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The lot sizing problem with setup crossover is an extension of the standard big bucket capacitated lot siz-
ing problem (CLSP). The general idea is that the first setup operation of each planning period can already
start in the previous period, if not all the capacity is used in that previous period. This provides more flex-
ibility in the planning and increases the possibility of finding feasible and better solutions compared to
the standard assumption. Two different formulations have been presented in the literature to model a
setup crossover. Since these formulations have not been compared directly to each other, we present a
computational study to determine which is the best formulation. Furthermore, we explore ideas indicat-
ing that in one of the formulations from the literature it is not necessary to impose binary conditions on
the crossover variables and we propose symmetry breaking constraints for both formulations from the
literature. Finally, we quantify the value of this type of flexibility in a computational experiment and ana-
lyze which factors influence this value.

� 2016 Published by Elsevier Ltd.
1. Introduction

The research on dynamic lot sizing in discrete time started over
50 years ago with the seminal papers of Wagner andWhitin (1958)
and Manne (1958). Over the past decades, there has been an
increasing interest in the application of these models, and
researchers have been able to incorporate more and more real
world features into lot sizing problems.

The lot sizing problem is a production optimization problem
which involves determining how many items to produce in each
period in order to meet the demand for these items. The resulting
production plan should minimize the sum of the setup, production
and inventory holding costs. The problem considered in this work
is the single stage, single machine, multi-product, big time bucket
lot sizing problem with setup times. Several different products can
be produced in the same time period on the same machine. A setup
must be done for each type of product that is produced in a specific
period. In the standard version of this problem the setup for the
first product type produced in a period starts at the beginning of
that period (Trigeiro, Thomas, & McClain, 1989). In this paper we
study an extension of this lot sizing problem that includes the pos-
sibility of a setup crossover. The idea is that in certain cases setup
operations can be interrupted at the end of a period and resumed
at the beginning of the next period, in other words, the setups
can span over two periods. This implies that the first setup in per-
iod t can already start at the end of period t � 1 if there is some
capacity left, and continue at the beginning of period t (Menezes,
Clark, & Almada-Lobo, 2010). This flexibility can result in more effi-
cient solutions compared to the standard assumption (where the
setup time is restricted to be contained within the period) since
we free up capacity in period t by (partially) moving the setup of
the first product to the previous period. In the big bucket models,
the setup times are smaller than the capacity limit.

Typically, the setups include machine adjustments, calibration,
inspection and cleaning activities that are required before switch-
ing over the resource to produce another product. Quite often,
setup operations can be interrupted at the end of a period (e.g. just
before the weekend break) and resumed at the beginning of the
next one (e.g. just after the weekend break). In other cases, the
operation is run continuously, and there is no period of interrup-
tion between the end of one period and the start of the next one.
In both cases, the setup can be split between two periods. We give
some examples. In the beverage industry, the setup of the beverage
production line consists in preparing the syrup in tanks and dis-
tribute it to parallel bottling machines. In some cases this process
can be interrupted and resumed the next period. In the fabrication
of steel components, different molds are needed to produce differ-
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ent products. The setup consists of changing the mold and in some
cases this process can be interrupted and resumed without any
problem.

It is important to note the differences between the concepts of
setup crossover and setup carryover. While with setup crossover
the setups can span over two periods, the setup carryover allows
a setup state to be maintained from one period to the next one.
In other words, if we finish a period t producing a particular item
i it is possible to start producing the item i in period t þ 1 without
performing a new setup for this item.

Although setup crossover is a natural extension of the standard
assumption, just a few studies have considered it, due to the diffi-
culty in dealing with the underlying problems (Mohan,
Gopalakrishnan, Marathe, & Rajan, 2012; Belo-Filho, Almada-
Lobo, & Toledo, 2014). All the studies that handle setup crossovers
in their formulations have added extra binary variables to the for-
mulations indicating if there is a setup crossover in a period or not,
which increases the difficulty of the formulations.

The aim of this paper is: (1) to compare the two formulations
proposed in the literature to determine which formulation is the
best; (2) to propose new constraints to break the symmetry which
is present in the formulations from the literature; (3) to prove that
in one of the formulations from the literature we do not need bin-
ary conditions on the crossover variables; (4) to analyze the impact
of the proposed adaptations of these formulations (i.e. no binary
variables and symmetry breaking constraints) in computational
experiments, and (5) to determine the value of the flexibility pro-
vided by the setup crossover and analyze the factors that have an
impact on this value.

We also have explored other ideas to avoid the necessity of
defining new extra binary variables to model the setup crossover.
Two new formulations were proposed and can be found in a tech-
nical report (Fiorotto, Jans, & de Araujo, 2014) which includes some
theoretical and computational results. These two formulations pre-
sent more restricted models, and hence provide only an upper
bound on the optimal solution for the model with setup crossover.
The computational experiments indicated that these two restricted
formulations without extra binary variables for the setup crossover
actually take substantially more time to be solved compared to the
best formulation for the setup crossover. Therefore, these two
restricted formulations are not included in this paper.

The paper is organized as follows. In Section 2, we provide a lit-
erature review on lot sizing problems with setup crossover. Sec-
tion 3 presents the formulations from the literature along with
the new proposed formulations including some theoretical results
for the formulations. Section 4 describes the computational results
and analyses and finally in Section 5, we present our conclusions.
2. Literature review

There is a vast amount of literature on big-bucket capacitated
lot sizing problems (CLSP) with setup times, where setup times
have to be contained completely within one period (Trigeiro
et al., 1989). These models have been extended to deal with various
industrial issues (see Jans & Degraeve (2008) for an overview),
including setup carryover and setup crossover.

Several papers analyze the extension with setup carryover. Sox
and Gao (1999) propose two formulations for the CLSP with setup
carryover. The first one extends the formulation proposed by
Trigeiro et al. (1989) and the second one uses the shortest path
reformulation and the ideas proposed by Eppen and Martin
(1987). Suerie and Stadtler (2003) propose a formulation for the
CLSP with setup carryover based on the simple plant location for-
mulation (Krarup & Bilde, 1977) and their computational tests
have shown that this formulation is better than the formulations
proposed by Sox and Gao (1999). Gopalakrishnan, Ding,
Bourjolly, and Mohan (2001) develop a tabu search heuristic to
solve the CLSP with setup carryover and using the data sets from
Trigeiro et al. (1989) they compute the effectiveness of the setup
carryover. Their results indicate an 8% reduction in total cost on
average through setup carryover compared with the standard
CLSP.

Regarding the problem with setup crossover for the small
bucket problem, Suerie (2006) studies the lot sizing and scheduling
problem and proposes two formulations that correctly handle
setup crossovers which allow ‘‘long” setup times (i.e. setup times
can be bigger than the capacity in one period). The author com-
pares his results with the results found by the standard lot sizing
and scheduling problem and concludes that the proposed formula-
tions remove infeasibility and produce improved solutions in cer-
tain cases.

For the big bucket problem, Sung and Maravelias (2008) present
a mixed-integer programming formulation for the capacitated lot
sizing problem allowing setup carryover and crossover (CLSP-
SCC). The authors consider sequence independent setups, non-
uniform time periods and long setup times. They show in a
detailed way how to deal with the boundary of the periods using
setup crossover with the assumption that the setup cost is
accounted for at the beginning of the setup. Finally they discuss
how their formulation can be extended for problems with idle
time, parallel units, families of products, backlog and lost sales.

Menezes et al. (2010) propose a formulation for the CLSP-SCC
considering sequence-dependent and non-triangular setups,
allowing subtours and enforcing minimum lot sizing. They propose
two lemmas to demonstrate that their formulation is more effi-
cient than the classical lot sizing and scheduling problem. More-
over, they present an example that shows the improvement of
the solutions allowing setup crossover compared to the classical
formulation.

Kopanos, Puigjaner, and Maravelias (2011) develop a formula-
tion for the CLSP-SCC with backlog where the items are classified
into families. The approach considers that the setups are family
sequence-dependent, and sequence-independent for items belong-
ing to the same family. The formulation is tested for a complex real
world problem in the continuous bottling stage of a beer produc-
tion facility and it finds good solutions for problems with hundreds
of items.

Mohan et al. (2012) include the possibility of setup crossover
for the formulation proposed by Suerie and Stadtler (2003) that
handles the problem with setup carryover and compare the
improvement obtained by adding the crossover in the formulation
with setup carryover. They conclude that in nine out of fifteen
problem instances tested, their formulation yielded better solu-
tions or removed infeasibility.

