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ABSTRACT
The Generalized gamma (GG) distribution plays an important role in statis-
tical analysis. For this distribution, we derive non-informative priors using
formal rules, such as Jeffreys prior, maximal data information prior and
reference priors. We have shown that these most popular formal rules
with natural ordering of parameters, lead to priors with improper posteri-
ors. This problem is overcome by considering a prior averaging approach
discussed in Berger et al. [Overall objective priors. Bayesian Analysis.
2015;10(1):189–221]. The obtained hybrid Jeffreys-reference prior is invari-
ant under one-to-one transformations and yields a proper posterior dis-
tribution. We obtained good frequentist properties of the proposed prior
using a detailed simulation study. Finally, an analysis of the maximum
annual discharge of the river Rhine at Lobith is presented.

ARTICLE HISTORY
Received 2 October 2014
Accepted 2 May 2017

KEYWORDS
Bayesian analysis;
Generalized gamma
distribution; Jeffreys prior;
Reference prior

AMS SUBJECT
CLASSIFICATION
62F15; 62N05

1. Introduction

Many generalizations for the standard exponential distribution have been proposed in the litera-
ture, namely the Weibull, gamma and lognormal distributions which provide more flexibility to
describe real data sets. Stacy [1] unified these models using the Generalized gamma (GG) distri-
bution with three parameters. Let T be a non-negative random variable following a GG distribution
with probability density function (p.d.f.) given by

f (t|θ) = α

�(φ)
μαφtαφ−1 exp(−(μt)α), (1)

for t> 0 and θ = (α,μ,φ) where α > 0 and φ > 0 are shape parameters and μ > 0 is a rate
parameter. The cumulative distribution function is given by

F(t|θ) =
∫ (μt)α

0

1
�(φ)

wφ−1e−w dw = γ (φ, (μt)α)
�(φ)

, (2)

where γ (y, x) = ∫ x0 wy−1e−w dw is the lower incomplete gamma function.
The GG distribution is known by different names such as the Stacy distribution, generalized

Weibull and gamma-Weibull. Important probability distributions can be obtained from theGGdistri-
bution such as theWeibull distribution (φ = 1), gamma distribution (α = 1), lognormal distribution
(limit case when φ → ∞) and the generalized normal distribution (α = 2). The generalized normal
distribution is also a distribution that includes various known distributions such as half-normal (φ =
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1
2 ,μ = 1/

√
2σ ), Rayleigh (φ = 1,μ = 1/

√
2σ ), Maxwell–Boltzmann distribution (φ = 3

2 ) and chi
distribution (φ = k/2, k = 1, 2, . . .). Moreover, the GG distribution is a flexible model for reliability
data that provides different forms of the hazard function such as constant, increasing, decreasing,
bathtub and unimodal shapes.

This model has been used to describe the air quality in Venice, Italy [2]. Tahai and Meyer [3]
analysed journal citations of recent publications using the GG distribution to determine the manage-
ment journals that have the greatest influence. The GG distribution has also been used to analyse the
performance degradation of wireless communication systems and to obtain different techniques for
processing synthetic aperture radar images [4]. This model can also be used in likelihood ratio tests
as a discrimination method for its sub-models [5] as well as other applications [6–8].

The parameter estimation of theGGdistribution has already been discussed. Stacy andMihram [9]
presented estimators for GG distribution parameters based onmaximum likelihood (ML). Hager and
Bain [10] showed that three nonlinear ML equations are unstable, i.e. the results may depend on the
initial values. The method of moments has been discussed to obtain inferences for the parameters
of GG distribution [11]. Khodabin and Ahmadabadi [12] compared the method of moments with
ML and concluded that maximum likelihood estimators (MLEs) are better. However, Prentice [13]
argued that even for sample sizes equal or larger than 400, the approximate normal distribution for
φ̂ using the ML theory could not be achieved.

Considering a Bayesian approach, a prior distribution must be assigned. A naive procedure would
consider flat priors (such as gamma or uniform distributions with large variances) for the param-
eters. However, Bernardo [14] argued that the use of simple proper flat priors presumed to be
non-informative priors often hide important unwarranted assumptions which may easily dominate
or invalidate the statistical analysis and should be strongly discouraged. Chang and Kim [15] derived
non-informative priors for GG distribution assuming that φ is known.Maswadah et al. [16] also con-
sidered that φ is known and performed inference for the GG distribution based on order statistics.
However, this parameter is non-trivial to be estimated or to be known in any application. An objec-
tive Jeffreys prior [17] was presented by Van Noortwijk [6] to estimate the quantiles of the flood of a
given river.

In this study, we prove that Jeffreys prior leads to an improper posterior and should not be used.
In the literature, there are other objective priors that could also be considered for the GG dis-
tribution parameters such as the Maximal Data Information (MDI) prior [18] and the reference
prior [14,19–21]. A formal proof is also presented showing that such priors also lead to improper
posteriors. This problem was overcome by proposing a hybrid Jeffreys-reference prior that yields a
proper posterior distribution. The obtained prior arose considering the prior averaging approach
discussed in [22] and is invariant under one-to-one transformations. This new result has a large
number of applications, since it enables us to use the GG distribution in practice from the objec-
tive Bayesian point of view. A similar analysis was presented by Northrop and Attalides [23] for the
generalized Pareto and the generalized extreme value distributions considering the Jeffreys prior and
MDI prior. Additionally, as the Bayesian analysis was used improperly by Van Noortwijk [6], the data
set related to the annual maximum discharges of the river Rhine at Lobith, Netherlands from 1901 to
1998 was reanalysed.

