: An λ-labeled training set Z 1 and the parameter k max .

Ensure: An Optimum-Path Forest P , a label map L and a cost map

C.

1: MaxAcc ← −∞ , k ∗ ← 0 .

2: for k = 1 to k max do

3: Create a k -neighborhood graph G 1 = (V 1 , A k) using Z 1 .

4: [P, L, C] ← Algorithm 1 (G 1 , f min) .

5: Acc ← recognition rate over Z 1 .

6: if Acc > MaxAcc then

7: MaxAcc ← Acc, k ∗ ← k .

8: end if

9: end for

10: Create a k ∗-neighborhood graph G 1 = (V 1 , A k ∗) using Z 1 .

11: [P, L, C] ← Algorithm 1 (G 1 , f
′
min

) .

The loop in Lines 2–9 is responsible for choosing k ∗ within

the range [1, k max], as described by the “dark” module in

Fig. 1 . Notice this first part of OPF knn training algorithm employs

Algorithm 1 with the path-cost function f described by Eq. (2) . Fur-

ther, the k ∗-neighborhood graph is built and OPF knn is trained once

again over the same training set Z 1 in Lines 10 and 11, but now the

Algorithm 1 is used with path-cost function f ′
min

(Eq. (3)).

2.3. Classification

The OPF knn classification step is straightforward, and it employs

the very same competition process adopted during the training

phase: for each t ∈ Z 3 (testing set), we connect t to its k ∗-nearest

neighbors in Z 1 , and then we find out the sample s ∈ Z 1 that sat-

isfies the equation below:

(t) = max
s ∈ A k ∗ (t)

{ min { C(s) , ρ(t) }} . (4)

The classification step simply assigns L (t) = λ(s) . Notice the testing

samples are not permanently added to Z 1 .

3. Improvements on OPF knn

In this section, we present the two main improvements pro-

posed in this paper. First, we show how to perform training step

faster by modeling the problem of finding suitable neighborhoods

as an optimization task, and then we also show how to obtain a

faster classification step.

3.1. Learning k -connectivity by means of meta-heuristics

The algorithm proposed by Papa and Falcão [17] to learn suit-

able values for k consists, basically, on an exhaustive search within

the range [1, k max] aiming at finding out the k value that maxi-

mizes the OPF knn accuracy over the training set, i.e., k ∗. In this pa-

per, we propose a fast and less prone to overfitting approach for
nding suitable values for k based on meta-heuristics. The idea is

o model the problem of finding k ∗ as an optimization task, in

hich any meta-heuristic-based approach can be employed. The

eason for using such sort of algorithms relies on their simplicity

nd ability for solving optimization problems.

In order to accomplish such purpose, we make use of a la-

eled validating set (Z 2) to be employed as a guideline during

he search of suitable k values: each agent (possible solution) a i ,

 = 1 , 2 , . . . , M, where M stands for the number of agents, is initial-

zed with a random value k i ∈ [1, k max]; then a k i -neighborhood

raph is built and the OPF knn is trained over Z 1 and its accu-

acy rate is computed over Z 2 . Such accuracy is used as the fit-

ess value to guide the optimization process, which aims at max-

mizing this accuracy. This procedure is performed for every agent

 i , thus defining one iteration of the optimization algorithm. The

forementioned steps are then repeated over again until a crite-

ion be satisfied (usually, a number of T iterations is used for that

urpose).

In this paper, we validated the proposed approach using two

ell-known meta-heuristic-based techniques: Particle Swarm Op-

imization (PSO) [12] and Harmony Search (HS) [9] . Although any

ther meta-heuristic technique can be employed, there are two

ain reasons for choosing them: (i) both techniques are well ac-

epted by the scientific community, and (ii) as we dealing with a

iscrete optimization problem, HS fits well such situation, since it

s a native discrete optimization technique, and also there are sev-

ral discrete versions of PSO in the literature. Fig. 2 illustrates the

roposed optimization approach.

.2. Speeding-up classification using cost queue

The standard OPF knn classification approach described in

ection 2.3 performs the very same operation for every test sam-

le, i.e., the idea is to connect that sample to its k ∗-nearest neigh-

ors, to compute its density using Eq. (1) , and further to evaluate

hich training node satisfies Eq. (4) . Notice this last step needs

o be executed for all neighbors of the sample that is going to be

lassified.

However, when k ∗ → ∞ , the computational load might be

omehow prohibitive, since one need first to find out the k ∗-

earest neighbors, and then to estimate the cost that each neigh-

or will offer to that testing sample. Basically, the classification

tep runs over all training samples that are connected to the test-

ng node, and then takes the one that offers the maximum cost,

hich is computed using f ′
min

. For the sake of explanation, con-

ider the classification process displayed in Fig. 3 a, in which one

an observe a testing sample (“white”), as well as training samples

rom classes “red” and “blue”2 .

