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Abstract A dynamic optimization model for weed infestation control using selective her-
bicide application in a corn crop system is presented. The seed bank density of the weed
population and frequency of dominant or recessive alleles are taken as state variables of the
growing cycle. The control variable is taken as the dose–response function. The goal is to
reduce herbicide usage, maximize profit in a pre-determined period of time and minimize
the environmental impacts caused by excessive use of herbicides. The dynamic optimization
model takes into account the decreased herbicide efficacy over time due to weed resistance
evolution caused by selective pressure. The dynamic optimization problem involves discrete
variables modeled as a nonlinear programming (NLP) problem which was solved by an
active set algorithm (ASA) for box-constrained optimization. Numerical simulations for a
case study illustrate the management of the Bidens subalternans in a corn crop by selecting
a sequence of only one type of herbicide. The results on optimal control discussed here will
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give support to make decision on the herbicide usage in regions where weed resistance was
reported by field observations.

Keywords Mathematical modeling · Population dynamics · Nonlinear programming ·
Weed management

Mathematics Subject Classification 90C30 Nonlinear programming

1 Introduction

Weeds grow naturally in agricultural soils and are highly competitive for resources that are
necessary to the crop growth. The competition between weeds and crop plants occurs when
two or more plants share the available resources for their growth and development which
are limited in a common ecosystem. A plant may inhibit another by limiting its resources
consumption. For this reason, the weed control strategies are essential to maximize the
productivity of a crop.

The weedmanagement aims to avoid losses due to competition, to benefit crop conditions,
to avoid further infestation and to protect the environment. The main method of weed control
is the use of herbicide. However, it is of most importance to understand the evolution of
resistance in weed population.

The development of resistance to herbicide in agricultural weed population is common
and well known. There has been an increasing interest in modeling the resistance evolution in
weed populations (Maxwell et al. 1990; Diggle et al. 2003; Gressel 2009; Neve et al. 2011).

Resistance is essentially a natural phenomenon which occurs in weed populations, but it
is only noticed when a selection pressure is applied. The repeated application of one or more
herbicide modes of action in a weed population selects individuals of species that can survive
the herbicide treatment (Powles andShaner 2001). This phenomenon characterizes a selection
pressure, thereby increasing the proportion of resistant individuals in the next generation.

The weed resistance to herbicide occurs on account of an evolutionary process. The deve-
lopment of herbicide-resistant (R) weed biotypes is due to the selection pressure caused by
intensive herbicide use. The functions of the gene frequencies of dominant and recessive alle-
les due to the selective pressure imposed by the herbicide follow the principles of population
genetics (Britton 2003).

Optimization strategies are used in several weed management programs (Jones and Cacho
2000; Jones et al. 2006; Kotani et al. 2009, 2011). In these papers, dynamic programming
techniques are used to find the optimal strategies. In Jones and Cacho (2000) and Jones et al.
(2006), the optimal level of weed control that maximized economic benefits was obtained in
terms of a single herbicide dose sequence. The Pontryagin Maximum Principle and dynamic
programming were used in solving the considered optimal control problem. Kotani et al.
(2009, 2011), using a dynamic model of weed management, proposed an optimal decision
rule for the removal of weeds, including whether or not to eradicate them.

Optimal control problem is also used in agriculture to control pest population. In Rafikov
and Balthazar (2005), an optimal control problem is developed as a management strategy to
maintain the density of the pest population in the equilibrium below some economic injury
level. In this management strategy, the Pontryagin Maximum Principle was used to drive
the pest ecosystem equilibrium to the desired level and dynamic programming to stabilize
the ecosystem level. In Christiaans et al. (2007), an optimal pest control is formulated to
determine the optimal crop return by applying pesticides and fertilizers in a ecosystem with
two species in a predator–prey relationship.
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Optimal weed population control using nonlinear programming 1045

In modeling the weed population growth under control, an important effect to consider is
the resistance to herbicides. In this paper, the Jones and Cacho (2000) weed populationmodel
is extended to incorporate the resistance dynamics. In addition, we proposed a weed control
strategy aimed at reducing the use of herbicide, maximizing economic returns and mini-
mizing the environmental impacts caused by excessive use of herbicide, using a nonlinear
programming (NLP) solved by an active set algorithm (ASA) for box-constrained optimiza-
tion. The numeric solutions for a sequence of one single herbicide doses considering two
herbicides are presented.

2 Population model considering the weed resistance dynamics

2.1 Weed population dynamic model

The weed dynamics we consider consists of the weed seed bank and seedling densities
denoted as xt and yt , respectively, which follows closely (Jones and Cacho 2000). Let t
denoted the production cycle, the weed population model with the resistance phenomenon
in which all the parameters are assumed to be nonnegative, has the following form

yt = xgδxt , xt0 = x0 (1)

yat = (1 − ρ(ut ))yt (2)

xrt = exp[γ ln yat /(μ + ε ln yat )] (3)

xnt = κxrt − η + ξ (4)

xt+1 = xnt + (1 − 	)(1 − δ)xt , (5)

with parameters defined in Table 1.
The structure of the model (1)–(5) is based on the life cycle of weeds in which the

initial population x0 is the seed bank of viable and non-germinated seeds present in a single
agricultural field. In the model, (1) describes the emergence plants from the seed bank, (2)
the relative survival of emerged seedlings determined by the weed management strategies
employed during each iteration, (3) describes the survived mature plants produced by seeds,
(4) describes the proportion of new seeds. Finally, in (5), the newly produced seeds are added
to the soil seed bank at the end of the growing season.