The remainder of this paper is organized as follows: Section 2 reviews the ML method for the GG
distribution. Section 3 presents the Bayesian analysis considering non-informative priors. Section 4
describes a simulation study to compare both approaches. Section 5 presents an analysis of the data set
related to the annual maximum discharges of the river Rhine at Lobith. Lastly, some final comments
are made in Section 6.

2. Maximum likelihood estimators

Among the classical statistical inferencemethods, theMLmethod is usually preferred due to its better
asymptotic properties. TheMLEs are obtained bymaximizing the likelihood function. Let T1, . . . ,Tn
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be a random sample where T ∼ GG(α,μ,φ), the likelihood function for the parameter vector θ =
(α,μ,φ) is given by

L(θ ; t) = αn

�(φ)n
μnαφ

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
. (3)

The ML estimates of the parameters are obtained by solving the likelihood equations
(∂/∂α) log(L(θ ; t)) = 0, (∂/∂μ) log(L(θ ; t)) = 0, (∂/∂φ) log(L(θ ; t)) = 0. Therefore, from
Equation (3), we have

nψ(φ̂) = nα̂ log(μ̂)+ α̂

n∑
i=1

log(ti), (4)

nφ̂ = μ̂α̂
n∑

i=1
tα̂i , (5)

n
α̂

+ nφ̂ log(μ)+ φ

n∑
i=1

log(ti) = μ̂α̂
n∑

i=1
tα̂i log(μ̂ti), (6)

where ψ(k) = (∂/∂k) log�(k) = �′(k)/�(k) is the digamma function. The solutions of Equa-
tions (4)–(6) provide theMLEs [9,10].Numericalmethods such as theNewton–Rapshon are required
to find the solution of the nonlinear system.

3. Bayesian inference

In this section, we discuss non-informative priors for the parameters of the GG distribu-
tion. The proof of whether these priors lead to proper or improper posteriors are available in
Appendix 3.

3.1. Jeffreys Prior

The well known non-informative prior introduced by Jeffreys [17] is obtained from the square root
of the determinant of the Fisher information matrix I(θ). This prior has been widely used due to its
one-to-one invariant property. For the generalized gamma distribution, the information matrix was
computed by Harger and Bain [10] and is given by

I(α,μ,φ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 2ψ(φ)+ φψ ′(φ)+ φψ(φ)2

α2
−1 + φψ(φ)

μ
−ψ(φ)

α

−1 + φψ(φ)

μ

φα2

μ2
α

μ

−ψ(φ)
α

α

μ
ψ ′(φ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where ψ ′(k) = (∂/∂k)ψ(k) is the trigamma function. Van Noortwijk [6] computed the square root
of the determinant of I(α,μ,φ) to obtain the Jeffreys prior

πJ(α,μ,φ) ∝
√
φ2ψ ′(φ)2 − ψ ′(φ)− 1

μ
. (8)
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The joint posterior distribution for φ,μ and α using the Jeffreys prior is proportional to the
product of the likelihood function (3) and prior (8) resulting in

pJ(α,μ,φ|t) = 1
dJ(t)

αn
√
φ2ψ ′(φ)2 − ψ ′(φ)− 1

�(φ)n
μnαφ−1

n∏
i=1

tαφ−1
i exp

{
−μα

n∑
i=1

tαi

}
, (9)

where

dJ(t) =
∫
A
αn
√
φ2ψ ′(φ)2 − ψ ′(φ)− 1

�(φ)n
μnαφ−1

n∏
i=1

tαφ−1
i exp

{
−μα

n∑
i=1

tαi

}
dθ (10)

andA = {(0,∞)× (0,∞)× (0,∞)} is the parameter space for θ . The same parameter spaceA was
assumed throughout the paper.

Considering a Bayesian analysis under improper priors, it is important to check if these priors lead
to improper posterior distributions.

Theorem 3.1: The posterior (9) is improper, i.e., dJ(t) = ∞.

Proof: See Appendix A.1 �

Since the posterior distribution (9) is improper, the results presented by Van Noortwijk [6] prob-
ably differ from the expected estimated values. Therefore, in Section 5 we reanalysed the data set
related to the annual maximum discharges of the river Rhine at Lobith, Netherlands from 1901 to
1998.

3.2. Maximal data information prior

Zellner [18] introduced a procedure to derive a non-informative prior distribution. The aim was to
maximize the information from the data in relation to the information known a priori about the
parameters. The resulting non-informative prior distribution known as Maximal Data Information
prior is defined as

πZ(α,μ,φ) ∝ exp(H(α,μ,φ)), (11)

where

H(φ,μ,α) =
∫

f (t |φ,μ,α) log f (t |φ,μ,α) dt (12)

is the negative entropy of f (t |φ,μ,α), i.e., an information measure of f. From (1) and (12) we have

H(α,μ,φ) =
∫ ∞

0
log
(

α

�(φ)
μαφtαφ−1 exp(−(μt)α)

)
f (t|(α,μ,φ) dt.