J.P. Papa et al. / Pattern Recognition Letters 87 (2017) 117–126 121

Fig. 3. OPF knn classification process: (a) training samples from classes “red” and

“blue”, and one testing sample (“white”) to be classified, (b) testing sample is con-

nected to its 4-nearest neighbors, for the further computation of its density, (c) test-

ing sample is conquered by sample ‘ E ’, and then labeled as belonging to class “red”,

and (d) cost queue used to speed up the classification step. (For interpretation of

the references to color in this figure legend, the reader is referred to the web ver-

sion of this article.)

i

t

n

n

d

t

L

b

t

s

t

i

C

q

(

t

q

I

Table 1

Description of the datasets.

Dataset # samples # features # classes

aflw 8193 4096 2

Colon-cancer 62 20 0 0 2

dmoz-web-directory 1329 10,629 5

Leukemia 72 7129 2

Pima-Indians-Diabetes 768 8 2

scene-classification 2407 294 15

Statlog-Australian 690 14 2

Statlog-dna 5186 180 3

Statlog-Heart 270 13 2

Statlog-Letter 35,0 0 0 16 26

Statlog-Shuttle 101,500 9 7

Synthetic1 500 2 2

Synthetic2 10 0 0 2 2

Synthetic3 10 0,0 0 0 4 4

UCI-a1a 32,561 123 2

UCI-Breast-Cancer 683 10 2

UCI-Connect-4 67,557 126 3

UCI-Ionosphere 351 34 2

UCI-Liver-disorders 345 6 2

UCI-Mushrooms 8124 112 2

UCI-Pendigits 10,992 16 10

UCI-vowel 990 10 11

usps 9298 256 10

w1a 4 9,74 9 300 4

yahoo-web-directory 1106 10,629 4

p

t

p

b

4

e

w

4

d

N

c

4 http://mldata.org
As aforementioned, the first step is responsible for connect-

ng the test sample to its k ∗-nearest neighbors (Fig. 3 b) 3 , for fur-

her computing its density using Eq. (1) . In this case, the values

ear the arcs stand for their weights (i.e., the distance among the

odes), and the value above/below the testing sample denotes its

ensity (dummy value). The next step concerns with computing

he cost that each training sample will offer to testing node ‘ X ’.

et C A (X) be the cost that training sample ‘ A ’ offers to ‘ X ’, and C (A)

e the cost associated with sample ‘ A ’ (i.e., the cost computed after

he training step). Therefore, if we consider the 4-neighborhood of

ample ‘ X ’, we have the following costs :

• C D (X) = min { C(D) , ρ(X) } = min { 0 . 3 , 1 . 1 } = 0 . 3
• C E (X) = min { C(E) , ρ(X) } = min { 1 . 2 , 1 . 1 } = 1 . 1
• C F (X) = min { C(F) , ρ(X) } = min { 0 . 7 , 1 . 1 } = 0 . 7
• C G (X) = min { C(G) , ρ(X) } = min { 0 . 9 , 1 . 1 } = 0 . 9

Finally, the sample that will conquer ‘ X ’ is the one that offers

he maximum cost among all costs within the neighborhood of ‘ X ’,

.e.:

(X) = max { C D (X) , C E (X) , C F (X) , C G (X) }
= max { 0 . 3 , 1 . 1 , 0 . 7 , 0 . 9 }
= 1 . 1 . (5)

Based on Eq. (5) , we can thus conclude sample ‘ X ’ will be con-

uered by training node ‘E’, and then associated to the label “red”

 Fig. 3 c). However, one can clearly observe there is no need to run

hrough all training samples sequentially if we keep an ordered

ueue sorted by a decreasing order of costs, as displayed in Fig. 3 d.

n fact, this queue can be maintained in θ (1) during the training
3 In this example, we assume k ∗ = 4 .
hase. Roughly speaking, we just need to evaluate the very first

raining node in the cost queue that is neighbor of the testing sam-

le. For the sake of explanation, consider the following two possi-

le situations:

• The first node in the queue offers a cost that is smaller or equal

than the density of the test sample: consider the example de-

picted in Fig. 3 . In this case, C E (X) = 1 . 1 ≤ ρ(X) . In this case,

the next sample in the queue has a smaller (or equal) cost than

‘ E ’, and thus it will not offer a cost that is greater than the

one offered by sample ‘ E ’ already. Since we are looking for to

solve Eq. (4) , i.e., to find the training node that offers the max-

imum cost among those computed using f ′
min

, there is no need

to evaluate any other node in the cost queue.
• The first node in the queue offers a cost that is greater than the

density of the test sample: suppose sample ‘ E ’ now offers the

cost C E (X) = 1 . 7 ≥ ρ(X) . In this case, the next sample in the

queue that is neighbor of ‘ X ’ will offer a cost that is smaller or

equal than C E (X), and thus it will not conquer ‘ X ’ with a better

cost. Once again, there is no need to evaluate any other node

in the cost queue.

. Experimental section

In this section, we presented the methodology and experiments

mployed to validate the effectiveness and efficiency of OPF knn , as

ell as its enhanced training and testing algorithms.