Camargo, Toledo, and Almada-Lobo (2012) propose three for-
mulations for the two-stage lot sizing and scheduling problem
and one of these considers setup crossover, which is achieved by
a continuous-time representation. From the computational results,
they conclude that despite delivering the worst performance in
terms of CPU times, the formulation with setup crossover is the
most flexible of the three to incorporate setup-related features.

Belo-Filho et al. (2014) consider the problem CLSP-SCC with
backlog. They propose two formulations for the problem, the first
one is built on top of the formulation of Sung and Maravelias
(2008) and the second one proposes a time index disaggregation,
defining the start and the completion time periods of the setup
operation. They show the relationship between the proposed for-
mulations and compare their formulations with the formulation
proposed by Sung and Maravelias (2008). Finally they point out
that setup crossover is an important modeling feature in case setup
times consume a considerable part of the period capacity.
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3. Mathematical models

In this section, we first present the classical formulation (with-
out crossover) using the simple plant location reformulation
(Krarup & Bilde, 1977). Next, we present two formulations for
the problem with setup crossover based on the ideas proposed
by Menezes et al. (2010) and Mohan et al. (2012). We further prove
that the binary conditions on the new crossover variables can be
omitted in the formulation proposed by Menezes et al. (2010).
We also propose new constraints for the formulations proposed
by Menezes et al. (2010) and Mohan et al. (2012) to break the sym-
metry resulting from the presence of alternative optimal solutions.
Finally, we present a small example for which we show the solu-
tions obtained by the studied formulations.

3.1. Classical model

Various research papers have used alternative formulations to
model the classical lot sizing formulation. Two important reformu-
lations have been proposed. A first one deals with the reformula-
tion of the problem as a Shortest Path problem in which a
redefinition of the variables proposed by Eppen and Martin
(1987) is used (e.g. Fiorotto, A, & Araujo (2014)). A second one con-
sists of a reformulation based on the Simple Plant Location prob-
lem studied in Krarup and Bilde (1977). Various theoretical and
computational results concerning such reformulations have been
published in the literature (see for example, de Araujo, de Reyck,
Degraeve, Fragkos, & Jans (2015)). Considering that the linear
relaxations of these alternative formulations are stronger than of
the classical formulation, and after performing some preliminary
computational tests we have chosen to use the simple plant loca-
tion reformulation for all formulations presented in this paper.
See for example Trigeiro et al. (1989) and Jans and Degraeve
(2007) for the regular formulation.

The parameters and variables used in the formulations are
described as follows:

Parameters

I ¼ f1; . . . ;ng
 set of items;

T ¼ f1; . . . ;mg
 set of periods;

dit
 demand of item i in period t;

hcit
 unit inventory cost of item i in period t;

scit
 setup cost for item i in period t;

vcit
 production cost of item i in period t;

stit
 setup time for item i in period t;

vtit
 production time of item i in period t;

Capt
 capacity (in units of time) in period t;

csitk
 total production and holding cost for

producing item i in period t to satisfy the
entire demand of period k,

csitk ¼ ðvcit þ
Pk�1

u¼t hciuÞdik.

Decision variables

xitk
 fraction of the demand for item i in period k

produced in period t;

yit
 binary setup variable, indicating the

production or not of item i in period t;
� Simple plant location reformulation ðF0Þ
vðF0Þ ¼ Min
Xn
i¼1

Xm
t¼1

scityit þ
Xn
i¼1

Xm
t¼1

Xm
k¼t

csitkxitk

 !
ð1Þ
Subject to:

Xt
k¼1

xikt ¼ 1 8i 2 I; t 2 Tjdit > 0 ð2Þ

Xn
i¼1

stityit þ
Xn
i¼1

Xm
k¼t
vtitdikxitk 6 Capt 8t 2 T ð3Þ

xitk 6 yit 8i 2 I; t 2 T; k 2 T; k P t ð4Þ

yit 2 f0;1g; xitk P 0 8i 2 I; t 2 T; k 2 T; k P t ð5Þ

The objective function (1) minimizes the total cost, which con-
sists of the setup cost and the aggregated production and holding
costs. The constraints (2) ensure that demand is met for each per-
iod. The capacity constraints (3) limit the sum of the total setup
and production times. The setup constraints (4) do not allow any
production in period t unless a setup is done. Finally, constraints
(5) define the variable domains.

3.2. Models proposed in literature for the problem with setup crossover

In this section we present the formulations of the lot sizing
problem with setup crossover proposed in the literature. These for-
mulations are based on the formulations of Menezes et al. (2010)
and Mohan et al. (2012). Both papers also include the possibility
of setup carryover. We present here the way the setup crossover
is formulated in these papers, without considering the setup carry-
over extensions. There are others papers in the literature for exten-
sions of the CLSP with setup crossover as discussed in the literature
review. However, for these formulations the way to model the
setup crossover is similar to that of the papers previously men-
tioned, and therefore they will be omitted.

3.2.1. Model Proposed by Menezes et al. (2010) ðF1Þ
Before presenting the formulation, we need to define some new

variables:
New decision variables
v it:
 binary variable, indicating if the setup is split between
period t and period t þ 1 for item i;
ut:
 extra time borrowed in period t for the setup in period
t þ 1.
We assume that when a setup is split between periods t-1 and t
(i.e. v i;t�1 ¼ 1), then the setup (cost and time) is associated with the
period in which the actual production is done (i.e. the second per-
iod of the cross-over). The first mathematical formulation ðF1Þ
based on the ideas proposed by Menezes et al. (2010) is as follows:

vðF1Þ ¼ Min
Xn
i¼1

Xm
t¼1

scityit þ
Xn
i¼1

Xm
t¼1

Xm
k¼t

csitkxitk

 !
ð6Þ

Subject to:

Xt
k¼1

xikt ¼ 1 8i 2 I; t 2 Tjdit > 0 ð7Þ

Xn
i¼1

stityit þ
Xn
i¼1

Xm
k¼t
vtitdikxitk þ ut 6 Capt þ ut�1 8t 2 T ð8Þ

xitk 6 yit 8i 2 I; t 2 T; k 2 T; k P t ð9Þ
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ut�1 6
Xn
i¼1
v i;t�1stit 8t 2 T ð10Þ

v i;t�1 6 yit 8i 2 I; t 2 T ð11Þ

Xn
i¼1
v i;t�1 6 1 8t 2 T ð12Þ

yit 2 f0;1g; v i;t�1 2 f0;1g;v i0 ¼ 0; ut�1 P 0;u0 ¼ 0 8i 2 I; t 2 T

ð13Þ

xitk P 0 8i 2 I; t 2 T; k 2 T; k P t ð14Þ
The objective function (6) minimizes the total cost. Constraints

(7) guarantee that the demand is satisfied in each period. The
capacity constraints (8) limit the sum of the total setup times
and production times, considering the time borrowed from the
previous period and the time added to the next period in case of
setup crossover. The setup constraints (9) do not allow any produc-
tion in period t unless a setup is completed in period t. Constraint
(10) limits the borrowed time in period t � 1 to be used in period t
to the value of the setup time of the product for which we allow
the crossover. We cannot have a crossover from period t � 1 to per-
iod t if there is no setup in period t, as imposed by constraint (11).
Constraints (12) state that the setup can be split across periods for
at most one item and finally, the conditions (13) and (14) on the
variables complete the formulation.

3.2.2. Model Proposed by Mohan et al. (2012) ðF2Þ
The second formulation is based on the ideas proposed by

Mohan et al. (2012) and the main difference is the way to limit
the time for the setup crossover (constraints (10) and (11) of the
previous formulation). Before presenting the formulation, we need
to define other new variables:

New decision variables:

zit: = 1 if a complete setup is done in period t for item i, 0
otherwise;
wit: = 1 if there is a setup crossover between period t � 1 and
period t for item i with splits of the setup time being li;t�1 and
f it , respectively (that is f it þ li;t�1 ¼ stit).