The propagation of xrt described by (3) was constrained to zero when yat < 0.5 plants per

m2, due to the nature of the functional form used, as it degenerates to e
γ
ε as yat approaches

zero.
Equations (1)–(5) can be condensed by forward substitution (yt given by (1) into (2), then

yat into (3) and so on), yielding the following equation

xt+1 = g(xt , ut ), (6)

where

g(xt , ut ) = (1 − 	)(1 − δ)xt + κ exp

(
γ ln ((1 − ρ(ut )) xgδxt )

μ + ε ln ((1 − ρ(ut )) xgδxt )

)
− η + ξ.

The dynamics of weed seed bank is given in (6), in which ρ describe the herbicide-induced
mortality of seedlings in cycle t where the control variable is described by ut and determined
by the weed management strategy employed during each iteration.
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1046 E. W. Stiegelmeier et al.

Table 1 Population dynamic
model variables and parameters xt Weed seed bank density in cycle t (m−2)

yt Seedlings in cycle t (m−2)

yat Density of mature plants (m−2)

xrt Seeds resulting from the reproduction of weeds (m−2)

xnt New seeds added to the seed bank in cycle t (m−2)

xg Proportion of germination

δ Annual germination rate of weed seeds

ut Dose of herbicide in cycle t (L ha−1)

ρ The herbicide-induced mortality of seedlings

γ, μ, ε Regression coefficients (Medd et al. 1995)

κ Survival rate of new seeds

η Seed export such as removal of seeds at harvest (m−2)

ξ Import of seeds (m−2)

	 Death rate of dormant seeds

2.2 Dose–response model

The relationship between herbicide doses and plant response is of fundamental importance
to understand herbicide efficacy and mode of action. The dose–response is usually analyzed
using a log-logistic curve (Christensen et al. 1990; Streibig and Kudsk 1993; Seefeldt et al.
1995) and is used to quantify plant sensitivity to a herbicide (Karam et al. 2004; Dan et al.
2010). Resistant plants have a lower sensitivity to herbicide and their dose–response function
differ from the dose–response function of susceptible plants. This difference is used to detect
cases of resistance to a herbicide (Moss 1999).

A logistic model to be fitted to the survival data is as follows:

ρ(u) = c + d − c

1 + exp[b(ln(u) − ln(GR50))] , (7)

where ρ is the induced mortality, c is the lower asymptotic values of ρ and d is the upper
asymptotic values of ρ, the parameter GR50 is the herbicide rate which produces a survival-
level halfway between the lower limit zero and upper limit d , u is the herbicide dose and the
parameter b denotes the relative slope around GR50 (Seefeldt et al. 1995). The fitted logistics
model was used to estimate the rate of herbicide that causes 50 % grow reduction (GR50).
The parameters b, c, d and GR50 can be determined experimentally.

One of the advantages of using the curve described by (7) is that the parameters are
biologically meaningful. The upper limit d corresponds to the mean response of the control
and the lower limit c is the mean response at very high doses. The dose–response (7) is
supposed to determine the reduction in mortality of weeds if an herbicide is applied. Then,
if the herbicide is not applied it is equal to zero, in others words, limu→0 ρ(u) = c = 0.

We formulated a model for the resistance dynamics based on the detection of resistant
biotypes to a herbicide via the dose responses. We make the following assumptions: (1) the
parameters c and d in both resistant (R) and susceptible (S) biotype dose–response curves are
close, (2) the slope b is parallel for different GR50 under the same resistant mechanism (Tind
et al. 2009; Christoffoleti 2002), (3) the parameter GR50 varies according to the proportion
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Optimal weed population control using nonlinear programming 1047

of R and S biotypes, and it is commonly used to estimate the herbicide efficacy (Tind et al.
2009; Powles and Preston 2011).

The adopted dose–response function is thus given by

ρ(ut ) = cS + dS − cS
1 + exp[bR(ln(ut ) − ln(GR50t ))] , (8)

where cS indicates the minimum mortality and is taken from the S biotype dose–response
curve, dS indicates the maximum mortality (Christoffoleti 2008) and is taken from the S
biotype dose–response curve to reflect the maximummortality, bR is taken from the resistant
biotype dose–response curve around the parameter GR50t which is modeled as a function of
R and S biotypes, because in this population both biotypes are present.

In this paper, we assume that the weed management strategy depends on different mor-
tality responses from resistant and susceptible seedlings. Then, we used proportions of both
seedlings present in the weed population described as a convex relationship as follows:

GR50t (Rt ) = RtGR50R + (1 − Rt )GR50S, (9)

where GR50R and GR50S are the doses necessary to reduce to 50 % the resistant and suscep-
tible biotype dose–responses, respectively, and Rt is the resistance to herbicides in cycle t
obtained as a function of the allele frequency given by the Fisher–Haldane–Wright (FHW)
equation which describes the population genetics (Britton 2003). Therefore, model (9) cap-
tures informations about both populations R and S, present in the seed bank in cycle t.