.1. Datasets

We performed experiments over 25 real and synthetic

atasets 4–7 , whose main characteristics are presented in Table 1 .

otice the datasets differ in the number of samples, features and

lasses. The choice of these datasets was motivated by their level
5 http://archive.ics.uci.edu/ml
6 http://pages.bangor.ac.uk/ ∼mas00a/activities/artificial _ data.htm

7 http://lrs.icg.tugraz.at/research/aflw

http://mldata.org
http://archive.ics.uci.edu/ml
http://pages.bangor.ac.uk/~mas00a/activities/artificial_data.htm
http://lrs.icg.tugraz.at/research/aflw

122 J.P. Papa et al. / Pattern Recognition Letters 87 (2017) 117–126

Table 2

Mean recognition rates according to the approach proposed by Papa et al. [20] .

Dataset OPF knn OPF SVM

aflw 89.57 ± 0.46 88.81 ± 0.70 94.44 ± 0.31

Colon-cancer 69.31 ± 8.46 69.31 ± 8.41 51.91 ± 3.74

dmoz-web-directory-topics 62.68 ± 2.26 62.11 ± 3.06 52.66 ± 2.21

Leukemia 78.57 ± 5.22 77.56 ± 5.48 50.00 ± 0.00

Pima-Indians-Diabetes 64.89 ± 1.72 64.38 ± 2.72 64.89 ± 4.88

scene-classification 67.58 ± 1.18 67.13 ± 1.31 69.50 ± 0.54

Statlog-Australian 65.33 ± 2.00 64.45 ± 2.00 69.21 ± 2.16

Statlog-dna 88.96 ± 0.60 86.35 ± 2.21 97.64 ± 0.42

Statlog-Heart 59.76 ± 3.16 59.53 ± 3.09 60.75 ± 4.07

Statlog-Letter 98.60 ± 0.10 98.07 ± 0.45 99.12 ± 0.07

Statlog-Shuttle 97.33 ± 1.22 96.50 ± 1.58 95.20 ± 1.55

Synthetic1 52.62 ± 3.70 52.46 ± 3.44 56.20 ± 2.59

Synthetic2 73.49 ± 1.21 72.48 ± 1.20 81.19 ± 1.17

Synthetic3 86.10 ± 0.08 85.40 ± 0.13 89.58 ± 0.11

UCI-a1a 70.96 ± 0.34 65.40 ± 1.20 75.48 ± 0.52

UCI-Breast-Cancer 95.36 ± 1.08 94.69 ± 1.19 95.90 ± 0.84

UCI-Connect-4 64.21 ± 0.23 62.96 ± 0.42 78.76 ± 2.02

UCI-Ionosphere 81.37 ± 2.46 80.37 ± 2.15 91.73 ± 2.19

UCI-Liver-disorders 60.98 ± 3.04 60.13 ± 3.32 63.58 ± 4.65

UCI-Mushrooms 10 0.0 0 ± 0.0 94.32 ± 9.21 99.99 ± 0.04

UCI-Pendigits 99.58 ± 0.06 99.44 ± 0.31 98.87 ± 0.11

UCI-vowel 97.06 ± 0.92 96.43 ± 0.82 96.43 ± 1.58

usps 98.02 ± 0.14 97.73 ± 0.27 98.47 ± 0.15

w1a 82.40 ± 0.24 80.86 ± 1.03 82.81 ± 0.25

yahoo-web-directory-topics 51.44 ± 1.43 50.86 ± 1.77 52.50 ± 1.47

Fig. 4. Nemenyi statistical test concerning the recognition rates displayed in

Table 2 .

n

s

i

a

t

o

S

O

a

u

w

I

n

a

m

w

T

a

t

t

e

T
of complexity (overlapped samples), which turns the classification

process more sensitive to misclassification

8 .

4.2. Experimental setup

We divided the experiments in three distinct rounds: (i) in the

first one, we evaluated the effectiveness and efficiency of OPF knn

against traditional OPF and Support Vector Machines with Ra-

dial Basis Function kernel; (ii) further, the proposed approach to

speed up the OPF knn training step by means of meta-heuristics

(Section 3.1) is compared against naïve OPF knn ; and (iii) the last

experiment aimed at showing the efficiency of the enhanced clas-

sification algorithm (Section 3.2), as well as we also showed the

recognition rates between this new approach and standard OPF knn

are statistically equivalent to each other.

4.3. Experiments

In this section, we first evaluated the robustness of OPF knn

against naïve OPF (Section 4.3.1) and SVM, and then we as-

sessed both the efficiency and effectiveness of the proposed ap-

proach based on a cost queue to speed up the classification phase

(Section 4.3.2), hereinafter called pOPF knn . Finally, we evaluated the

robustness of the proposed approach based on meta-heuristics to

find out k ∗ (Section 4.3.3), hereinafter called mOPF knn .

4.3.1. Evaluating the robustness of OPF knn

In this section, we evaluated both the efficiency and effective-

ness of OPF knn against traditional OPF and SVM. In regard to OPF-

based classifiers, we used the open-source library LibOPF 9 , 10 .