The second formulation is then as follows:

vðF2Þ ¼ Min
Xn
i¼1

Xm
t¼1
ðscitzit þ scitwitÞ þ

Xn
i¼1

Xm
t¼1

Xm
k¼t

csitkxitk

 !
ð15Þ

Subject to:

Xt
k¼1

xikt ¼ 1 8i 2 I; t 2 Tjdit > 0 ð16Þ

Xn
i¼1

stitzit þ
Xn
i¼1

Xm
k¼t
vtitdikxitk þ

Xn
i¼1

lit þ
Xn
i¼1

f it 6 Capt 8t 2 T ð17Þ

xitk 6 zit þwit 8i 2 I; t 2 T; k 2 T; k P t ð18Þ

f it þ li;t�1 ¼ witstit 8i 2 I; t 2 T ð19Þ

Xn
i¼1

wit 6 1 8t 2 T ð20Þ

yit 2 f0;1g;wit 2 f0;1g; lit P 0; li0 ¼ 0; f it P 0 8i 2 I; t 2 T ð21Þ
xitk P 0 8i 2 I; t 2 T; k 2 T; k P t ð22Þ
The objective function (15) minimizes the total setup, produc-

tion and inventory costs. The constraints (16) guarantee that the
demand is satisfied in each period. Constraints (17) ensure that
the total capacity consumed during a period for production and
setups is less than or equal to the available capacity. The setup con-
straints (18) do not allow any production in period t unless a setup
is done (either complete or crossover). When a setup is split, con-
straints (19) ensure that the split times add up to the total setup
time. Constraints (20) state that the setup can be split across peri-
ods for at most one item. Finally, Constraints (21) and (22) define
the variable domains.

3.3. Omitting the binary conditions on the crossover variables in F1

Analyzing the constraints (10)–(12) we observe that the inte-
grality constraints on v it can be dropped in F1. A setup for product
i is defined as ‘active’ in period t if the corresponding setup variable
(i.e. yi;t) equals 1. The idea is that it is always feasible to limit the
allowable time for a setup crossover to the maximum of the active
setup times in a period (as formally discussed in Proposition 1). If
less time is allowed (because there is not enough idle capacity in
the previous period) or needed, the ut variables can always assume
a lower value. This constraint is still imposed if we drop the inte-
grality constraints on the v it variables (assuming positive setup
times). The right-hand side of (10) cannot be more than the max-
imum of the active setup times because of constraints (11) and
(12) together even if the binary conditions on the v it variables
are dropped. Note that when the binary conditions are dropped,
the variable v it does not necessarily indicate anymore which item
is split, since it can assume fractional values. The variable v it can
take any fractional value between 0 and 1, and indicates the faction
of each setup time utilized to determine the maximum allowed
time to be borrowed for the setup crossover. The formulation F3
consists of the objective function (6), subject to constraints
(7)–(14) with the integrality constraints on v it dropped.

Note that vðFÞ indicates the optimal objective function value of
formulation F.

Proposition 1. vðF3Þ ¼ vðF1Þ.
Proof. Observe that there is an incentive to make the right-hand
side of (10) as large as possible, in order to allow the maximum
flexibility. The v it variable does not appear in the objective func-
tion, and the values are constrained by inequalities (11), (12) and
the domain restrictions. Therefore, there exists an optimal solution
for F1 in which the right-hand side of (10)Pn

i¼1v i;t�1stit ¼maxi2Ijyit¼1fstitg. When we drop the integrality con-
straints on the v it variables, the right-hand side of (10) will still
have maxi2Ijyit¼1fstitg as the maximum value. Therefore, by drop-
ping the integrality constraints we will obtain the same objective
function value as with the integrality constraints.h
3.4. Symmetry Breaking Constraints

As we will see in this section, it is possible that the two formu-
lation proposed in the literature ((F1) and (F2)) have alternative
(optimal) solutions with the same (optimal) objective function
value. The problem with these alternative or symmetric solutions
is that they can increase the total computation time needed due
to duplication in the branch-and-bound tree (see e.g. Sherali &
Smith, 2001; Jans, 2009; Jans & Desrosiers, 2013).

Fig. 1 shows a small example where symmetric solutions exist
for formulations (F1) and (F2). In Fig. 1, white blocks represent pro-



Fig. 1. Graphical solution of an example with symmetric solutions.
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duction time that is consumed in that period, dark gray represents
the setup time. Observe that we have three alternative feasible
solutions producing the same items, consuming the same amount
of capacity and with the same total cost. In all these solutions,
there is a setup crossover between periods 1 and 2, but for different
products.

3.4.1. Model to break the symmetry of formulation F1 ðF10Þ
The next proposition formally states that for formulation F1, it

is possible that alternative (optimal) solutions exist with the same
(optimal) objective function value.

Proposition 2. Given a feasible (or optimal) solution for F1, with a
setup crossover for product i from period t to t þ 1 (i.e. v it ¼ 1 and
v jt ¼ 0 8j 2 I n fig), we can construct an alternative feasible (or
optimal) solution with the same objective function value if there exists
in period t þ 1 an active setup for another product i0 which has an
equal or higher setup time (i.e. sti0 ;tþ1 P sti;tþ1 and yi0 ;tþ1 ¼ 1). This
solution can be constructed as follows:

v i0t ¼ 1;v it ¼ 0 and all other variables (including ut) remaining the
same.
Proof. The proof is easily established by the following two
reasons:

(1) The new solution satisfies all the constraints.
(2) We have the same objective function, because the values of

the variables xitk and yit remain the same.h

We can exclude these alternative solutions by explicitly impos-
ing that the item with the highest active setup time in period t þ 1
is always chosen as the item for which we have a setup crossover
between periods t and t þ 1. This is always feasible since the vari-
able ut can take a value which is lower than this setup time, or can
even take the value of zero (if no idle capacity is available in period
t, or if a setup crossover is not beneficial because there is ample
capacity in period t þ 1). To impose this condition, we first have
to order all the items in a decreasing order of their setup times.
Next we have to add the following symmetry breaking constraints
to formulation F1:
v1;t�1 ¼ y1t 8t 2 T n f1g ð23Þ

v i;t�1 P yit �
Xi�1
j¼1

yjt 8i 2 I n f1g;8t 2 T n f1g ð24Þ

Remember that v it is a binary variable, indicating if the setup is
split between period t and period t þ 1 for item i. Constraints (23)
and (24) impose in each period the setup crossover for the product
with the highest active setup time. Note that as the items are
ordered according to the decreasing order of setup time, item 1
has the highest setup time. Therefore, constraint (23) enforces
the setup crossover between periods t � 1 and t for the first item
(i.e. the one with the highest setup time) only if this item is setup
in period t. Constraint (24) enforces a setup crossover between
periods t � 1 and t for item i only if this item is setup in period t
and if none of the items with a higher setup time have been setup
in period t. Note that constraint (11) still prevents a crossover for
an item if there is no setup. Formulation F1 augmented with con-
straints (23) and (24) will be called F10.

3.4.2. Model to break the symmetry of formulation F2 ðF20Þ
For formulation F2, we observe as well that there can be several

alternative solutions with the same objective function value. The
reason is basically the same as for formulation F1.

Proposition 3. Given a feasible (or optimal) solution for F2, with a
setup crossover for product i from period t to t þ 1 (i.e.
wi;tþ1 ¼ 1;wj;tþ1 ¼ 0 8j 2 I n fig and zi;tþ1 ¼ 0), we can construct an
alternative feasible (or optimal) solution with the same objective
function value if there exists in period t þ 1 an active setup for another
product i0 which has an equal or higher setup time (i.e. sti0 ;tþ1 P sti;tþ1
and zi0 ;tþ1 ¼ 1). This solution can be constructed as follows:

wi0 ;tþ1 ¼ 1; zi0 ;tþ1 ¼ 0

wi;tþ1 ¼ 0; zi;tþ1 ¼ 1

li0t �lit; lit ¼ 0

f i0 ;tþ1 ¼ sti0 ;tþ1 � li0t; f i;tþ1 ¼ 0
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Proof. The proof is established by the following two reasons:

(1) The new solution remains feasible. Indeed:
(16) is satisfied for items i and i0 since the xikt variables do
not change.
The left-hand side of (17) for period t remains unchanged
since li0t has taken the value of lit and lit has taken the value
of zero, so that

Pn
j¼1ljt remains the same in the two solutions.

The left-hand side of (17) for period t þ 1 also has the same
value after the changes (see Table 1).
(18) is satisfied since the right-hand side for item i and i0 is
still equal to 1.
(19) is satisfied for items i and i0 by construction;
(20) is satisfied since we still only have one item (in each
period) for which we allow a setup crossover.