After some algebraic manipulations, H(α,μ,φ) can be written as

H(α,μ,φ) = log(α)− log(�(φ))+ φψ(φ)+ log(μ)− ψ(φ)

α
− φ.

Therefore, the MDI prior (11) for the GG distribution (2) is given by

πZ(α,μ,φ) ∝ αμ

�(φ)
exp
{
ψ(φ)

(
φ − 1

α

)
− φ

}
. (13)

This MDI prior (13) coincides with the MDI prior (when α = 1) obtained from the gamma
distribution [24].
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The joint posterior distribution for φ,μ and α obtained using theMDI prior is proportional to the
product of the likelihood function (3) and the prior distribution (13) resulting in

pZ(α,μ,φ|t) = 1
dZ(t)

αn+1μnαφ+1

�(φ)n+1

n∏
i=1

tαφ−1
i exp

{
−μα

n∑
i=1

tαi + ψ(φ)(φ − α−1)− φ

}
, (14)

where

dZ(t) =
∫
A
αn+1μnαφ+1

�(φ)n+1

n∏
i=1

tαφ−1
i exp

{
−μα

n∑
i=1

tαi + ψ(φ)

(
φ − 1

α

)
− φ

}
dθ . (15)

Theorem 3.2: The joint posterior density (14) is improper, i.e., dZ(t) = ∞.

Proof: See Appendix A.2 �

3.3. Reference prior

Another well-known class of non-informative priors are reference priors proposed by Bernardo [19]
with further developments [14,20,21]. The reference prior is invariant under one-to-one transforma-
tion in the parameters and is defined as the prior π(θ) that maximizes the expected Kullback–Leibler
distance between the posterior distribution p(θ |x) and the prior distributionπ(θ) based on the exper-
imental data. There are many ways to obtain reference priors. The following proposition is useful to
obtain these priors for GG distribution.

Proposition 3.3 (Bernardo [14, p. 40, Theorem 14]): Let θ = (θ1, . . . , θm) be a vector with the
ordered parameters of interest and the data t consist of a random sample of size n from a statistical
model f (t|θ), and let P be the class of all continuous priors with support A. If the posterior distribu-
tion of θ is asymptotically normal with dispersion matrix V(θ̂n)/n, where θ̂n is a consistent estimator
of θ , H(θ) = V−1(θ), Vj is the upper j × j submatrix of V, Hj = Vj and hj,j(θ) is the lower right ele-
ment of Hj. Then, if the parameter space of θj is independent of θ−j = (θ1, . . . , θj−1, θj+1, . . . , θm), for
j = 1, . . . ,m, and hj,j(θ) are factorized in the form

h1/2j,j (θ) = fj(θj)gj(θ−j), j = 1, . . . ,m.

The reference prior for the ordered parameters θ is given by

πR(θ) = πR(θ |P) = π(θj|θ1, . . . , θj−1)× · · · × π(θ2|θ1)π(θ1),
where π(θj|θ1, . . . , θj−1) = fj(θj), for j = 1, . . . ,m and there is no need for compact approximations,
even if the conditional priors are not proper. In other words, the θ-reference prior is given by πR(θ) =∏m

i=1 fj(θj).

Theorem 3.4: Let θ = (μ,φ,α) be the ordered parameters of interest for GG distribution, then the
θ-reference prior is given by

πR(μ,φ,α) ∝ πR(φ)

αμ
, (16)

where

πR(φ) ∝
√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1
. (17)
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Proof: See Appendix A.3. �

The joint posterior distribution for φ,μ and α using the prior distribution (16) is given by

pR(α,μ,φ|t) = 1
dR(t)

αn−1πR(φ)

�(φ)n
μnαφ−1

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
, (18)

where

dR(t) =
∫
A
αn−1πR(φ)

�(φ)n
μnαφ−1

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dθ . (19)

Theorem 3.5: The posterior density (18) is improper, i.e., dR(t) = ∞.

Proof: See Appendix A.4. �

3.4. Jeffreys/reference prior

Berger et al. [22] suggested initiating with a collection of objective priors and then taking the
arithmetic mean or the geometric mean. Furthermore, the authors argued that ‘ . . . the weights in
arithmetic averaging of improper priors are rather arbitrary because the priors have no normalizing
constants, whereas geometric averaging is unaffected by normalizing constants’. Thus, considering
the geometric mean between the Jeffreys prior (8) and the reference prior (16), the Jeffreys/Reference
prior is given by

πJR(α,μ,φ) ∝ πJR(φ)

μ
√
α
, (20)

where

πJR(φ) ∝ 4

√
φ2ψ ′(φ)3 − ψ ′(φ)2 − ψ ′(φ)− ψ(φ)2(φ2ψ ′(φ)2 − ψ ′(φ)− 1)

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1
. (21)

The obtained prior is non-informative as it comes from a geometric mean of the two most used
non-informative priors [22]. Moreover, the hybrid Jeffreys-reference prior was constructed as a geo-
metric mean of one-to-one invariant priors, and therefore this prior also has an invariance property
under one-to-one transformations.

The joint posterior distribution for φ,μ and α using the prior distribution (20) is given by

pJR(α,μ,φ|t) = πJR(φ)

dJR(t)
αn−

1
2

�(φ)n
μnαφ−1

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
(22)

where

dJR(t) =
∫
A
αn−1/2πJR(φ)

�(φ)n
μnαφ−1

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dθ . (23)

Theorem 3.6: The posterior density (18) is proper, i.e., dJR(t) < ∞.