The experiments were conducted as follows: each dataset was

partitioned into 50% of the samples for training, and the remain-

ing 50% for classification purposes. As OPF knn has the neighbor-

hood size to be optimized, we ended up partitioning the training

set once more. Therefore, we have 30% of the entire datasets used

for training, 20% employed for validation purposes (i.e., parameter

fine-tuning), and the remaining 50% were used to assess the recog-

nition rate over the testing set. Notice standard OPF used a training

set with 50% of the samples (i.e., training and validating), since it

does not have parameters to be fine-tuned. After learning, OPF knn

was trained once more using the original training set (i.e., the very

same one used by OPF).

In regard to SVM, we used a Radial Basis Function kernel with

parameters optimized by means of a grid-search over the range γ
∈ {0.001, 0.01, 0.1, 1} and C ∈ {1, 10, 100, 10 0 0}. The parameters

were optimized over the very same validating set used by OPF knn ,

for further training SVM once more with the fine-tuned parameters

over the merged training and validating sets.

In order to provide a statistical evaluation, we conducted a

cross-validation procedure with 20 runnings, being the training,

validating and testing sets the very same ones for all compared

techniques. The final results were evaluated trough the Wilcoxon

signed-rank test with significance of 0.05 [25] . In regard to the

OPF knn parameter, we employed a neighborhood size of k ∈ [1, 20],

i.e., k max = 20 . Finally, we used an accuracy measure proposed by

Papa et al. [20] , which considers unbalanced datasets, as well as

we considered the well-known F -measure. Notice such ranges were

empirically set.

Table 2 shows the mean recognition rates over the testing set,

in which the values in bold stand for the most accurate tech-
8 The experiments were conducted on a computer with a Pentium Intel Core i 5 ®

3.2GHz processor, 4GB of memory RAM and Linux Ubuntu Desktop LTS 64 bits

14.04.1 as the operational system.
9 http://www.ic.unicamp.br/ ∼afalcao/libopf

10 https://github.com/jppbsi/LibOPF

A

d

w

e

v
iques according to Wilcoxon test. OPF knn obtained the best re-

ults in 11 out 25 datasets, being some recognition rates very sim-

lar to the ones obtained by OPF and SVM for some situations,

nd with a clear difference in others (e.g., “dmoz-web-directory-

opics”, “Statlog-Shuttle” and “UCI-Pendigits”). Obviously, there are

ther datasets in which OPF knn performs worse than naïve OPF and

VM, as stated by Papa and Falcão [17,18] and Papa et al. [19,20] .

nce again, the main purpose of this work is to highlight OPF knn

nd OPF are complementary to each other, which means one can

se each of them in different situations.

Additionally, we performed the non-parametric Friedman test,

hich is used to rank the algorithms for each dataset separately.

n case of Friedman test provides meaningful results to reject the

ull-hypothesis (h 0 : all techniques are equivalent), we can perform

 post-hoc test further. For this purpose, we conducted the Ne-

enyi test, proposed by Nemenyi [16] , which allows us to verify

hether there is a critical difference (CD) among techniques or not.

he results of the Nemenyi test can be represented in a simple di-

gram, in which the average ranks of the methods are plotted on

he horizontal axis, where the lower the average rank is, the better

he technique is. Moreover, the groups with no significant differ-

nce are then connected with a horizontal line.

Fig. 4 displays the Nemenyi test concerning the accuracy rate.

he more accurate the technique is, the farthest right it is placed.

lthough SVM have obtained the first place, the horizontal bar in-

icates both OPF knn and SVM are statistically similar to each other

ith respect to the accuracy rate. Notice the Nemenyi test consid-

rs all datasets as a single experiment

Table 3 presents the mean F -measure results concerning the

ery same group of datasets. In this case, OPF obtained the best
knn

http://www.ic.unicamp.br/~afalcao/libopf
https://github.com/jppbsi/LibOPF

J.P. Papa et al. / Pattern Recognition Letters 87 (2017) 117–126 123

Table 3

Mean F -measure.

Dataset OPF knn OPF SVM

aflw 0.889858 0.881942 0.940952

Colon-cancer 0.815060 0.815452 0.781411

dmoz-web-directory 0.54 4 423 0.529464 0.592993

Leukemia 0.721098 0.707009 0.0 0 0 0 0 0

Pima-Indians-Diabetes 0.542961 0.538063 0.504691

scene-classification 0.611765 0.603329 0.714909

Statlog-Australian 0.698748 0.688042 0.716649

Statlog-dna 0.840371 0.802822 0.969121

Statlog-Heart 0.549389 0.541723 0.513663

Statlog-Letter 0.973181 0.963048 0.983192

Statlog-Shuttle 0.999543 0.999429 0.998524

Synthetic1 0.528762 0.530372 0.497236

Synthetic2 0.731743 0.721496 0.809234

Synthetic3 0.791504 0.780973 0.843795

UCI-a1a 0.861291 0.802861 0.901493

UCI-Breast-Cancer 0.969589 0.966384 0.971183

UCI-Connect-4 0.663644 0.589268 0.832589

UCI-Ionosphere 0.767735 0.753203 0.896202

UCI-Liver-disorders 0.540719 0.530601 0.500406

UCI-Mushrooms 1.0 0 0 0 0 0 0.930392 0.999910

UCI-Pendigits 0.992380 0.989935 0.980136

UCI-vowel 0.946560 0.935293 0.934548

usps 0.968006 0.963450 0.975141

w1a 0.976360 0.921680 0.984757

yahoo-web-directory 0.173338 0.172730 0.667598

Fig. 5. Nemenyi statistical test concerning the F -measure values displayed in

Table 3 .