(2) We have the same objective function by construction. h

We also propose a symmetry breaking constraint for formula-
tion F2 to impose the setup crossover always for the product with
the highest active setup time. As in the previous formulation, we
first have to order all the items according to a decreasing order
of setup times and then we add to formulation F2 the following
new constraints:

Xi�1
j¼1

wjt P zit 8t 2 T; i 2 I n f1g ð25Þ

Constraints (25) impose that if there is a complete setup for item i,
this means there must have been a partial setup for an item j < i
(assuming an decreasing order of setup time). Constraints (25) will
hence assign the setup crossover to the item with the highest active
setup time. Note that this partial setup for item j might be a case
where there is no time borrowed from the previous period (i.e.
wjt ¼ 1 and lj;t�1 ¼ 0 and f jt ¼ stit). Formulation F2 augmented with

constraints (25) will be called F20.

3.5. Example

The following example shows the solutions for all formulations
applied to the same instance. We adapted the example proposed in
Belo-Filho et al. (2014) making some changes considering that in
their case setup carryover is allowed.

We have to determine a production plan for four different items
i ¼ fA;B; C;Dg over a planning horizon composed of five periods.
Tables 2 and 3 contain the parameters, the demand and capacity
values. Note that the parameters in Table 2 are time independent.

All formulations were solved to optimality using this data set.
Fig. 2 and Table 4 illustrate the graphical solutions and the relevant
non-zero variable values, respectively.

Additionally to Fig. 1, in Fig. 2 light gray represents idle time.
The values of the non-zero decision variables can be found in
Table 4. For the classical formulation (F0) the value of the optimal
solution is 688. This high value results mainly from the inventory
for item B from period 1 to period 3 (20 units), for item C from per-
iod 2 to period 3 (30 units) and for item D from period 3 to period 5
(40 units). Note that in this example the inventory costs are very
Table 1
Left hand side of constraint (17) for period t þ 1 and items i and i0 .

Old solution New solutionPn
i¼1sti;tþ1zi;tþ1 sti0 ;tþ1 � 1 sti;tþ1 � 1Pn

i¼1li;tþ1 Unchanged UnchangedPn
i¼1f i;tþ1 f i;tþ1 ¼ sti;tþ1 � lit f i0 ;tþ1 ¼ sti0 ;tþ1 � li0t

Total sti0 ;tþ1 þ sti;tþ1 � lit sti;tþ1 þ sti0 ;tþ1 � li0 t
high. However, due to the lack of capacity it is impossible to have
a setup for each item in a period with positive demand, and the
optimal solution for F0 results in high inventory levels.

Although slightly different, the solutions found by the formula-
tions F1, F10, F2, F20 and F3 have the same objective function value
of 22. The only difference is that in formulation F1 and F10 the
setup for item A is split between periods 1 and 2 and for the formu-
lations F2, F20 and F3 the setup for this item is completely done in
period 2. Observe that the solution obtained by F2; F20 and F3 can
directly be transformed into the solution obtained by F1 and F10 by
splitting the setup of product A over periods 1 and 2. We see hence
that there can be equivalent alternative optimal solutions. Note
that there is no inventory in the solutions obtained by these formu-
lations. Note also that although formulations F2 and F20 present
the same solution, the value of some variables are different (see
Table 4). This occurs because for a product with a partial setup
between periods t � 1 and t (wit ¼ 1), it is still possible in some
cases to do the complete setup in period t by choosing li;t�1 ¼ 0
or we do the complete setup in period t � 1 by choosing f it ¼ 0.

4. Computational results

The formulations were modeled in AMPL using CPLEX 12.6 as
solver. The tests were done on a personal computer Intel Core-I5,
2.27 GHz with 6 GB of RAM and the Windows operating system.
The computational tests involve five experiments based on stan-
dard instances proposed in Trigeiro et al. (1989). In the first exper-
iment, the formulations are tested for the well known F and G
instances. In the second experiment, the formulations were tested
on a large data set of 540 standard instances. In the third experi-
ment we test some adapted instances with high values for the
inventory costs, while in the fourth one we test some instances
considering the possibility of backlog. Finally, in the fifth experi-
ment we test the instances from the first and second experiment
disregarding the setup costs. We have limited the computational
time in all experiments to 1800 s per instance. Note that in these
instances the unit production costs are not considered.

4.1. Results for Experiment 1

The formulations were tested for a set of 145 instances pro-
posed in Trigeiro et al. (1989). These are 70 instances from the F-
set and 75 from the G-set. The F-set contains 70 instances with 6
items and 15 periods covering different levels of setup cost (low
½520;680�, medium ½200;1000� and high ½400;2000�) and setup
time (low ½10;50� and high ½30;150�). The G-set consists of 50
instances with 6 items and 15 periods and 5 instances for each of
the cases with 12 items and 15 periods, 24 items and 15 periods,
6 items and 30 periods, 12 items and 30 periods and 24 items
and 30 periods. Moreover, for the G-set the setup costs and times
are always generated between ½200;1000� and ½10;50�,
respectively.

In Table 5 we give the upper bounds (Columns UB) and the com-
putational times in seconds (Columns Time) for all formulations.
We set the upper bounds found by the classical formulation ðF0Þ
to 100% and calculate the others values relative to this. As
expected, all formulations with setup crossover have found better
solutions compared to the classical formulation ðF0Þ and the differ-
ences are bigger for problems with 6 items. Comparing the compu-
tational times, we can see that all formulations except
formulations F2 and F20 are faster than the classical formulation,
whereas F2 is always slower and F20 is faster only for instances
with 30 periods.

We observe that F1 is much faster than F0, which is surprising
since it contains more binary variables. Omitting the binary condi-



Table 2
Parameters for the example.

A B C D

vti 0.1 0.1 0.1 0.1
hci 3 4 1 6
sti 3 4 1 6
sci 3 4 1 6

Table 3
Demand and capacity data.

dit t ¼ 1 t ¼ 2 t ¼ 3 t ¼ 4 t ¼ 5

i ¼ A 0 30 0 0 0
i ¼ B 40 0 20 20 0
i ¼ C 0 0 30 0 0
i ¼ D 0 0 0 0 40

Capt 10 10 10 6 6

Fig. 2. Graphical solution of the example for all formulations.
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tion on the v it variables as done in formulation F3 does not result
in a significant change in the CPU time. It provides a very small
decrease compared to F1 for the data sets F, G6� 15, G6� 30
and G24� 30 and a very small increase for the data sets
G12� 15, G24� 15 and G12� 30.

Note that there is no benefit in adding symmetry breaking con-
straints to formulation F1 considering that the CPU times of the for-
mulation F10 are bigger than F1. However, for formulation F2 the
symmetry breaking constraints are very efficient and the difference
in CPU times between the formulations F2 and F20 is very significant.
CPU times for F2 are at least more than 5 times higher than for F20.

Note also that these instances are quite easy, considering that
CPLEX has solved relatively fast almost all instances for all formu-
lations except formulation F2. Moreover, with formulations
F1; F10; F20 and F3 the solver has proven the optimality for all
instances within the time limit. Using formulations F0 and F2 the
solver has proven the optimality for 98.6% and 88.9%, respectively.

4.2. Results for Experiment 2

In this experiment, the formulations were tested on a total of
540 instances with 20 periods, such that five characteristics are
analyzed: number of items (10, 20 and 30), demand variability
(medium ½0;125� and high ½0;200�), setup cost (low ½25;75�, med-
ium ½100;300� and high ½400;1200�), setup time (low ½5;17� and
high ½21;65�) and capacity utilization (low ½75%�, medium ½85%�,
and high ½95%�). The numbers in the brackets indicate a uniform
distribution between the two numbers. For more details on the
data set, we refer to Trigeiro et al. (1989).

Table 6 shows the overall performance of the formulations. We
report the relative upper bounds (UB), computational times in sec-
onds (Time) and percentage of instances solved to optimality
within the limit of 1800 s (OS). Since the symmetry breaking con-
straints in F10 were not able to improve the results obtained by F1,
the results of F10 are omitted.