The dose–response function is then dependent not only on the herbicide dose ut but also
on the resistance Rt . This has effect on themodeling of the seed bank, whichwill be described
in Sect. 3.2.

2.3 Weed resistance dynamic model

For most weeds, the behavior predicted by the FHW equation (Britton 2003) efficiently
represents specieswith rapid breeding, sexually generating seed through pollen, very different
generations from each other, isolated populations and greater interaction within the same
population. Therefore, the FHW equation is used to describe the genetic evolution of the
weed resistance.

2.3.1 Selection pressure for the dominant and recessive allele frequencies

The function of genetic frequencies of dominant and recessive alleles under selective pressure
is described next (Britton 2003). Let the allele frequencies at the end of the gametic phase of
generation t be pt and qt . Let the ratiowAA : wAa : waa define the probability of survival from
zygotic phase to breeding phase for the various genotypes. According to Britton (2003), waa

is usually assumed to be equal to 1, such that wAA and wAa are the relative selective values
of genotypes AA and Aa. With p2t , 2ptqt and q2t genotype frequencies, at the beginning of
the zygotic phase the ratios of the genotypes AA, Aa and aa at the breeding phase were
modified to

wAA p2t : 2wAa ptqt : waaq
2
t (10)

and the alleles A and a frequencies are now in the ratio

wAA p2t + wAa ptqt : wAa ptqt + waaq
2
t . (11)
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Finally, the change in allele A frequency at the end of the gametic phase may be described
by

pt+1 = wAA p2t + wAa ptqt
wAA p2t + 2wAa ptqt + waaq2t

, (12)

which can be written in the recursive form as

pt+1 = pt + σ(pt ), (13)

where

σ(pt ) = ptqt
(wAA − wAa)pt + (wAa − waa)qt

wAA p2t + 2wAa ptqt + waaq2t
.

This is the FHW introduced earlier which describes the change in gene frequencies at period
t + 1.

We represent the weed seed bank as genetic material that participates in the selection
process. In this process, the dormancy seeds do not undergo selective pressure, but the adult
plants do. Finally, eliminating dead and germinated seeds from the existing bank and adding
the new seeds into it, we obtain

pt+1 = pt + χtσ(pt ), (14)

with χt < 1, and

χt = xnt
xt

.

Equation (14) can be written as

pt+1 = v(xt , pt , ut ), (15)

where

v(xt , pt , ut ) = pt + χtσ(pt ).

The dynamic of seed bank, represented by χt , considers the proportion of new seeds to be
added in the seed bank in the next generation. This factor is important because of the allele
frequencies’ change in each generation thus it is necessary to represent more accurately the
allele frequencies of the seed bank.

The ratio of the evolution advantages relative to the selection in (14) is given by
[
wAA wAa waa

]T = Es + [
1 1 1

]T
, (16)

where s is the coefficient of strength of selection for dominant and recessive alleles and E is
a vector that defines the relative selective values of genotypes AA and Aa given by:

E =
{[ 1 1 0 ]T , if dominant
[ 1 0 0 ]T , if recessive.

(17)

2.3.2 Resistant genotype

The initial population is the viable seed bank, non-germinated seeds found in agricultural
fields. Within this seed bank, S and R individuals exist in numbers determined by the initial
frequency of resistant alleles.
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Thepercentage of resistant genotype Rt canbe introducedbyknowing the plant phenotype.
The proportion of new seeds of each genotype (AA, Aa, aa) is determined by the population
genetics.

The cases of dominant and recessive alleles are studied. In the case of the resistance being
connected to recessive alleles, the homozygous aa ((1− pt )2) is responsible for the trait. In
the case of dominant alleles, the homozygousAA (p2t ) and the heterozygousAa (2pt (1− pt ))
are responsible for the resistance.

The model for the resistant genotype follows the Hardy–Weinberg equilibrium and is
formulated as

Rt =
{
p2t + 2pt (1 − pt ), if dominant

(1 − pt )2, if recessive.
(18)

Therefore, the resistance dynamic model for selective pressure taken into account the seed
bank is given by (14)–(18).

2.4 Multiple resistance dynamic model

The most intractable problems of herbicide resistance involve weeds which exhibit multiple
herbicide resistance. The phenomenon of multiple herbicide resistance can be seen as the
expression of different herbicide modes of action. Multiple herbicide-resistant weeds may
possess from two to various distinct resistance mechanisms and may exhibit resistance to
different herbicide (Powles and Preston 2011). The weeds with multiple herbicide resistance
have a speed up evolution of resistance dynamics to the herbicide, where each herbicide
shows a different selection pressure.

InMaxwell et al. (1990), Diggle et al. (2003) andGressel and Segel (1978), the segregation
of the allele frequencies was considered to use different herbicide modes of action to control
the weed infestation. We do not consider the segregation of the allele frequencies in the weed
population model.