r

w

i

t

t

f

t

s

a

e

fi

f

f

t

c

“

a

t

r

i

t

fi

a

v

e

k

s

Fig. 6. Mean computational load considering the training phase.

Fig. 7. Mean computational load considering the testing phase.

4

O

T

d

t

fi

w
esults in 11 out of 25 datasets, though not the very same ones

ith respect to Table 2 . Fig. 5 displays the Nemenyi test concern-

ng the F -measure. In this case, we can observe OPF knn obtained

he best results, but being similarly to SVM. The naïve OPF ob-

ained the last position, although it has been the fastest approach

or training purposes, as discussed later.

Fig. 6 depicts the mean computational load considering the

raining time (log [s]). Clearly, standard OPF is faster than OPF knn ,

ince the latter one needs to estimate the neighborhood size (k ∗),

nd naïve OPF does not have any parameter to be optimized. How-

ver, both approaches are faster than SVM, since it requires the

ne-tuning parameter step. On average, OPF is about 14.15 times

aster than OPF knn for training, and the latter is about 1.17 times

aster than SVM for training as well. In addition, Fig. 7 displays

he mean execution time considering now the testing time. In this

ase, OPF knn has demonstrated to be faster in some datasets (i.e.,

shuttle” and “Synthetic3”), though with a small difference (actu-

lly, OPF knn has been about 1.09 faster than OPF considering the

esting phase for all datasets). Although both OPF variants need to

un over all training samples first (naïve OPF to check the train-

ng sample that is going to conquer the testing node, and OPF knn

o find the k -nearest neighbors), OPF knn needs an additional step to

nd out the training sample that shall offer the optimum-path cost

mong those in the neighborhood. Since we are using a small k max

alue (k max = 20), such additional step may not take longer. How-

ver, for larger datasets, it might be necessary to employ larger

 max values, which can lead OPF knn to a more expensive testing

tep.
.3.2. Evaluating the robustness of pOPF knn

We assessed the robustness of pOPF knn (Section 3.2) against

PF knn in two datasets, which were chosen based on their size.

he idea is to evaluate pOPF knn in small- and medium/large-sized

atasets, say that “Synthetic2” and “scene-classification”, respec-

ively. Since the proposed pOPF knn aims at considering only the

rst training sample in the cost queue for classification purposes,

e expect to obtain better results when k max → ∞ . Indeed, such

124 J.P. Papa et al. / Pattern Recognition Letters 87 (2017) 117–126

Fig. 8. Mean computational load considering the training phase for pOPF knn over

“Synthetic2” dataset.

Fig. 9. Mean computational load considering the testing phase for pOPF knn over

“Synthetic2” dataset.

Fig. 10. Mean recognition rate considering the testing phase for pOPF knn over “Syn-

thetic2” dataset.

Fig. 11. Mean computational load considering the training phase for pOPF knn over

“scene-classification” dataset.

Fig. 12. Mean computational load considering the testing phase for pOPF knn over

“scene-classification” dataset.

Fig. 13. Mean recognition rate considering the testing phase for pOPF knn over

“scene-classification” dataset.

a

t

d

l

f

p

o

b

n

w

t

s

m

C

r

u

t

e

assumption can be observed in Fig. 8 , which depicts the mean

training time considering k ∈ [1, 200], i.e., k max = 200 over “Syn-

thetic2” dataset. In regard to all experiments addressed in this sec-

tion, we computed the mean training and testing times, as well as

the mean recognition rates over a cross-validation procedure with

10 executions.

Considering Fig. 8 , one can realize pOPF knn was around 10.93%

faster than OPF knn for training purposes when using k = 200 . In

regard to the testing phase, pOPF knn was around 11.77% faster than

OPF knn for the very same value of k (Fig. 9). One can also realize

some oscillations in the testing time, since the dataset in charge of

this experiment is small-sized, thus allowing small execution times

for both pOPF knn e OPF knn . This means any concurrent process may

interfere in the execution time. However, we considered the aver-

age of the execution times over the whole range of k .

Fig. 10 depicts the mean recognition rate over “Synthetic2”

dataset. In this case, the recognition rates were quite similar

to each other, being the main difference obtained with k = 120 ,

where OPF knn was around 1.25% more accurate then pOPF knn only.