The overall analysis of Table 6 confirms the tendencies observed
in Table 5. F0 is slower than F1 and F3. F2 is overall the slowest for-
mulation and the performance of F20 is significantly better than F2.
We see that F1 and F3 generally provide a similar performance
(both in terms of CPU times and the percentage of optimal solu-
tions found). We also observe that the cost decrease obtained by
introducing the possibility of a setup crossover is very small in
these instances and that the relevance of including a setup cross-
over is bigger for problems with few items. The average cost



Table 4
Variables values of example for all formulations.

F0 variables
xA22 ¼ 1 xB11 ¼ 1 xB13 ¼ 1 xB44 ¼ 1 xC23 ¼ 1 xD35 ¼ 1
yA2 ¼ 1 yB1 ¼ 1 yB4 ¼ 1 yC2 ¼ 1 yD3 ¼ 1

F1 and F10 variables
xA22 ¼ 1 xB11 ¼ 1 xB33 ¼ 1 xB44 ¼ 1 xC33 ¼ 1 xD55 ¼ 1
yA2 ¼ 1 yB1 ¼ 1 yB3 ¼ 1 yB4 ¼ 1 yC3 ¼ 1 yD5 ¼ 1
u1 ¼ 2 u2 ¼ 4 u3 ¼ 4 u4 ¼ 4
vA1 ¼ 1 vB2 ¼ 1 vB3 ¼ 1 vD4 ¼ 1

F2 variables
xA22 ¼ 1 xB11 ¼ 1 xB33 ¼ 1 xB44 ¼ 1 xC33 ¼ 1 xD55 ¼ 1
zA2 ¼ 1 zB1 ¼ 1 zC3 ¼ 1
wB3 ¼ 1 wB4 ¼ 1 wD5 ¼ 1
lB2 ¼ 4 lB3 ¼ 4 lD4 ¼ 4
f D5 ¼ 2

F20 variables
xA22 ¼ 1 xB11 ¼ 1 xB33 ¼ 1 xB44 ¼ 1 xC33 ¼ 1 xD55 ¼ 1
zC3 ¼ 1
wA2 ¼ 1 wB1 ¼ 1 wB3 ¼ 1 wB4 ¼ 1 wD5 ¼ 1
lB2 ¼ 4 lB3 ¼ 4 lD4 ¼ 4
f A2 ¼ 3 f B1 ¼ 4 f D5 ¼ 2

F3 variables
xA22 ¼ 1 xB11 ¼ 1 xB33 ¼ 1 xB44 ¼ 1 xC33 ¼ 1 xD55 ¼ 1
zA2 ¼ 1 yB1 ¼ 1 yB3 ¼ 1 yB4 ¼ 1 yC3 ¼ 1 yD5 ¼ 1
u2 ¼ 4 u3 ¼ 4 u4 ¼ 4
vA1 ¼ 1 vB2 ¼ 1 vB3 ¼ 1 vD4 ¼ 0:66

Table 5
Average general results for F and G data sets.

Model F G6-15 G12-15 G24-15 G6-30 G12-30 G24-30

UB Time UB Time UB Time UB Time UB Time UB Time UB Time

F0 100 2.3 100 21.7 100 5.8 100 10.2 100 364.3 100 642.6 100 472.9
F1 99.36 1.1 99.03 3.4 99.86 3.3 99.85 7.3 99.38 17.3 99.72 82.3 99.97 89.7
F10 99.36 1.3 99.03 3.5 99.86 4.3 99.85 11.6 99.38 24.7 99.72 112.0 99.97 131.4
F2 99.36 87.0 99.03 102.9 99.86 401.1 99.85 569.1 99.38 936.4 99.72 1444.4 99.97 1332.5
F20 99.36 7.7 99.03 21.5 99.86 16.0 99.85 17.7 99.38 136.0 99.72 211.3 99.97 228.7
F3 99.36 0.9 99.03 3.1 99.86 3.6 99.85 7.5 99.38 16.5 99.72 82.4 99.97 83.3

Table 6
General average results aggregated per number of items.

Model 10 items 20 items 30 items Aver. OS

UB Time OS UB Time OS UB Time OS UB Time

F0 100 578.1 71.6 100 666.0 65.0 100 688.3 63.9 100 9.5
F1 99.40 452.6 80.0 99.78 605.4 68.9 99.86 601.1 69.4 99.85 3.8
F2 99.43 791.5 58.3 99.79 849.8 55.0 99.89 846.4 56.1 99.85 86.9
F20 99.42 612.8 69.4 99.79 665.8 65.5 99.89 660.2 66.1 99.85 8.4
F3 99.40 467.5 78.3 99.77 590.3 70.0 99.83 598.3 68.9 99.85 4.3
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decrease is 0:60% for 10 items, 0:23% for 20 items and 0:17% for 30
items. The average cost decrease over all 540 instances is 0:33%.

Table 6 shows that although the formulations F1; F2; F20 and F3
have the same optimal solutions, F3 found slightly better solutions
for problems with 20 and 30 items within the given time limit.
Considering only instances for which CPLEX proved optimality
(columns Aver. OS) we clearly see the big improvement obtained
by including the symmetry breaking constraints in the formulation
F2. The CPU times for formulations F2 and F20 are 86.9 and 8.4,
respectively.

Aiming to do a further analysis of the effect of introducing a
setup crossover, Table 7 shows the characteristics of the solutions
for 10 items for the formulations F0 and F1: the percentage of
setup and holding cost (columns SCð%Þ and HCð%Þ) in the objective
function value and the number of setups and total inventory (col-
umns setup and inv.). We observe that overall the number of set-
ups is very similar for both formulations and the main difference
is the level of inventory. We obtain a decrease in total inventory
of approximately 1%, but the total inventory holding costs consti-
tute only 30% of the total cost. So the overall cost decrease is rela-
tively small. It explains the small decrease obtained by introducing
the possibility of a setup crossover in these instances given that the
value of the inventory costs are very low. Even though globally the
total number of setups does not significantly change when we
introduce a setup crossover, we see that the setup cost and the
capacity tightness have an impact. Tight capacity levels and low
setup cost generally lead to a slight increase in the total number
of setups when allowing a setup crossover. The level of the setup
times and the demand variability do not have a large impact. The
overall analysis of these instances indicates that the benefits of a
setup crossover come mainly from the decreased inventory level
which results from a better matching of demand and supply



Table 7
Detailed results for 10 items.

Model F0 Model F1

UB SC (%) HC (%) Setup Inv. UB SC (%) HC ð%Þ Setup Inv.

Capacity Loose 100 74.50 25.50 100.6 11242 99.90 74.52 25.48 100.4 11,189
Normal 100 73.79 26.21 102.5 10,995 99.62 73.83 26.17 102.2 11,010
Tight 100 61.49 38.51 92.6 12,953 98.67 62.60 37.40 93.0 12,614

S. cost Low 100 82.21 17.79 152.0 1878 99.11 83.08 16.92 152.5 1766
Normal 100 65.50 34.50 90.4 9186 99.56 65.74 34.26 90.3 9088
High 100 62.07 37.93 53.2 24,126 99.51 62.13 37.87 52.9 23,959

S. time Low 100 69.28 30.72 98.7 11,521 99.62 69.52 30.48 98.6 11,427
High 100 70.57 29.43 98.3 11,939 99.17 71.12 28.88 98.5 11,782

Demand Medium 100 71.15 28.85 105.3 12,112 99.48 71.41 28.59 105.3 12,053
High 100 68.71 31.29 91.7 11,348 99.31 69.23 30.77 91.8 11,155

Average 100 69.93 30.07 98.5 11,730 99.40 70.32 29.68 98.5 11,604
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through the increased flexibility. This might require, however, a
slight change in the number of setups as well.

It is important to note that although the cost decrease obtained
by introducing the possibility of a setup crossover is on average
small in these instances (i.e. 0.33%), for some cases this decrease
is more relevant. A more detailed analysis revealed that the cost
decrease obtained by introducing the possibility of a setup cross-
over is the biggest for configurations with 10 items, tight capacity,
low setup cost, high setup time and medium and high demand
variability, where we obtained respectively a 2.77% and 2.62% cost
decrease by including a setup crossover. On the other hand, for
many configurations with loose capacity we did not obtain any
improvement. This is in line with the analyses presented in Tables
6 and 7.
4.3. Results for Experiment 3

In this experiment the formulations were tested on a set of 180
instances. These are the same as the instances with 10 items of
experiment 2 with an altered high value for the inventory costs.
To generate the instances with high inventory costs we multiply
the inventory costs by 10 and 100.