Theweed population and resistance dynamics are thus described by (1)–(9) and (14)–(18).
The dose–response parameters are defined according to the selected herbicide.

3 Weed management optimization problem

Differing from Jones and Cacho (2000), we propose a dynamic optimization model for weed
control considering the resistance evolution to a certain herbicide.

3.1 Defining the economic model

The economic problem faced by decision maker is to determine the levels of input of all
production factors, including weed control, which maximize net returns and minimize envi-
ronmental impacts. The crop yield denoted Y , which is a function of the weed density, the
weed resistance and the weed control, is represented in the form of

Y = h(xt , pt , ut ). (19)

This function can be separated in equations for the weed-free yield denoted Y0, the yield loss
associated with the weed density, the weed allele frequencies and the weed control denoted
YL and the yield loss associated to phytotoxic effects of herbicide denoted Yp . The crop yield
is thus obtained as
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Y = Y0(1 − YL)(1 − Yp). (20)

Cousens (1985) argued that the appropriate loss function that describes yield loss as a
function of weed density is a rectangular hyperbola function

YL = aD

1 + a
m D

, (21)

where a is the percentage of yield loss per unit weed density (m−2), m an estimate of the
maximum yield loss of a weed crop relative to the yield of a weed-free crop and D a function
of weed density which estimates the efficiency of the herbicide dose ρ(ut , Rt )

D = yt (1 − ρ(ut , Rt )), 0 ≤ ρ ≤ 1,

with ρ(ut , Rt ) given by (8).
The yield loss associated to phytotoxic effects of herbicide was estimated as Pandey and

Medd (1990)

Yp = ϕut ,

where ϕ is an adjusted parameter that depends on the applied herbicide.
The economic model maximizes net returns and minimizes the weed resistance, for a

initial level of weed infestation. Thus, the profit function denoted π is defined as:

π(xt , pt , ut ) = PyY (xt , pt , ut ) − Puut − C, (22)

where Py is the crop price, Pu is the per unit cost of weed control,C is the constant application
cost for the weed control input (machinery and labor) and cost of the production of the
remaining production factors. The profit function (22) is determined not only by the control
variable but also by the weed density xt and weed resistance pt .

3.2 Optimization model

Let u be the applied herbicide dose. Using (5) and (14), the dynamic model for the seed bank
density and allele frequencies for applied herbicide is written in terms of functions g and v,
respectively, as

g(xt , pt , ut ) = xt+1 (23)

v(xt , pt , ut ) = pt+1, (24)

where g represents the change in the seed bank and v the change in the allele frequencies in
time t .

The vector field, which represents the speed of the dynamics evolution, is chosen as [g v]T ,
where the first element represents the evolution of the seed bank density and the second the
allele frequencies for applied herbicide.

We point out that due to (6) and (15) the vector field is dependent on both state variables
xt and pt as opposed to previous models where either the seed bank density or the allele
frequency in populations were considered separately. Here wemodel the behavior of the seed
bank density as well as the allele frequency in the seed population and therefore interactions
between the equations in the system modeling are expected to happen. The proposed model
captures these interactions through the dose–response and resistance functions analysis.
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The optimization model that considers a single herbicide application strategy is modeled
as a NLP problem. The variables are the seed bank xt , the allele frequencies pt , the herbicide
dose ut which should be applied at each time. Then, the NLP problem is formulated as

max
ut

J (x, p) =
T∑
t=0

αtπ(xt , pt , ut ) (25)

subject to

xt+1 = g(xt , pt , ut ), x(0) = x0 (26)

pt+1 = v(xt , pt , ut ), p(0) = p0 (27)

0 ≤ u(t) ≤ umax (28)

xt , pt , ut ∈ R

where J is the objective function, π the smooth function (22), T is the planning horizon,
αt ∈ (0, 1) the discount rate (Kennedy 1986) and umax the highest dose of herbicide allowed
in the field. The objective function J is a smooth nonlinear and generally concave function.
The state variables are xt and pt and ut represents the control variable.

The optimal control theory can be used to determine the annual rate of herbicide that
maximizes the objective functional. An important role in this problem are the costate vari-
ables, denoted by λt e βt , which are similar to the Lagrange multipliers. The costate variables
are inserted in the optimal control problem through the Hamiltonian function. Following
Kennedy (1986), the Hamiltonian function for the weed management problem is established
as follows:

Ht (λt+1, βt+1, xt , pt , ut ) = π(xt , pt , ut ) + αλt+1g(xt , pt , ut )

+αβt+1v(xt , pt , ut ). (29)

The Hamiltonian function Ht is the net profit obtained from an existing level of the state
variables, xt and pt and control ut plus the value of any change in the stock of the state
variables valued at the costate variables λt+1 e βt+1. When gt is multiplied by λt+1, this
result is converted to a monetary value and represents the rate of change of the economic
value of the seed bank corresponding to herbicide dose applied, the same occurs when vt is
multiplied by βt+1. In general, this value can be viewed as the future profit effect of weed
population change (Jones and Cacho 2000).