Although a statistical evaluation with Wilcoxon signed-rank test

pointed out a small difference among them, we must stress they

were quite close to each other.
In regard to a larger repository, we evaluated both pOPF knn

nd OPF knn in the “scene-classification” dataset. Fig. 11 displays

he mean computational load concerning k ∈ [1, 500]. Since this

ataset is larger than the previous one, we opted to employ a

arger k max value. Considering k = 500 , pOPF knn was around 8.10%

aster than OPF knn .

Fig. 12 depicts the mean execution time concerning the testing

hase. In this case, pOPF knn was around 0.26% faster than OPF knn

nly. In fact, the size of the dataset may not affect the differences

etween pOPF knn and OPF knn , since both need to compute the k -

earest neighbors. The main difference related to pOPF knn concerns

ith the fact one does not need to run over all neighborhood again

o verify the training sample that is going to conquer that testing

ample, which is required by OPF knn . Finally, Fig. 13 displays the

ean recognition rates considering “scene-classification” dataset.

onsidering this experiment, OPF knn was around 0.3% more accu-

ate than pOPF knn when using k = 400 . In short, a statistical eval-

ation conducted with Wilcoxon signed-rank test with respect to

he recognition rates pointed out both techniques can be consid-

red similar to each other.

J.P. Papa et al. / Pattern Recognition Letters 87 (2017) 117–126 125

Table 4

Experimental results considering the proposed approach for learning the

neighborhood size using meta-heuristics.

Dataset Approach Training Mean k Accuracy

time (s)

Synthetic2 OPF knn 5 .76 1 72 .82

Synthetic2 mOPF knn + PSO 1 .53 104 72 .80

Synthetic2 mOPF knn + HS 1 .08 104 72 .96

scene-classification OPF knn 359 .37 1 67 .19

scene-classification mOPF knn + HS 21 .96 253 67 .65

scene-classification mOPF knn + PSO 58 .36 253 67 .36

4

w

O

[

a

s

n

t

m

a

s

t

f

i

2

t

f

(

n

t

f

t

b

s

[

t

l

i

s

s

u

fi

i

c

t

c

t

t

O

t

c

a

c

o

r

e

a

t

r

o

i

a

p

p

T

5

b

t

t

b

w

t

r

t

r

m

a

c

r

w

l

v

b

e

h

a

b

m

d

w

t

A

g

#

R

.3.3. Evaluating the robustness of mOPF knn

In this section, we evaluated the effectiveness of mOPF knn , as

ell as we also showed it can be so accurate as OPF knn . Since naïve

PF knn makes use of an exhaustive search within the range k ∈
1, k max] to find out k ∗, we proposed to model such problem as

n optimization task by meta-heuristics. In fact, one can use any

ort of optimization approach. We opted for such bundle of tech-

iques due to their simplicity and elegant solutions. In regard to

heir configuration, we employed the following setup:

• Harmony Search: 5 harmonies with 30 iterations, HMCR = 0 . 7 ,

PAR = 0 . 7 and σ = 10 . Variables HMCR and PAR , which stand

for “Harmony Memory Considering Rate” and “Pitch Adjusting

Rate” are used to guide HS onto the search space, as well as to

avoid traps from local optima. Variable σ denotes the “band-

width” (step size) used within PAR .
• Particle Swarm Optimization: 5 particles with 30 iterations,

c 1 = 1 . 4 , c 2 = 0 . 6 and w = 0 . 7 . Variables c 1 and c 2 are used to

weight the importance of a possible solution being far or close

to the local and global optimum, respectively. Variable w stands

for the well-known “inertia weight”, which is used as a step

size towards better solutions.

Since PSO updates all possible solutions at each iteration, which

eans it needs to evaluate the fitness function (OPF knn training

nd classification) whenever a particle changes its position. As

uch, we shall have 5 × 30 = 150 evaluations of the fitness func-

ion, plus five more evaluations to initialize the swarm. There-

ore, mOPF knn + PSO will require 155 calls to the OPF knn train-

ng and classification functions, meanwhile naïve OPF knn requires

00 calls, since we set k max = 200 in the experiments. In regard

o mOPF knn + HS , it requires 5 + 30 = 35 evaluations of the fitness

unction only, plus five more to initialize the harmony memory

search space or swarm). Therefore, HS requires 40 calls to the fit-

ess function, since it creates one possible solution at each itera-

ion only.

In any case, both mOPF knn + PSO and mOPF knn + HS would be

aster than OPF knn , since they shall require less computations of

he fitness function. However, we would like to evaluate whether

oth variants have similar recognition rates with respect to OPF knn ,

ince they are not considering all possible range of k values within

1, k max]. Therefore, that is the meaning of this experimental sec-

ion. Additionally, the experimental setup was conducted as fol-

ows: we partitioned the datasets into three subsets, say that train-

ng (30%), validating (20%) and testing sets (50%). The former two

ets are used to guide the optimization techniques onto the search

pace, which means both PSO and HS are looking for the k val-

es that maximize the accuracy over the validating set. Soon after

nding out k ∗, OPF knn is trained once again over training + validat-

ng set. In order to provide a statistical validation, we employed a

ross-validation procedure with 10 runnings.