Tables 8 and 9 show the benefits of considering setup crossover
for problems where the inventory costs are significant. The global
analysis confirms some of the conclusions of the previous experi-
ments. F1 and F3 have a similar performance. F2 is again the slow-
est formulation. However, in contrast to the results of the previous
experiments, we do see a significant decrease in the total costs
when setup crossover is allowed, which is on average 3% (for the
inventory cost � 10) and 7.8% (for the inventory cost � 100).
Table 8
Average general results with inventory costs multiplied by 10.

Model F0 Model F1

UB T (s) UB T (s)

Capacity Loose 100 84 98.95 2
Normal 100 437 96.55 280
Tight 100 1345 95.48 1182

S. cost Low 100 260 95.33 194
Normal 100 697 97.07 454
High 100 910 98.57 815

S. time Low 100 456 98.59 428
High 100 789 95.39 548

Demand Medium 100 834 97.49 687
High 100 410 96.49 289

Average 100 622 96.99 488
Table 8 contains the results for the instances with the inventory
costs multiplied by 10. We observe that the benefits of a setup
crossover are the highest in a setting with tight capacity (4.5% cost
decrease), high setup times (4.6% cost decrease) and low setup cost
(4.7% cost decrease).

Table 9 contains the results for instances with inventory costs
multiplied by 100. We observe that for these instances, the effect
of allowing a setup crossover is the highest for the instances with
normal capacity, low setup cost and high setup time where the
total cost decreases more than 10% on average. Note also that even
in a setting with loose capacity the total cost decrease is almost 7%.

Tables 10 and 11 show the behavior of the solutions for the
results with inventory costs multiplied by 10 and 100, respectively.
We observe that, contrary to the results of Table 7, the percentage
of inventory cost in the objective function value is very high espe-
cially for instances in which the inventory costs are multiplied by
100 (63.23% for formulation F0 and 60.24% for formulation F1). It
explains the more significant decrease obtained by introducing
the possibility of a setup crossover in these instances given that
the value of the inventory costs are very high. We observe that
for the instances in which the inventory costs are multiplied by
10 (Table 10) the total inventory goes down by approximately
5.5%, and the total setups only increase by 0.5%. Regarding the
instances in which the inventory costs are multiplied by 100
(Table 11) the total inventory goes down by approximately 6.5%
and the total setups only increase by 0.5%.
4.4. Results for Experiment 4

In this experiment the formulations were adapted to allow
backlog (Pochet & Wolsey, 2006) and were tested on a set of 60
Model F2 Model F2’ Model F3

UB T (s) UB T (s) UB T (s)

98.95 155 99.95 36 98.95 2
96.56 836 96.55 489 96.54 270
95.51 1744 95.48 1488 95.47 1170

95.33 544 95.33 376 95.33 193
97.08 977 97.05 727 97.05 442
98.60 1214 98.60 911 98.57 805

98.61 802 98.60 623 98.60 421
95.40 1021 95.38 719 95.37 540

97.51 984 97.49 892 97.48 686
96.50 840 96.49 450 96.49 275

97.00 912 96.99 671 96.99 481



Table 9
Average general results with inventory costs multiplied by 100.

Model F0 Model F1 Model F2 Model F2’ Model F3

UB T (s) UB T (s) UB T (s) UB T (s) UB T (s)

Capacity Loose 100 153 93.02 34 93.03 186 93.02 118 93.02 34
Normal 100 450 89.51 271 89.54 839 89.51 471 89.51 250
Tight 100 1199 94.05 1046 94.09 1742 99.07 1419 94.04 1022

S. cost Low 100 258 89.60 191 89.61 543 89.60 350 89.60 183
Normal 100 562 91.79 369 91.82 976 91.80 680 91.79 353
High 100 983 95.19 790 95.23 1248 95.20 979 95.18 769

S. time Low 100 358 95.86 349 95.88 794 95.87 555 95.86 343
High 100 843 88.53 552 88.55 1051 88.53 784 88.52 528

Demand Medium 100 825 93.11 677 93.14 1008 93.12 927 93.10 655
High 100 376 91.28 223 91.29 837 91.28 412 91.28 216

Average 100 601 92.19 450 92.22 922 92.20 669 92.19 435

Table 10
General detailed results with inventory costs multiplied by 10.

Model F0 Model F1

SC (%) HC (%) Setup Inv. SC (%) HC (%) Setup Inv.

Capacity Loose 88.21 11.79 158.3 1351 89.65 10.35 159.1 1228
Normal 67.17 32.83 146.8 2868 69.71 30.29 147.6 2663
Tight 22.62 77.38 108.9 9613 23.90 76.10 109.5 9216

S. cost Low 63.79 36.21 164.1 1540 66.12 33.88 164.8 1404
Normal 57.95 42.05 139.6 4037 59.84 40.16 140.5 3790
High 56.26 43.74 110.4 8255 57.30 42.70 110.9 7914

S. time Low 62.39 37.61 141.8 4039 63.16 36.84 142.1 3932
High 56.28 43.72 134.2 5182 59.02 40.98 135.4 4807

Demand Medium 63.49 36.51 145.6 4434 64.96 35.04 146.5 4189
High 55.18 44.82 130.4 4787 57.21 42.79 131.0 4549

Average 59.33 40.66 138.0 4611 61.09 38.91 138.7 4369

Table 11
General detailed results with inventory costs multiplied by 100.

Model F0 Model F1

SC (%) HC (%) Setup Inv. SC (%) HC (%) Setup Inv.

Capacity Loose 74.12 25.88 170.4 721 78.65 21.35 171.0 598
Normal 32.90 67.10 153.5 2592 37.10 62.90 154.6 2358
Tight 3.31 96.69 112.7 9668 3.56 96.44 113.2 9241

S. cost Low 46.11 53.89 165.4 1539 50.02 49.98 166.3 1402
Normal 33.02 66.98 144.3 4027 36.32 63.68 144.8 3767
High 31.19 68.81 126.9 7415 32.95 67.05 127.7 7028

S. time Low 44.22 55.78 151.5 3662 46.17 53.83 151.9 3542
High 29.33 70.67 139.5 4992 33.36 66.64 140.6 4589

Demand Medium 45.81 54.19 151.3 4108 48.96 51.04 151.8 3859
High 27.74 72.26 139.7 4546 30.57 69.43 140.7 4273

Average 36.77 63.23 145.5 4327 39.76 60.24 146.2 4066
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instances. These are the same as the instances with 10 items and
tight capacity of experiment 2 with an altered (reduced) value
for the capacity in order to generate some backlog. To generate
these instances with very tight capacity we reduce the capacity
by 5% and 10%. We set the backlog costs for each item equal to
100� inventory holding cost.

Tables 12–15 present the overall performance of the formula-
tions for problems that consider the possibility of backlog (based
on instances in which the two formulations found feasible solu-
tions). We report all factors that have been analyzed and added
the percentage of backlog cost (columns Bð%Þ) in the total objective
function value, the percentage of feasible solutions (columns FS)
and the number of total backlog (columns Back.).
The overall analysis of Tables 12–15 shows that for problems
that allow the possibility of backlog there is a significant decrease
in the total costs when a setup crossover is allowed, which is on
average 2.3% and 4% for instances for which the capacity is reduced
by 5% and 10%, respectively. We also observe, especially for
instances for which the capacity is reduced by 10%, an increase
in the number of feasible solutions (4%).

Tables 12 and 13 present the results for instances for which the
capacity is reduced by 5%. We observe that for these instances
when the setup cost and time is high, the importance of including
a setup crossover increases. Note also that overall the number of
setups is very similar again for the case with and without setup
crossover. We obtain a decrease in total inventory and backlog of



Table 12
General results with backlog and capacity reduced by 5%.

Model F0 Model F1

UB T (s) FS UB T (s) FS

S. cost Low 100 1401 100 97.86 1101 100
Normal 100 1800 100 98.55 1666 100
High 100 1715 80 96.58 1731 85

S. time Low 100 1742 86 99.08 1758 90
High 100 1539 100 96.57 1245 100

Demand Medium 100 1800 93 97.86 1617 97
High 100 1467 93 97.62 1350 93

Average 100 1633 93 97.73 1483 95

Table 13
General detailed results with backlog capacity reduced by 5%.

Model F0 Model F1

SC (%) HC (%) B (%) Setup Inv. Back. SC (%) HC (%) B (%) Setup Inv. Back.