According to Kennedy (1986), the first-order conditions for a resource management
problem, given by the Maximum Principle of Pontryagin, are

∂Ht

∂ut
= Py

∂Y

∂ut
− Pu + αλt+1

∂g

∂ut
+ αβt+1

∂v

∂ut
= 0 (30)

αλt+1 = −∂Ht

∂xt
= −Py

∂Y

∂xt
− αλt+1

∂g

∂xt
(31)

xt+1 = ∂Ht

∂λt+1
= g(xt , pt , ut ) (32)

αβt+1 = −∂Ht

∂pt
= −Py

∂Y

∂pt
− αβt+1

∂v

∂pt
(33)

pt+1 = ∂Ht

∂βt+1
= v(xt , pt , ut ), (34)
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where (30) is the maximum principle, the standard conditions for maximization with respect
to ut , (31) and (33) correspond to the costate equation and (32) and (34) are a re-statement
of the equation of motion relative to the seed bank and the allele frequency, respectively.
The set of equation (30)–(34) allows the solution of the unknown optimal trajectories, that
are state variables x∗ and p∗, control u∗ and costate λ∗ and β∗ variables. The state variables
depend on the initial state of the system x0 and p0. Although x0 and p0 are given, λ1 and β1

are unknown and an additional condition, known as the transversality condition, is required
to obtain a unique solution. In this problem, where the final time T is given, and the final
state xT is free, the transversality condition is λT+1 = 0 e βT+1 = 1.

To solve the NLP given by (25)–(28), we use an algorithm proposed by Hager (2006)
called active set algorithm (ASA). This algorithm is described in Sect. 4 next.

4 Solution of the nonlinear programming problem

The nonlinear programming problem considered is a mathematical programming problem
with discrete variables, nonlinear constraints and a nonlinear objective function.

This paper is concerned with a nonlinear programming problem based in box-constrained
optimization problem given by (25)–(28), where (25) is the objective functional with J a
real-valued, continuously differentiable function defined on the set (28).

To solve the NLP problem, the active set algorithm (ASA) is used (Hager 2006). We
consider that the box (28) is replaced by a nonempty, closed and concave set. The solution
of the corresponding problem yields the optimal control strategy.

4.1 Active set algorithm

We implemented the box-constrained optimization problem using an nonlinear programming
problem (NLP) strategy to solve the weed control problem. In the NLP strategy, the decision
variable is ut and the state space equation has ut as inputs. Thus, the NLP method is used to
obtain an optimal control u∗

t .
The optimization problem (25)–(28) has a box constrained for the control variables, thus it

is then necessary to use a box-constrained method. Therefore, the ASA method proposed by
Hager (2006) available at Hager (2009) is used. This algorithm consists of a non-monotone
gradient projection step, an unconstrained optimization step and a set of rules for branching
between the two steps.

The ASA method global convergence to a stationary point is established in Hager (2006).
Hager (2006) also showed that the ASA method is superior to the L-BFGS-B (Byrd et al.
1995), the SPG2 v. 2.1 (Birgin et al. 2000), the GENCAN (Birgin and Martínez 2002) and
the TRON v. 1.2 (Lin and Moré 1999) methods in terms of CPU time.

Algorithm 1 describes the problem to solve the weed control problem using the ASA
method. We emphasize that Algorithm 1 is applied to the general box constraint problem
with both upper and lower bounds. To implement the problem, it is necessary to choose the
input parameters of the weed control problem.

The functional objective (25), the state functions (26)–(27), the Jacobian of f = [g v]T
and the box-constrained (28) are given as input of the Algorithm 1. The problem outputs are
the optimal control u∗

t and its corresponding optimal states x∗
t and p∗

t . In Algorithm 1, the
stopping condition used in ASA algorithm was dk = P(uk − Gk) − uk , where P denotes
the gradient projection onto the domain of f and Gk = ∇ f (uk) the gradient at the iterate uk
from ASA. For more details see Hager (2006).
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Algorithm 1: NLP problem routine

Input: objective function J , state space functions g and v, Jacobian of f = [g v]T , lower and upper
bounds 0.005 ≤ uk ≤ umax

Output: optimal control
Initialize k = 0, u0 (starting guess), n (number of years), nx (number of state variables) and nc1
(number of control variables);
Choose error tolerance ε ∈ [0,∞);2
Choose initial values x0, p0 > 0, u0 ∈ [0.005, umax ];3
while ‖P(uk − Gk ) − uk‖ > ε do4

Execute the ASA program loaded from Hager (2009);5
Set uk+1 = uk ;6
k = k + 1;7

end8
Optimal control = [u∗

k ];9

return.10

5 Results

A case study with the Bidens subalternans in a corn crop by applying two herbicides is
presented. The Bidens subalternans is a highly competitive weed, with great adaptability on
farm soils, which is due to its high seed production combined with dormancy mechanisms.

The Bidens subalternans has dominant allele with nuclear resistance (Tranel and Wright
2002). This species shows multiple resistance to the acetolactate synthase (ALS) and the
photosystem two (PS2) inhibitors (Gazziero et al. 2008; Karam 2011; Heap 2011).