Table 4 presents the mean accuracy over the test set, mean

raining time (we consider the step for learning parameter k in this

omputation), as well as the mean k value. Clearly, one can observe
he proposed meta-heuristic-based optimization is much faster

han naïve OPF knn . If we consider “Synthetic” dataset, for instance,

PF knn + PSO and OPF knn + HS were 3.76 and 5.33 times faster

han OPF knn concerning the training step. In regard to “scene-

lassification” dataset, OPF knn + PSO and OPF knn + HS were 6.15

nd 16.36 times faster than OPF knn . Last but not least, a statisti-

al evaluation by means of the Wilcoxon signed-rank test pointed

ut mOPF knn and OPF knn are similar to each other considering the

ecognition rates for all variants and datasets considered in this

xperiment.

An interesting observation concerns with the k values, which

re the same for mOPF knn + PSO and mOPF knn + HS considering

he two datasets, but very far from the one found by OPF knn . The

eason for that concerns with different optima at the landscape

f the fitness function. Another small optimization implemented

n this work takes into account k values evaluated by OPF knn + PSO

nd OPF knn + HS already. Since we are working with an optimization

roblem with integer-valued variables, we do not need to recom-

ute the fitness function for those values of k evaluated already.

herefore, mOPF knn can benefit from that.

. Conclusions

Graph-based pattern recognition techniques are a powerful

undle of tools that can be applied to a number of problems. Since

he scientific community has already a well-known and established

heory related to those techniques, the applications can naturally

enefit from that.

In this work, we considered the Optimum-Path Forest classifier,

hich is a framework to the development of pattern recognition

echniques based on optimal graph partitions. Given an adjacency

elation, a path-cost function and a methodology to estimate pro-

otypes, OPF partitions the feature space into optimum-path trees

ooted at each prototype. A sample that belongs to a given tree

eans it is more strongly connected to the root of that tree than to

ny other in the graph. One can understand OPF as a reward-based

ompetition, in which the prototype that offers the most valuable

eward (path-cost) shall conquer the sample.

A number of OPF variables have been proposed in the last years,

hich range from unsupervised, semi-supervised and supervised

earning approaches. In this work, we coped with a supervised

ariant that employs a k -neighborhood graph, the so-called OPF knn ,

eing the main contributions as follows: (i) to provide a deeper

xplanation and discussion about OPF knn , (ii) to propose a meta-

euristic-based approach to estimate the neighborhood size faster

nd also accurately, and (iii) to present an optimization approach

ased on a cost queue that makes both training and testing phase

ore efficient. Experiments over a number of synthetic and real

atasets demonstrated the validity of the proposed approaches, as

ell as the robustness of OPF knn when compared against SVM and

o its most used OPF version.

cknowledgments

The authors are grateful to CAPES PROCAD 2966/2014

rant, FAPESP grants #2009/16206-1 , #2013/20387-7 and

2014/2014/16250-9 , as well as CNPq grants #303182/2011-3 ,

70571/2013-6 and #30 616 6/2014-3 .

eferences

[1] C. Alléne , J.-Y. Audibert , M. Couprie , R. Keriven , Some links between extremum

spanning forests, watersheds and min-cuts, Image Vis. Comput. 28 (10) (2010)

1460–1471 .
[2] Y. Bengio , A.C. Courville , P. Vincent , Representation learning: a review and new

perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013) 1798–1828 .
[3] H. Bunke , K. Riesen , Recent advances in graph-based pattern recognition with

applications in document analysis, Pattern Recognit. 44 (5) (2011) 1057–1067 .

http://dx.doi.org/10.13039/501100002322
http://dx.doi.org/10.13039/501100001807
http://dx.doi.org/10.13039/501100003593
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0003
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0003
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0003

126 J.P. Papa et al. / Pattern Recognition Letters 87 (2017) 117–126

[

[

[
[4] A.M. Carvalho , P. Adão , P. Mateus , Hybrid learning of Bayesian multinets for
binary classification, Pattern Recognit. 47 (10) (2014) 3438–3450 .

[5] Z. Chen , T. Ellis , A self-adaptive Gaussian mixture model, Comput. Vis. Image
Underst. 122 (2014) 35–46 .

[6] C. Cortes , V. Vapnik , Support-vector networks, Mach. Learn. 20 (3) (1995)
273–297 .

[7] R.O. Duda , P.E. Hart , D.G. Stork , Pattern Classification, second ed., Wiley-Inter-
science, 20 0 0 .

[8] A. Falcão , J. Stolfi, R. de Alencar Lotufo , The image foresting transform: the-

ory, algorithms, and applications, IEEE Trans. Pattern Anal. Mach. Intell. 26 (1)
(2004) 19–29 .

[9] Z.W. Geem , Music-Inspired Harmony Search Algorithm: Theory and Applica-
tions, first ed., Springer Publishing Company, Incorporated, 2009 .