Proof: See Appendix A.5. �
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The full conditional posterior distributions for φ,μ and α are given as follows:

pM(α|φ, t) ∝ αn−3/2

⎛
⎝ n
√∏n

i=1 t
α
i∑n

i=1 t
α
i

⎞
⎠

nφ

,

pM(φ|α, t) ∝ πJR(φ)
�(nφ)
�(φ)n

⎛
⎝ n
√∏n

i=1 t
α
i∑n

i=1 t
α
i

⎞
⎠

nφ

,

pM(μ|φ,α, t) ∼ GG

⎛
⎝nφ,

( n∑
i=1

tαi

)1/α

,α

⎞
⎠ .

(24)

These conditional distributions are useful during the use of Monte Carlo Markov Chain (MCMC)
methods to simulate samples of parameters of the joint posterior distribution.

4. Simulation analysis

In this section, a simulation study using Monte Carlo methods is presented to compare the efficiency
of ML method with our proposed Bayesian approach by computing the Bias and the root-mean-
square error (RMSE), given by

Biasi =
N∑
j=1

θ̂i,j

N
− θi, RMSEi =

√√√√ N∑
j=1

(θ̂i,j − θi)2

N
, for i = 1, 2, 3, (25)

whereN = 10,000 is the number of estimates obtained throughout theMLE and the posterior modes.
The 95% coverage probability of the asymptotic confidence intervals and the Credible Intervals
(CI95%) were also evaluated. Considering this approach, the best estimators will show both Bias and
RMSE closer to zero. In addition, for a large number of experiments considering a 95% confidence
level, the frequencies of intervals that covered the true values of θ should be closer to 95%.

To find the ML estimators, the Newton–Raphson method was adopted. In this case, the initial
values to start the iterative proceduremust be assigned. To ensure a fair comparison, both procedures
were under the same conditions (same initial values and samples). The initial values considered were
the same values used to generate the samples.

Clearly, the normalizing constant for the marginal posterior densities require two-dimensional
integration. Therefore, the MCMC method was considered to obtain the posterior estimates. Since
the conditional distributions ofα andφ were not easily identified, theMetropolis–Hastings algorithm
[25] was considered to simulate the posterior quantities. For each simulated data set, 15,500 iterations
were performed usingMCMCmethods. As a burn-in, the first 1000 initial values were discarded, the
considered thin was 30 to reduce the correlation among the chains. The Geweke criterion [26] was
used to check the convergence of the obtained chains under a 95% confidence level. These values were
used to compute the posterior mode estimates, yielding 10,000 estimates for φ,μ and α.

The chosen values to perform this procedure were θ = ((0.5, 0.5, 3),(2, 1, 0.5), (4, 2, 2),
(0.4, 1.5, 5)) and n = (50, 100, 200). The seed used to generate the random values in the R software
was 2016. Table 1 presents the Bias and the RMSE of the estimates obtained through the MLE and
the Bayes estimators for 10,000 simulated samples under different values of θ and n. Table 2 shows
the coverage probability with a 95% confidence level.

The Bayes estimators returned estimates with smaller Bias and RMSE than theMLEs, specially for
small and moderate sample sizes. For large samples, both estimators returned similar values, i.e. as
there is an increase in n, both methodologies behave similarly. Both bias and RMSE have shown to
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Table 1. Bias (RMSE) of the ML estimates and the Bayes estimators (posterior mode) for 10,000 samples of sizes n = (50, 100, 200)
and different values of θ .

Classical Inference Bayesian Inference

θ n= 50 n= 100 n= 200 n= 50 n= 100 n= 200

φ = 0.5 0.179(0.73) 0.046(0.26) 0.024(0.18) −0.015(0.23) 0.001(0.19) 0.014(0.16)
μ = 0.5 0.156(0.91) 0.026(0.11) 0.014(0.07) −0.002(0.08) 0.001(0.07) 0.006(0.05)
α = 3 0.487(1.81) 0.240(1.04) 0.145(0.74) −0.403(0.97) −0.248(0.79) −0.209(0.63)
φ = 2 −0.329(1.08) −0.102(0.93) −0.115(0.77) −0.508(0.62) −0.385(0.53) 0.037(0.63)
μ = 1 0.870(3.71) 1.166(3.85) 0.705(2.96) −0.431(0.47) −0.117(0.27) 0.818(2.64)
α = 0.5 0.255(0.68) 0.096(0.22) 0.064(0.15) 0.220(0.27) 0.129(0.16) 0.105(0.15)
φ = 4 1.616(4.92) 1.115(4.03) 0.335(2.95) −1.811(2.07) −1.621(1.94) −0.755(1.46)
μ = 2 1.890(4.34) 1.282(3.34) 0.557(2.23) −0.791(0.86) −0.562(0.75) −0.114(0.76)
α = 2 0.531(1.64) 0.306(1.08) 0.279(0.79) 0.993(1.33) 0.648(0.96) 0.496(0.75)
φ = 0.4 0.234(0.68) 0.128(0.25) 0.035(0.14) 0.042(0.21) 0.078(0.17) 0.026(0.13)
μ = 1.5 0.249(0.98) 0.105(0.21) 0.032(0.11) 0.031(0.17) 0.055(0.14) 0.022(0.10)
α = 5 −0.013(2.07) −0.468(1.12) 0.088(1.13) 0.502(1.89) −0.317(1.04) 0.050(1.12)

Table 2. Coverage probability with a 95% confidence level equals the ML estimates and the Bayes estimators (posterior mode)
considering 10,000 samples of sizes n = (50, 100, 200) and different values of θ .