S. cost L 45.52 54.48 0 114.8 7676 0 46.97 53.03 0 115.5 7397 0
N 47.59 50.34 2.05 77.5 15,345 10 48.84 49.17 1.97 78.2 14,766 10
H 43.25 21.02 35.72 60.3 21,167 793 44.71 21.48 33.80 60.3 20,921 759

S. time L 40.98 51.43 7.57 83.5 14,911 252 41.55 50.92 7.51 83.7 14,639 252
H 49.63 36.51 13.85 88.0 13,714 211 51.71 35.46 12.82 88.8 13,246 192

Demand M 44.44 41.86 13.69 90.3 14,143 341 45.73 41.08 13.18 90.9 13,739 335
H 46.79 45.18 8.18 81.6 14,397 120 48.25 44.19 7.54 81.9 14,047 106

Average 45.61 43.44 10.93 85.9 14,270 230 46.99 42.64 10.36 86.4 13,893 221

Table 14
General results with backlog capacity reduced by 10%.

Model F0 Model F1

UB T (s) FS UB T (s) FS

S. cost Low 100 1731 100 97.63 1411 100
Normal 100 1800 55 95.21 1688 55
High 100 1800 25 91.23 1800 35

S. time Low 100 1800 37 96.57 1800 37
High 100 1745 83 95.75 1440 90

Demand Medium 100 1800 66 94.92 1800 70
High 100 1714 53 97.36 1237 57

Average 100 1762 59 96.00 1550 63

Table 15
General detailed results with backlog capacity reduced by 10%.

Model F0 Model F1

SC (%) HC (%) B (%) Setup Inv. Back. SC (%) HC (%) B (%) Setup Inv. Back.

S. cost L 27.68 48.80 23.50 91.2 12,399 781 29.01 47.58 23.39 92.4 12,083 775
N 35.58 50.34 14.06 65.3 19,995 1152 36.82 49.38 13.79 65.3 19,021 959
H 3.08 3.86 93.04 33.2 28,080 7925 3.38 4.03 92.57 33.4 26,682 6977

S. time L 9.10 39.31 51.58 66.9 19,588 2525 9.25 39.43 51.30 66.8 19,164 2324
H 34.41 44.67 20.91 78.9 15,714 1606 36.02 43.25 20.72 80.0 14,940 1415

Demand M 22.78 39.22 37.99 73.5 18,012 2625 23.68 38.61 37.69 73.9 17,205 2299
H 31.55 47.80 20.64 77.4 15,505 964 33.03 46.43 20.52 78.6 15,012 935

Average 26.68 43.03 30.28 75.2 16,898 1886 27.84 42.08 30.06 76.0 16,231 1693
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approximately 2.7% and 4%, respectively. Finally, the percentage of
backlog in the total objective function value is relatively small (on
average only 11%) and there is no backlog for instances with low
setup cost.

Tables 14 and 15 show the results for instances in which the
capacity is reduced by 10%. For these instances the percentage of
backlog in the total objective function value is higher (approxi-
mately 30%) and we obtain a decrease in total backlog of 10.2%.
We observe that for instances with high setup cost, the percentage
of backlog in the objective function value is 93%. Moreover, we
obtained a decrease in the total costs of 8.8% for these instances.

4.5. Results for Experiment 5

In this experiment, the formulations were tested on a total of
685 instances. These are the same as the 145 instances of the first



Table 16
Average general results for F and G data sets.

Model F G6-15 G12-15 G24-15 G6-30 G12-30 G24-30

UB Time UB Time UB Time UB Time UB Time UB Time UB Time

F0 100 6.3 100 14.8 100 5.4 100 404.9 100 394.3 100 1440.6 100 1800
F1 75.37 1.4 79.26 4.7 84.10 3.7 91.98 51.8 68.99 368.6 85.76 1248.7 86.42 1800
F2 75.37 578.1 79.26 402.15 84.10 1085.7 91.98 1800 69.07 1800 86.40 1800 86.74 1800
F2’ 75.37 31.8 79.26 78.5 84.10 64.9 91.98 301.6 69.07 1175.7 85.87 1513.5 86.51 1800
F3 75.37 1.3 79.26 3.9 84.10 3.6 91.98 46.6 68.99 368.3 85.73 1379.2 86.44 1800

Table 17
General average results aggregated per number of items.

Model 10 items 20 items 30 items Aver. OS

UB Time OS UB Time OS UB Time OS UB Time

F0 100 575.6 72.7 100 898.7 56.6 100 958.5 47.7 100 2.1
F1 83.91 408.1 82.7 88.32 751.6 61.1 91.33 877.6 54.4 79.57 0.7
F2 83.93 927.0 49.4 88.35 1062.6 43.8 91.35 1084.7 40.0 79.57 55.8
F20 83.92 660.9 67.2 88.33 868.9 53.8 91.33 955.5 48.8 79.57 4.3
F3 83.91 396.6 85.5 88.32 757.4 62.2 91.32 879.8 54.4 79.57 0.7

Table 18
Detailed results for 10 items.

Model F0 Model F1

UB SC (%) HC (%) Setup Inv. UB SC (%) HC (%) Setup Inv.

Capacity Loose 100 0 100 175.2 592.8 79.53 0 100 177.0 469.2
Normal 100 0 100 156.1 2594.2 78.35 0 100 156.7 2356.5
Tight 100 0 100 116.0 9673.6 93.85 0 100 116.0 9271.6

S. cost Low 100 0 100 168.1 1539.5 78.07 0 100 169.6 1403.8
Normal 100 0 100 148.4 3899.0 82.06 0 100 148.7 3649.1
High 100 0 100 130.9 7422.2 91.61 0 100 131.4 7044.6

S. time Low 100 0 100 154.6 3677.4 88.20 0 100 155.1 3560.6
High 100 0 100 143.7 4896.4 79.62 0 100 144.7 4504.4

Demand Medium 100 0 100 154.5 4114.2 83.51 0 100 155.5 3865.3
High 100 0 100 143.8 4459.5 84.31 0 100 144.3 4199.6

Average 100 0 100 149.1 4286.9 83.91 0 100 149.9 4032.5
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experiment plus the 540 instances of the second experiment but all
the setup costs are set to zero. Lot sizing instances with setup times
and zero setup costs were considered in the paper by Süral,
Denizel, and Van Wassenhove (2009).

The overall analysis of Tables 16–18 shows that the benefits of
considering setup crossover for problems without setup cost are
really significant. Indeed, the results show that from a practical
perspective, it is a highly relevant setting in which the setup cross-
over is very beneficial. It can be explained because only inventory
holding costs are present in the objective function, and the previ-
ous experiments have shown that the possibility to do a setup
crossover can substantially reduce the inventory levels.

Table 16 contains the results for the 145 instances of the Exper-
iment 1. We observe again that the benefits of a setup crossover
are the highest in a setting with few items. For instances with 6
items and 30 periods the average cost decrease was 31%. Although,
the benefits of a setup crossover decrease when increasing the
number of items, the average total cost decrease was still more
than 13% for instances with 24 items and 30 periods. Note that
for the same instances considering the setup cost (Experiment 1)
we obtained a cost decrease of less than 1% on average for all
instances.

Table 17 confirms the tendencies observed in Table 16 and in
the Experiment 2. We see that the cost decrease obtained by intro-
ducing the possibility of a setup crossover is smaller for problems
with many items. Furthermore, we see that, contrary to the results
from Experiment 2, the benefits of the possibility of a setup cross-
over are very significant. We also observe that the computational
times increase substantially compared to Experiment 2 for the
instances with 20 and 30 items.