The effective use of herbicide in weed management depends on the knowledge of the
characteristics of the herbicide active ingredient. The atrazine herbicide is a well-known
herbicide in the class of triazine and it can be applied for pre-emergent (root-absorbed) and
post-emergent (foliage-absorbed) control of weed. Its mechanism of action is by inhibition
of PS2, causing a series of irreversible damage to plant cells and can be classified as a
nonsystemic herbicide (Carvalho et al. 2010). Due to its large use around the world and low
soil absortion, the herbicide atrazine is more harmful to the environment (Ralebitso 2002).
The nicosulfuron is a systemic, post-emergent (foliage-absorbed) herbicide and working in
ALS inhibitors in weeds (Anderson et al. 1998). The nicosulfuron herbicide is widely used
in corn crop to weed control, with negative effects on the environment (Oliveira et al. 2009).
Therefore, the effective weed control can be accomplished by combining the characteristics
of individual herbicides when integrated with weed biological information.

As themodel output was particularly sensitive to the initial seed bank density (B. Subalter-
nans population size) and initial frequency of R alleles, we defined a scenario for simulation.
The scenario considered an initial seed bank of 500 (seeds m−2) and an initial allele fre-
quency of 0.1 following the characteristics of the area where the seeds were collected. In the
simulation, two herbicides (nicosulfuron and atrazine) were considered for post-emergent
(foliage-absorbed) control of the weed population. The weed control problem was simulated
over a 10 years period.

The parameter values of the dose–response model, ρ, were obtained by curve fitting from
experimental data of herbicide-induced mortality using the R Statistical Software. The data
were collected in a controlled environment setup conducted in Embrapa Milho e Sorgo (see
Table 2). The dose–response curves are shown in Fig. 1. The parameter values of the adopted
dose–response model (8) used are presented in Table 3.
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Table 2 Dose–response model parameter values for nicosulfuron and atrazine from experimental data

Herbicide Biotype b c d GR50

Nicosulfuron Susceptible −0.80721 −3.06521 102.65965 8.57764

Resistant −1.28707 −0.30570 34.41258 36.12024

Atrazine Susceptible −1.38747 −1.30678 105.86746 783.09583

Resistant −0.68405 0.12445 212.9900 57375.0
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Fig. 1 Herbicide-induced mortality for resistant and susceptible seedlings for a nicosulfuron and b atrazine
herbicides

The parameter values of the population and economic models used in the annual corn
harvest system 2013/2014 (IMEA 2014) are reported in Table 4.

We used the bound-constraints maximization solver ASA to solve the NLP problem. The
code was written in C programming language. All experiments were run on a 2.27 GHz Intel
core i5 processor 3GbofRAMmemory andWindows7operating system.TheNLPalgorithm
for the weed problem runs relatively fast, and the average processing time is around 2 s.
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Table 3 Dose–response model parameter values for nicosulfuron and atrazine used in weed resistance model
proposed

Herbicide bR cS dS GR50S GR50R

Nicosulfuron −1.28707 −3.065216 102.65965 8.577645 36.12024

Atrazine −0.68405 −1.30678 105.86746 783.09583 57375.00

Table 4 Parameter values used
in the numeric simulation (1 =
nicosulfuron and 2 = atrazine)

Population parameters Value

δ (%) 60.00

ψ (%) 30.00

η (m−2) 0.00

ξ (m−2) 0.00

κ (%) 35.00

xg (%) 80.00

γ 6.80

μ 2.00

ε 0.67

Economic parameters

Py (R$ ton−1) 534.40

Y0 (ton ha−1) 8.64

C (R$ ha−1) 954.73

P1
u (R$ L−1) 42.90

P2
u (R$ L−1) 12.40

u1max (L ha−1) 1.50

u2max (L ha−1) 5.00

α 0.90

ϕ1 8.90 × 10−3

ϕ2 2.70 × 10−3

a 1.58 × 10−2

m 4.83 × 10−1

5.1 Weed population equilibrium

Consider the dynamic model involving both the seed bank density and the allele frequency
which describes the herbicide resistance, (5) and (14), respectively. Fixing the dose ut and
initial conditions, the equilibrium points for this system are the fixed points (x∗, p∗) such
that (xt , pt ) = (g(xt , pt , ut ), v(xt , pt , ut )). In other words, the fixed points satisfy

xt+1 = xt (35)

pt+1 = pt . (36)

In (3), when yat < 0.5 plants per m2, we set xrt = 0. Thus, for η = 0 and ξ = 0 the
population model becomes the linear model:
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xt+1 = (1 − 	)(1 − δ)xt

pt+1 = pt . (37)

As the eigenvalues are λ1 = (1 − 	)(1 − δ) < 1 and λ2 = 1, the linear model (37) is
marginally stable. Table 5 shows the equilibrium points for a fixed dose of nicosulfuron and
atrazine. The phase plane of the model is shown in Fig. 2.