Classical Inference Bayesian Inference

θ n= 50 n= 100 n= 200 n= 50 n= 100 n= 200

φ = 0.5 89.30% 92.36% 92.39% 98.68% 97.91% 95.81%
μ = 0.5 90.03% 92.31% 92.53% 99.34% 98.95% 97.61%
α = 3 93.89% 96.01% 95.44% 98.64% 97.74% 95.62%
φ = 2 75.62% 84.34% 85.74% 92.78% 94.02% 89.66%
μ = 1 61.48% 71.16% 72.63% 81.16% 87.55% 89.38%
α = 0.5 100.00% 99.01% 97.92% 91.97% 93.21% 89.35%
φ = 4 80.92% 82.53% 81.37% 92.25% 92.60% 87.87%
μ = 2 77.12% 78.90% 77.65% 91.79% 92.37% 88.04%
α = 2 100.00% 98.82% 97.02% 92.06% 92.38% 87.86%
φ = 0.4 97.66% 99.97% 95.76% 97.40% 95.72% 95.66%
μ = 1.5 97.27% 99.83% 96.09% 98.50% 97.98% 97.85%
α = 5 90.11% 91.88% 94.76% 97.45% 95.94% 95.82%

be consistent and asymptotically unbiased for the parameters. However, the CIs of the MLEs using
the asymptotic method does not have good coverage probabilities. These results correlate with Pren-
tice [13], i.e. even for large sample sizes, the approximate normal distribution for the parameters using
theML theory could not be achieved. On the other hand, the credible interval based on the Bayes esti-
mators provided excellent coverage probabilities even for small sample sizes. For these reasons, our
Bayes estimators (24) should be considered to achieve the parameter estimators of GG distribution.

5. Real data application

As the Bayesian analysis was used improperly by Van Noortwijk [6], the data set related to the annual
maximum discharges of the river Rhine at Lobith, Netherlands from 1901 to 1998 was reanalysed.
reanalysed. The results presented by Van Noortwijk [6, table 1, pg 6] can be seen in Table 3.

From the credibility intervals of φ and α available in Table 3, there is a good indication that the

Table 3. Posterior mean and 95% credibility intervals for φ and α from the data set related to
the annual maximum discharges of the river Rhine at Lobith during 1901–1998.

θ Mean CI95%(θ)

φ 1.380 (0.01; 6.00)
1/μ 4936 (··· ; ··· )
α 2.310 (0.01; 6.00)

··· Not presented.
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numerical techniques did not provide good results. These large credibility intervals were probably
influenced due to the improper posterior distribution. In this study, considering a proper posterior
distribution, the GG distribution can be used to analyse these data under the same assumptions as
Section 4. The posterior summaries obtained using the MCMCmethods are given in Table 4.

Considering CI95%(θ), there is an indication that α = 1 or φ = 1, i.e. the GG distribution may
reduce to gamma or the Weibull distribution. The obtained results were compared with the sub-
models such as Weibull, gamma and lognormal distributions using Akaike information criterion
(AIC = −2l(θ̂ ; x)+ 2k), corrected Akaike information criterion (AICc = AIC + 2 k (k + 1)(n −
k − 1)−1) and Bayesian information criterion (BIC = −2l(θ̂ ; x)+ k log(n)), where k is the number
of parameters to be fitted and θ̂ is the estimate of θ . The best model is the one which provides the
minimum values of these criteria.

Considering any criteria, it can be concluded from the results in Table 5 that among the chosen
models, the gamma distribution fit best considering the annual maximum discharges of the river
Rhine at Lobith from 1901 to 1998.Moreover, to verify the goodness of fit, Figure 1 shows the survival
function adjusted for different distributions of overlapping probability in the empirical function.

Table 4. Posteriormode, standard deviations and 95% credible intervals forφ,μ andα from the data set related
to the annual maximum discharges of the river Rhine at Lobith during 1901–1998.

θ Mode SD CI95%(θ)

φ 2.7704 1.5599 (0.9874; 7.0422)
1/μ 4204.4 1987.0 (1242.9; 8606.8)
α 1.8766 0.584 (1.1583; 3.3692)

Table 5. Results of AIC, AICc and BIC criteria for different probability distributions consid-
ering the data set related to the annual maximum discharges of the river Rhine at Lobith
during 1901–1998.

Criteria G. Gamma Weibull Gamma Lognormal

AIC 429.33 430.11 426.52 429.81
AICc 429.59 430.23 426.65 429.93
BIC 437.09 435.28 431.69 434.98
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Figure 1. Survival function fitted by the empirical and by different probability distributions considering the data set related to the
annual maximum discharges of the river Rhine at Lobith during 1901-1998 and the hazard function fitted by a GG distribution.
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Table 6. Posterior mean and 90% credibility intervals for φ and α from the data set related to
the annual maximum discharges of the river Rhine at Lobith during 1901–1998.