Table 18 shows the behavior of the solutions for 10 items for the
formulations F0 and F1. We observe that different from the results
from Experiment 2, there is a slight increase in the number of set-
ups when considering the possibility of a setup crossover. How-
ever, the main difference is still the level of inventory. Note that
again different from Experiment 2, for instances with tight capac-
ity, the inclusion of a setup crossover is less relevant than the
instances with loose and normal capacity. It occurs because for
several easy problems (with loose and normal capacity) the prob-
lem considering setup crossover found optimal solutions with zero
value (solutions without inventory) or near of zero (solutions with
a low level of inventory) so the improvements in these cases are
very significant. Finally, we see that the benefits of a setup cross-
over is more relevant for the instances with low setup cost where
the average cost decrease is 21.93%.
5. Conclusion

In this paper, the lot sizing problem with capacity constraints
and setup crossover is studied. Two different formulations have
been proposed in the literature. Yet, no direct comparison has
yet been done to determine which formulations performs better
in computational experiments. A set of experiments clearly
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revealed that the formulation proposed by Menezes et al. (2010)
performs much better than the formulation proposed by Mohan
et al. (2012). Furthermore, we establish that in the formulation
proposed by Menezes et al. (2010), the binary conditions on the
new variables for the setup crossover are not necessary and they
can be modeled as continuous variables. The computational exper-
iments indicated that this only had a very minor impact. We estab-
lished that several alternative solutions may exist for any given
solution. The presence of such symmetrical solution typically leads
to increased solution times. Therefore, we propose symmetry
breaking constraints to eliminate these alternative solutions. The
computational tests indicate that the symmetry breaking con-
straints are very effective for the formulation proposed by
Mohan et al. (2012), but not for the formulation proposed by
Menezes et al. (2010).

The computational experiments also allowed us to establish the
benefits that can be derived by having the flexibility to perform a
setup crossover compared to the case where such a crossover is
not allowed. The benefits of the setup crossover depend on the
characteristic of the problem. Especially for problems with zero
setup costs or with high inventory holding cost the cost savings
can be very significant. Indeed, for some instances with few items
and zero setup cost, the cost decrease obtained by introducing the
possibility of a setup crossover is more than 30%. Furthermore,
when the inventory costs are multiplied by 10 and 100, the cost
decrease is on average 3% and 7.8%, respectively. Finally, we also
conclude that the benefits obtained by allowing a setup crossover
are also significant for problems which allow the possibility of
backlog. We obtained a decrease in the total costs by 2.3% and
4% when the capacity was decreased by 5% and 10%, respectively.
Moreover, the formulation with a setup crossover found more fea-
sible solutions.

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do
Estado de São Paulo (FAPESP) (Process numbers 2010/16727-9,
2013/00965-6 and 2014/01203-5), Conselho Nacional de Desen-
volvimento Científico e Tecnológico (CNPq) and by the Natural
Sciences and Engineering Research Council of Canada [371966-
2009]. This support is gratefully acknowledged.

References

Belo-Filho, M. A. F., Almada-Lobo, B., & Toledo, F. M. B. (2014). Models for
capacitated lot-sizing problem with backlogging. Setup carryover and
crossover. Journal of the Operational Research Society, 65(11), 1735–1747.
Camargo, V. C. B., Toledo, F. M. B., & Almada-Lobo, B. (2012). Three time-based scale
formulations for the two-stage lot sizing and scheduling in process industries.
Journal of the Operational Research Society, 63, 1613–1630.

de Araujo, S. A., de Reyck, B., Degraeve, Z., Fragkos, I., & Jans, R. (2015). Period
decompositions for the capacitated lot sizing problem with setup times.
INFORMS Journal on Computing, 27, 431–448.

Eppen, G. B., & Martin, R. K. (1987). Solving multi-item capacitated lot-sizing
problems using variable redefinition. Operations Research, 6, 832–848.

Fiorotto, D. J., A, S., & Araujo, de (2014). Reformulation and a lagrangian heuristic for
lot sizing problem on parallel machines. Annals of Operations Research, 217,
213–231.

Fiorotto, D. J., Jans, R., & de Araujo, S. A. (2014). An analysis of formulations for the
capacitated lot sizing problem with setup crossover. CIRRELT, 57, 1–28.

Gopalakrishnan, M., Ding, K., Bourjolly, J. M., & Mohan, S. (2001). A tabu-search
heuristic for the capacitated lot-sizing problem with set-up carryover.
Management Science, 47(6), 851–863.

Jans, R. (2009). Solving lot-sizing problems on parallel identical machines using
symmetry-breaking constraints. INFORMS Journal on Computing, 21, 123–136.

Jans, R., & Degraeve, Z. (2007). Meta-heuristics for dynamic lot sizing: A review and
comparison of solution approaches. European Journal of Operational Research,
177, 1855–1875.

Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: A review.
International Journal of Production Research, 46(6), 1619–1643.

Jans, R., & Desrosiers, J. (2013). Efficient symmetry breaking formulations for the job
grouping problem. Computers & Operations Research, 40(4), 1132–1142.

Kopanos, G. M., Puigjaner, L., & Maravelias, C. T. (2011). Production planning and
scheduling of parallel continuous processes with product families. Industrial and
Engineering Chemistry Research, 50(3), 1369–1378.

Krarup, J., & Bilde, O. (1977). Plant location, set covering and economic lot size: An O
(mn)-algorithm for structured problems. Numerische Methoden bei
Optimierungsaufgaben. Bang 3: Optimierung bei Graphentheoritischen
Ganzzahligen Problemen, 155–186.

Manne, A. S. (1958). Programming of economic lot sizes. Management Science, 4,
115–135.

Menezes, A. A., Clark, A., & Almada-Lobo, B. (2010). Capacitated lot-sizing and
scheduling with sequence-dependent, period-overlapping and non-triangular
setups. Journal of Scheduling, 14(2), 209–219.

Mohan, S., Gopalakrishnan, M., Marathe, R., & Rajan, A. (2012). A note on modelling
the capacitated lot-sizing problem with set-up carryover and set-up splitting.
International Journal of Production Research, 50(19), 5538–5543.

Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer programming.
Springer.

Sherali, H. D., & Smith, J. C. (2001). Improving discrete model representations via
symmetry considerations. Management Science, 47(10), 1396–1407.

Sox, S. R., & Gao, Y. (1999). The capacitated lot sizing with setup carry-over. IIE
Transactions, 31(2), 173–181.

Suerie, C. (2006). Modeling of period overlapping setup times. European Journal of
Operational Research, 174, 874–886.

Suerie, C., & Stadtler, H. (2003). The capacitated lot-sizing problem with linked lot
sizes. Management Science, 49(8), 1039–1054.

Sung, C., & Maravelias, C. T. (2008). A mixed-integer programming formulation for
the general capacitated lot-sizing problem. Computers & Chemical Engineering,
32, 244–259.

Süral, H., Denizel, M., & Van Wassenhove, L. N. (2009). Lagrangean relaxation based
heuristics for lot sizing with setup times. European Journal of Operational
Research, 194(1), 51–63.

Trigeiro, W. W., Thomas, J., & McClain, J. O. (1989). Capacitated lot sizing with setup
times. Management Science, 35, 353–366.

Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size
model. Management Science, 5, 89–96.

http://refhub.elsevier.com/S0360-8352(16)30515-0/h0005
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0005
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0005
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0010
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0010
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0010
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0015
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0015
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0015
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0020
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0020
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0025
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0025
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0025
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0030
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0030
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0035
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0035
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0035
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0040
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0040
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0045
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0045
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0045
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0050
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0050
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0055
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0055
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0060
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0060
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0060
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0065
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0065
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0065
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0065
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0070
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0070
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0075
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0075
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0075
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0080
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0080
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0080
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0085
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0085
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0090
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0090
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0095
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0095
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0100
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0100
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0105
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0105
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0110
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0110
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0110
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0115
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0115
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0115
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0120
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0120
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0125
http://refhub.elsevier.com/S0360-8352(16)30515-0/h0125

	An analysis of formulations for the capacitated lot sizing problem with setup crossover
	1 Introduction
	2 Literature review
	3 Mathematical models
	3.1 Classical model
	3.2 Models proposed in literature for the problem with setup crossover
	3.2.1 Model Proposed by Menezes et&blank;al. (2010) [$](F1)[$]
	3.2.2 Model Proposed by Mohan et&blank;al. (2012) [$](F2)[$]

	3.3 Omitting the binary conditions on the crossover variables in [$]F1[$]
	3.4 Symmetry Breaking Constraints
	3.4.1 Model to break the symmetry of formulation [$]F1[$] [$](F {1}^{\prime})[$]
	3.4.2 Model to break the symmetry of formulation [$]F2[$] [$](F {2}^{\prime})[$]

	3.5 Example

	4 Computational results
	4.1 Results for Experiment 1
	4.2 Results for Experiment 2
	4.3 Results for Experiment 3
	4.4 Results for Experiment 4
	4.5 Results for Experiment 5

	5 Conclusion
	Acknowledgements
	References