Table 5 Dynamic model
equilibrium points for
nicosulfuron and atrazine

Herbicide Dose (L ha−1) P1 P2 P3

Nicosulfuron 0.107 (0, p0) (10, 1) (245, 1)

Atrazine 4.500 (0, p0) (17, 1) (227, 1)
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Fig. 2 Phase plane for fixed dose a nicosulfuron; b atrazine with selective pressure s = 0.3
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In the particular context of nonlinear system analysis, a phase plane is a visual display
of the behavior of the model variables as it shows the solutions of the dynamic model and
their behavior in the neighborhood of each equilibrium point can be qualitatively determined.
The phase plane showed in Fig. 2 depicts the solution of the seeds density versus the allele
frequency in the time (years) considering different initial conditions denoted as (x0, p0). In
each simulation was used 1000 cycles for both nicosulfuron and atrazine herbicides. In this
figure, we observed that exists three equilibrium solutions, as shown in Table 5.

For the nonlinear model described here, P2 is an unstable equilibrium solution as the
solutions starting near the equilibrium point or equilibrium solution move away from the
equilibrium solution. Similarly, P3 is a stable equilibrium solution as the solutions starting
near the equilibrium all converge to the equilibrium P3 as time increases. Finally, for small
seed density, the solutions are solutions of the linear model and approach P1 given by x = 0
and p0 which is thus said to be a marginally stable equilibrium point.

The phase plane is useful to define the correct weed management strategy in terms of the
herbicide doses to be applied. Moreover, the phase plane indicates that the allele frequencies
do not decrease even if the weed population reaches low levels, in other words, the allele
frequencies have kept an existing trait.

5.2 Genetic frequencies

The genetic frequency using the FHW (13) are compared to the FHW (14) model using the
seed bank (5)with (8)–(9) and (18). Figure 3 illustrates the dynamics of the allele frequency to
(13) model and (14) model using the seed bank with nicosulfuron applied and weak selection
for a dominant allele. The dynamics of the allele frequency is similar in both models which
means that the weed population model proposed follows the population genetic principles.

5.3 Optimal control strategy

We evaluated the dynamics of the seed bank and the resistance evolution. The net average
from the NLP problem for two herbicides in an annual application bases is compared to the
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Fig. 3 Allele frequencies (−) FHWmodel (14) using the seed bank (5) with (8)–(9) and (18) and (−−) FHW
model (13) for Bidens subalternans with dominant allele, nicosulfuron applied and weak selection s = 0.2
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profit of the conventional harvest system with a constant application dose. The seed bank
x∗ and allele frequency p∗ obtained from the NLP problem were simulated over a 10-year
period for an initial seed bank of 500 (seeds m−2) and an initial allele frequency of 0.1. This
initial allele frequency indicates that the population resistant is close to be agronomically
detectable. The simulation results were obtained using the strategies described in Sect. 4.1.

Figure 4a shows the seed bank and Fig. 4b the resistant allele frequency responses given by
the optimum solution herbicide doses.We noticed in Fig. 4a that the seed bank decreased over
time and the change in the seed bank was similar for the both herbicides with a NLP control
strategy, but we also noticed that the nicosulfuron herbicide is better than the atrazine herbi-
cide to controlweeds, thismaybe explainedby the dose–response curves obtained (seeFig. 7).

In Fig. 4b, we noticed that the NLP solution yielded a significantly retard in the allele
frequency of the resistant biotypes. The resistant allele frequency increased from 10 % to
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Fig. 4 Optimal results using the NLP optimal strategy for a 10-year simulation. a Optimal seed bank for
nicosulfuron and atrazine. b Optimal resistant allele frequency for nicosulfuron and atrazine
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around 30 % in a 10-year simulation under atrazine herbicide application while the resistant
allele frequency of the nicosulfuron herbicide increased from 10 % to around 20 % in the
same period of time. Note that, the seed bank control for atrazine herbicide showed a higher
level of seeds which reflected also in the level of resistance. Therefore, the adopted optimum
strategy was able to reduce the herbicide doses, minimizing the environment damage.

However, the weed control strategy adopted was satisfactory as compared to the conven-
tional management which leads to higher values of resistance. Therefore, the use of new
techniques of management that considers optimization strategies can help meeting environ-
mental goals and not only the increase in profit.

Risks of resistance were reduced when a herbicide constant application was replaced by
decreasing herbicide doses but maintaining efficacy in the seed bank control. However, not all
herbicide application impacted the same selection pressure. Application of a soil residual her-
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Fig. 5 Optimal dose u∗ using NLP strategy for a 10-year simulation. a The nicosulfuron herbicide was
applied. b The atrazine herbicide was applied
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bicide at the time of crop sowing season can provide control of Bidens subalternanswell into
the growing season and significantly reduce the rate and risk of herbicide resistance evolution.

Variation occurred in the time of development of resistance. In general, resistant popula-
tions increases more slowly where the germination fraction was low (0.1) (not simulated as
the type of weed considered has a high germination fraction). For both types of treatment,
the resistance was delayed.

In the simulation scenario, the weed population was controlled for both herbicides applied
(see Fig. 4a). Figure 5 illustrates the decreasing in herbicide doses given by the optimal control
strategy for both herbicides. Thus, the decrease in herbicide doses is important to reduce the
environmental impact caused by excessive use of herbicides.