Distribution River discharge CI90%

G. gamma (Van Noortwijk) 15,150 (12,950; 16,950)
G. gamma (Our Approach) 15,448 (10,556; 22,444)
G. gamma (Classical Inference) 14,780 (12,699; 16,542)
Two-parameter gamma 15,598 (14,370; 17,583)

Van Noortwijk [6] argued that ‘ . . . the Dutch river dikes have to withstand water levels and dis-
charges with an average return period of up to 1250 years, where a downstream water level can be
determined on the basis of the upstream discharge by using a river flow simulation model’. The main
aimwas to find the annual maximum river discharge in which the probability of exceedance is 1/1250
per year. Table 6 presents the discharge with a probability of exceedance of 1/1250 and the 90% uncer-
tainty interval for the GG distribution (VanNoortwijk, our results and the classical inference) and the
two-parameter gamma distribution. To evaluate the Bayes estimators of the two-parameter gamma
distribution, we considered a posterior distribution obtained with the reference prior (see Berger
et al. [22], p. 199, eq. 14).

The improper posterior produced an underestimated annual maximum discharge. The difference
between the VanNoortwijk estimate and ours was 420m3/s. Hence, the Dutch river dikes will have to
withstand water levels and discharges of up to 1570m3/s. The ML estimators of the GG distribution
also returned an underestimated value for the River maximum discharge. On the other hand, the
results obtained from the gamma distribution are similar to those obtained from the GG distribution
in our approach. Our results clearly showed that the gamma distribution should be used to estimate
the annual maximum discharges of the river Rhine at Lobith.

6. Discussion

In this paper, we introduced a Bayesian analysis for the GG distribution considering non-informative
priors. An interesting aspect of our findings is that the Jeffreys, MDI and the reference priors for
GG parameters failed to yield a proper posterior distribution and should not be used in the Bayesian
analysis.

To overcome this problem, an alternative prior based on Jeffreys general rule and the reference
prior was proposed considering the prior averaging approach discussed in [22]. The obtained prior
is invariant under one-to-one transformations and yields a proper posterior distribution. The simu-
lation study showed that the Bayes estimators returned estimates with smaller Bias and RMSE than
the MLEs, specially for small and moderate sample sizes. Additionally, the credible interval based on
the Bayes estimators provided very good coverage probabilities even for small sample sizes. On the
other hand, even for large sample sizes, the approximate normal distribution for the parameters using
the ML theory could not be achieved.

As the Bayesian analysis was used improperly by Van Noortwijk [6], the data set related to the
annual maximum discharges of the river Rhine at Lobith, Netherlands from 1901 to 1998 was reanal-
ysed and its annual maximum river discharge with 1/1250 probability of exceedance was computed
properly.

In conclusion, our Bayes estimators should be considered to achieve the GG distribution param-
eter estimators. One possible extension of our work is to consider an objective Bayesian analysis in
regression modelling where the responses follow GG distribution. Another extension is to explore
other formal rules to construct priors based on probability matching priors [27].
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Appendix 1. Definitions and auxiliary propositions

The following propositions are useful to prove the results related to the posterior distribution. Let R̄ = R ∪ {−∞,∞}
denote the extended real number line with the usual order (≥), R+ are strictly positive numbers and R

+
0 denote the

positive numbers including 0.

http://orcid.org/0000-0002-5387-2457
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Definition A.1: Let g : U → R̄
+
0 and h : U → R̄

+
0 , where U ⊂ R andm ∈ N. We say that g(x) ∝ h(x) if there exists

c0 ∈ R+ and c1 ∈ R+ such that c0 h(x) ≤ g(x) ≤ c1 h(x) for every x ∈ U .

Definition A.2: Let a ∈ R̄, g : U → R+ and h : U → R+, where U ⊂ R. We say that g(x) ∝
x→a

h(x) if

lim inf
x→a

g(x)
h(x)

> 0 and lim sup
x→a

g(x)
h(x)

< ∞.

The meaning of the relations g(x)∝x→a+ h(x) and g(x)∝x→a− h(x) for a ∈ R are defined analogously. Note that, if for
some c ∈ R+ we have limx→a(g(x)/h(x)) = c, then g(x)∝x→a h(x).

The following proposition is a direct consequence of the above definition.

Proposition A.3: For a ∈ R̄ and r ∈ R, let f1(x)∝x→af2(x) and g1(x)∝x→ag2(x) then the following hold

f1(x)g1(x) ∝
x→a

f2(x)g2(x) and f1(x)r ∝
x→a

f2(x)r .

The following proposition relates Definition A.1 and Definition A.2.

Proposition A.4: Let g : (a, b) → R+ and h : (a, b) → R+ be continuous functions on (a, b) ⊂ R, where a ∈ R̄ and
b ∈ R̄. Then g(x) ∝ h(x) if and only if g(x)∝x→a h(x) and g(x)∝x→b h(x).

Note that if g : (a, b) → R+ and h : (a, b) → R+ are continuous functions on (a, b) ⊂ R, then by continuity
it follows that limx→c(g(x)/h(x)) = g(c)/h(c) > 0. Therefore g(x)∝x→c h(x) for every c ∈ (a, b). This fact and the
Proposition A.4 imply directly the following.