[10] J. Hernández-González , I. Inza , J.A. Lozano , Learning Bayesian network classi-
fiers from label proportions, Pattern Recognit. 46 (12) (2013) 3425–3440 .

[11] A.S. Iwashita , J.P. Papa , A. Souza , A.X. Falcão , R.A. Lotufo , V.M. Oliveira ,

V.H.C. de Albuquerque , J.M.R. Tavares , A path- and label-cost propagation ap-
proach to speedup the training of the optimum-path forest classifier, Pattern

Recognit. Lett. 40 (2014) 121–127 .
[12] J. Kennedy , R.C. Eberhart , Swarm Intelligence, Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2001 .
[13] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , Gradient-based learning applied to

document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 .

[14] M.I. Malinen , R. Mariescu-Istodor , P. Fränti , K-means ∗: clustering by gradual
data transformation, Pattern Recognit. 47 (10) (2014) 3376–3386 .

[15] D. Martínez-Rego , O. Fontenla-Romero , A. Alonso-Betanzos , Nonlinear single
layer neural network training algorithm for incremental, nonstationary and

distributed learning scenarios, Pattern Recognit. 45 (12) (2012) 4536–4546 .
[16] P. Nemenyi , Distribution-Free Multiple Comparisons, Princeton University,

1963 .
[17] J.P. Papa , A.X. Falcão , A new variant of the optimum-path forest classifier, in:
G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli, J. Peters,

J. Klosowski, L. Arns, Y. Chun, T.-M. Rhyne, L. Monroe (Eds.), Advances in Visual
Computing, Lecture Notes in Computer Science, 5358, Springer Berlin Heidel-

berg, 2008, pp. 935–944 .
[18] J.P. Papa , A.X. Falcão , A learning algorithm for the optimum-path forest clas-

sifier, in: A. Torsello, F. Escolano, L. Brun (Eds.), Graph-Based Representations
in Pattern Recognition, Lecture Notes in Computer Science, vol. 5534, Springer

Berlin Heidelberg, 2009, pp. 195–204 .

[19] J.P. Papa , A.X. Falcão , V.H.C. Albuquerque , J.M.R.S. Tavares , Efficient supervised
optimum-path forest classification for large datasets, Pattern Recognit. 45 (1)

(2012) 512–520 .
[20] J.P. Papa , A.X. Falcão , C.T.N. Suzuki , Supervised pattern classification based on

optimum-path forest, Int. J. Imaging Syst. Technol. 19 (2) (2009) 120–131 .
[21] S. Qasem , S. Shamsuddin , Improving performance of radial basis function net-

work based with particle swarm optimization, in: Proceedings of the IEEE

Congress on Evolutionary Computation, 2009, pp. 3149–3156 .
22] L.M. Rocha , F.A.M. Cappabianco , A.X. Falcão , Data clustering as an optimum–

path forest problem with applications in image analysis, Int. J. Imaging Syst.
Technol. 19 (2) (2009) 50–68 .

23] G.H. Rosa , K.A.P. Costa , L.A. Passos Júnior , J.P. Papa , A.X. Falcão , J.M.R.S. Tavares ,
On the training of artificial neural networks with radial basis function using

optimum-path forest clustering, in: Proceedings of the Twenty Second Inter-

national Conference on Pattern Recognition, 2014, pp. 1472–1477 .
[24] R. Souza , L. Rittner , R. Lotufo , A comparison between k-optimum path forest

and k-nearest neighbors supervised classifiers, Pattern Recognit. Lett. 39 (2014)
2–10 . Advances in Pattern Recognition and Computer Vision.

25] F. Wilcoxon , Individual comparisons by ranking methods, Biom. Bull. 1 (6)
(1945) 80–83 .

http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0005
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0005
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0005
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0006
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0006
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0006
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0007
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0007
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0007
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0007
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0008
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0008
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0008
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0008
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0009
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0009
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0015
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0015
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0015
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0015
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0016
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0016
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0017
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0017
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0017
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0018
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0018
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0018
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0019
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0019
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0019
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0019
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0019
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0020
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0020
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0020
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0020
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0021
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0021
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0021
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0022
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0022
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0022
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0022
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0023
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0023
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0023
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0023
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0023
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0023
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0023
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0024
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0024
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0024
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0024
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0024
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0025
http://refhub.elsevier.com/S0167-8655(16)30205-7/sbref0025

	Optimum-Path Forest based on k-connectivity: Theory and applications
	1 Introduction
	2 Optimum-Path Forest with knn-connectivity
	2.1 Theoretical background
	2.2 Training
	2.3 Classification

	3 Improvements on OPFknn
	3.1 Learning k-connectivity by means of meta-heuristics
	3.2 Speeding-up classification using cost queue

	4 Experimental section
	4.1 Datasets
	4.2 Experimental setup
	4.3 Experiments
	4.3.1 Evaluating the robustness of OPFknn
	4.3.2 Evaluating the robustness of pOPFknn
	4.3.3 Evaluating the robustness of mOPFknn

	5 Conclusions
	 Acknowledgments
	 References