5.4 Weed resistance impact on the solution

Considering the weed resistance to herbicides, we compared the solution of the NLP problem
with a conventional strategy. The conventional strategy is based on the application of the
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Fig. 6 Comparison of net values obtained with the optimal control approach for the application of a nicosul-
furon and b atrazine herbicides and the conventional strategy for a 10-year simulation
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maximum dose recommended for the field, following the recommendation indicated on the
product label.

The net present values are given in Fig. 6 which indicates that the NLP result is eco-
nomically superior to the conventional strategy results. In Fig. 6, we noticed that the profit
using optimal control strategy for nicosulfuron herbicide was around 20 % superior when
compared to the conventional strategy and in case of atrazine herbicide application the profit
was around 50 % superior. This fact is due to the price of each unit of product used and
the difference showed in weed control by dose–response curves as each herbicide have a
different mode of action.

With the goal of maximizing crop returns with minimal environmental effects of herbi-
cides, the formulated optimal control problem to define optimal management strategies for
controlling weed population affecting the agricultural production achieved its purpose.

The sensitivity analyses indicated that the model was sensitive to variations in population
size and seed bank dynamics. The solution is more sensitive to the initial condition and it is
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Fig. 7 Herbicide-induced mortality using the adopted dose–response curve (8) considering the optimal allele
frequency p∗ for a nicosulfuron and b atrazine herbicides
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the most difficult parameter to select. The initial population sizes clearly vary from field to
field. The annual germination rate, survival rate of new seeds and seed mortality, are clearly
influenced by variable climatic and other environmental variables. All these factors contribute
to the complexity of the weed population model which makes the study of weed population
dynamics the key on agricultural production scenario.

The parameter values of the adopted dose–response model (7) were obtained by curve
fitting from experimental data of herbicide-induced mortality (see Table 2). The resulting
curves obtained according to (8) for the nicosulfuron and atrazine herbicides are illustrated
in Fig. 7.

We noticed in Fig. 7 that the nicosulfuron herbicide is more efficient in weed control
than the atrazine herbicide, since the nicosulfuron herbicide showed around 90 % con-
trol of weeds while the atrazine herbicide showed around 20 % control. This fact will be
reflected in the production cost, the seed bank and the resistance evolution. We observed that
the curves obtained using the adopted dose–response function (8) illustrated the change
of dose–response curve due to the increase of resistance in the period of time of the
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Fig. 8 Herbicide-induced mortality obtained with NLP optimal strategy, u∗ and p∗, for the application of a
nicosulfuron and b atrazine herbicides for a 10-year simulation
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simulation. Therefore, the more resistant plants in the field the less is the efficiency of control
applied.

The variation in the mortality rate of plants obtained with the optimal strategy NLP is
illustrated in Fig. 8. We noticed that the mortality rate decreases due to the presence of weed
resistant. Thus, with the increase of the resistance occurs a reduction in the efficiency of
control applied to both herbicides. In this scenario, nicosulfuron was recommended as the
herbicide resistance manifests slower and has higher profit while compared to the treatment
made with atrazine herbicide.

Moreover, Maxwell et al. (1990) showed that the influence of herbicide efficiency on
the evolution of resistance has important management implications. Reducing the control
efficiency may delay the resistance evolution due to minimization of selection pressure for
resistance. The results presented in this paper confirm these conclusions.

Several proposed strategy to reduce the risk of herbicide resistance evolution use herbi-
cide rotation, sequences and mixture, these had been investigated in Diggle et al. (2003)
and Neve et al. (2011). Our modeling analysis has shown that the continuous use of a
single herbicide application for long period of time increases the selection of resistant
byotype, thus the optimal control of weed can contribute to reduce the herbicide resis-
tance.

6 Conclusions and discussion

In this work, we discussed an optimal weed control to support resource management and
control in agriculture and a dynamic optimization model which considers the popula-
tion resistance under selection pressure imposed by the use of herbicide is established.
We proposed a single herbicide sequence to control weed infestation by maximizing eco-
nomic returns and retarding the weed resistance evolution. The results are promising as
they indicate that decreased herbicide doses are economically superior to both single
herbicide sequences when compared to a conventional practice. In addition, the deve-
loped model is useful to explain the evolution of herbicide resistance and to demonstrate
that the allele frequency in a population plays an important role in weed manage-
ment.

The results on optimal control discussed here takes into account important requirements
arising in resource management and control in agriculture and will give support to make
decision on the herbicide usage in regions where weed resistance was reported by field
observations. It is probable that herbicide resistance will only be readily apparent in the
field after years of evolution and the practice of herbicide management is essential to retard
the resistance evolution in the field. The absence of field management at many locations
where the resistance has evolved and lack of detailed knowledge on the precise number
of variables involved in the evolution of resistance make model validation problematic as
detailed model validation can only be achieved with long-term field experiments and these
can be troublesome. Considering these facts, we believe that combining weed dynamic
modeling and field observations provides good practice to support resource management.
Further work includes the use of rotation of herbicides to improve the control on the seed
bank.
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