Proposition A.5: Let g : (a, b) → R+ and h : (a, b) → R+ be continuous functions in (a, b) ⊂ R, where a ∈ R̄ and
b ∈ R̄, and let c ∈ (a, b). Then if g(x)∝x→a h(x) or g(x)∝x→b h(x) we have respectively that∫ c

a
g(t) dt ∝

∫ c

a
h(t) dt or

∫ b

c
g(t) dt ∝

∫ b

c
h(t) dt.

Appendix 2. Useful proportionalities
The following proportionalities are also useful to prove results related to the posterior distribution.

Proposition A.6: The following results hold
√
φ2ψ ′(φ)2 − ψ ′(φ)− 1 ∝

φ→0+
1 and

√
φ2ψ ′(φ)2 − ψ ′(φ)− 1 ∝

φ→∞
1
φ
.

Proof: Let us present the proof for the first case. Considering the recurrence relation ψ ′(φ) = 1
φ2

+ ψ ′(φ + 1), we

have

√
φ2ψ ′(φ)2 − ψ ′(φ)− 1 =

√
1
φ2

+ 2ψ ′(φ + 1)+ φ2ψ ′(φ + 1)2 − 1
φ2

− ψ ′(φ)− 1

=
√
ψ ′(φ + 1)− 1 + φ2ψ ′(φ + 1)2.

Therefore

lim
φ→0+

√
φ2ψ ′(φ)2 − ψ ′(φ)− 1 =

√
ψ ′(1)− 1 =

√
π2

6
− 1 > 0. (A1)

For the second case, note that [28, p. 260]

ψ ′(φ) = 1
φ

+ 1
2φ2

+ 1
6φ3

+ o
(

1
φ3

)
.
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Hence, it follows that

φ2
(
1
φ

+ 1
2φ2

+ 1
6φ3

+ o
(

1
φ3

))2
− 1
φ

− 1
2φ2

− 1
6φ3

− o
(

1
φ3

)
− 1

= φ2
(

1
φ2

+ 1
φ3

+ 7
12φ4

+ o
(

1
φ4

))
− 1
φ

− 1
2φ2

+ o
(

1
φ2

)
− 1

= 1 + 1
φ

+ 7
12φ2

+ o
(

1
φ2

)
− 1
φ

− 1
2φ2

+ o
(

1
φ2

)
− 1 = 1

12φ2
+ o
(

1
φ2

)
.

Therefore,

lim
φ→∞

√
φ2ψ ′(φ)2 − ψ ′(φ)− 1

φ−1 = lim
φ→∞

√
1
12

+ o (1) =
√

1
12

.

�

Proposition A.7: The following results hold:√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1
∝

φ→0+
1√
φ

and

√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1
∝

φ→∞
1
φ
.

Proof: By the recurrence relations

ψ(φ) = − 1
φ

+ ψ(φ + 1) and ψ ′(φ) = 1
φ2

+ ψ ′(φ + 1).

It follows that

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1

= 2
(

− 1
φ

+ ψ(φ + 1)
)

+ φ

(
1
φ2

+ ψ ′(φ + 1)
)

+ φ

(
1
φ2

− 2
φ
ψ(φ + 1)+ ψ(φ + 1)2

)
+ 1

= 1 + φ
(
ψ(φ + 1)2 + ψ ′(φ + 1)

)
.

Therefore, √
ψ ′(φ)− ψ(φ)2

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1

=
√
(φ−2 + ψ ′(φ + 1))(1 + φ(ψ(φ + 1)2 + ψ ′(φ + 1)))− (φ−1 + ψ(φ + 1))2

1 + φ(ψ(φ + 1)2 + ψ ′(φ + 1))

=
√

1
φ

√
2ψ(φ + 1)+ ψ(φ + 1)2 + ψ ′(φ + 1)+ φL(φ)

1 + φ(ψ(φ + 1)2 + ψ ′(φ + 1))
,

where
L(φ) = (ψ ′(φ + 1)− ψ(φ + 1)2)+ φ2ψ ′(φ + 1)(ψ(φ + 1)2 + ψ ′(φ + 1)).

Since limφ→0+ L(φ) < ∞, we have

lim
φ→0

=
√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+φψ ′(φ)+φψ(φ)2+1
1√
φ

=
√
2ψ ′(1)+ ψ(1)2 + ψ ′(1)

=
√
π2

6
− γ 2 − 2γ > 0,

which proves the first proportionality. Now, by Abramowitz [28], we have

ψ(φ) = log(φ)− 1
2φ

− 1
12φ2

+ o
(

1
φ2

)
and ψ ′(φ) = 1

φ
+ 1

2φ2
+ o
(

1
φ2

)
,

where it follows directly that

ψ(φ)2 = log(φ)2 − log(φ)
φ

+ o
(
1
φ

)
.
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Therefore

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1 = φ log(φ)2 + log(φ)+ 2 + o(1),

and √
ψ ′(φ)− ψ(φ)2

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1

=

√√√√ ( 1
φ

+ 1
2φ2 + o( 1

φ2
))(φ log(φ)2 + log(φ)+ 2 + o(1))− log(φ)2 + log(φ)

φ
+ o( 1

φ
)

φ log(φ)2 + log(φ)+ 2 + o(1)

=
√

1
φ
(log(φ)2 + o(log(φ)2))

φ(log(φ)2 + o(log(φ)2))
= 1
φ

√
1 + o(1)
1 + o(1)

.

Thus

lim
φ→∞

=
√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+φψ ′(φ)+φψ(φ)2+1
1
φ

= 1

which proves the second proportionality. �

Proposition A.8: The following results hold:

�(nφ)
�(φ)n

∝
φ→0+

φn−1 and
�(nφ)
�(φ)n

∝
φ→∞

nnφφ(n−1)/2.

Proof: Considering the recurrence relation �(z) = (1/z)�(z + 1) it follows that limz→0+ (�(z)/(1/z)) = �(1) = 1.
Therefore

�(z) ∝
φ→0+

1
z

(A2)

and

�(nφ)
�(φ)n

∝
φ→0+

1
nφ
1
φn

∝
φ→0+

φn−1. (A3)

Now, considering Stirling’s approximation for gamma function

lim
z→∞

�(z)√
2πzz−1/2 e−z

= 1 ⇒ lim
z→∞

�(z)

zz−
1
2 e−z

= √
2π ⇒ �(z) ∝

z→∞ zz−1/2 e−z .

Then, by Proposition A.3 we have

�(nφ)
�(φ)n

∝
φ→∞

(nφ)nφ−1/2 e−nφ

(φφ−1/2 e−φ)n
= n−1/2nnφφ(n−1)/2 ∝

φ→∞
nnφφ(n−1)/2.

�

Proposition A.9: Let p(α) = log((1/n)
∑n

i=1 t
α
i /

n
√∏n

i=1 t
α
i ), for t1, t2, . . . , tn positive and not all equal, then p(α) > 0

and the following hold

p(α) ∝
α→0+

α2 and p(α) ∝
α→∞ α.

Proof: Note that (1/n)
∑n

i=1 t
α
i /

n
√∏n

i=1 t
α
i > 1 ⇒ p(α) > 0 by the arithmetic-geometric inequality.
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Now, let ui = ti/ n
√∏n

i=1 ti, i = 1, . . . , n and um = max{u1, . . . , un}. Since t1, . . . , tn are not all equal then um > 1
and

lim
α→∞

p(α)
α

= lim
α→∞

1
α
log

( n∑
i=1

uαi

)
− log(n)

α
= lim
α→∞ log

⎧⎨
⎩
( n∑

i=1
uαi

)1/α
⎫⎬
⎭

= lim
α→∞ log

⎛
⎝um

( n∑
i=1
(ui/um)α

)1/α
⎞
⎠ .

Moreover, 1 ≤∑n
i=1(ui/um)

α ≤ n, then 1 ≤ (
∑n

i=1(ui/um)
α)1/α ≤ n1/α , which implies

lim
α→∞

( n∑
i=1
(ui/um)α

)1/α

= 1

and

lim
α→∞

p(α)
α

= lim
α→∞ log

⎛
⎝um

( n∑
i=1

(ui/um)α
)1/α

⎞
⎠ = log(um) > 0 (A4)

which proves the first result.
Now,

∑n
i=1 log(ui) = log(

∏n
i=1 ti∏n
i=1 ti

) = log(1) = 0 and

lim
a→0+

p(α)
α2

= log
( 1
n
∑n

i=1 u
α
i
)

α2
L′h= lim

α→0+

∑n
i=1 log(ui)u

α
i∑n

i=1 u
α
i

2α

L′h= 1
2

lim
α→0+

(
∑n

i=1 log(ui)
2uαi )(

∑n
i=1 u

α
i )− (

∑n
i=1 log(ui)u

α
i )

2

(
∑n

i=1 u
α
i )

2

= 1
2
n
∑n

i=1 log(ui)
2 − (

∑n
i=1 log(ui))

2

n2
= 1

2

∑n
i=1 log(ui)

2

n
> 0.

Note that 1
2 (
∑n

i=1 log(ui)
2/n) �= 0 since, otherwise, we would have log(ui) = 0 ⇔ ui = 1, ∀i and would imply that ti

are all equal, which contradicts the hypothesis. Hence p(α)∝α→0+α2 which proves the second result. �

Proposition A.10: Let q(α) = log(
∑n

i=1 t
α
i /

n
√∏n

i=1 t
α
i ), for t1, t2, . . . , tn positive and not all equal, then q(α) > 0 and

the following hold

q(α) ∝
α→0+

1 and q(α) ∝
α→∞ α.

Proof: Note that
∑n

i=1 t
α
i /

n
√∏n

i=1 t
α
i > n ⇒ q(α) > 0 by the arithmetic-geometric inequality. Since q(α) = log(n)+

p(α) and by Proposition A.9 limα→0+ p(α) = 0 it follows that

lim
α→0+

q(α) = log(n) > 0. (A5)

which proves the first proportionality.
Analogously, from q(α) = log(n)+ p(α) and Proposition A.9 it follows that q(α)∝α→∞α, hence the second

proportionality is proved. �

Proposition A.11: Let q(α) be the same defined in Proposition A.10, then the following results are valid for k ∈ R+ and
r ∈ R+.

γ (k, rq(α)) ∝
α→0+

1 and γ (k, rq(α)) ∝
α→∞ 1. (A6)
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Proof: From (A5) and the continuity of incomplete gamma function in R+ × R+ we have

lim
α→0+

γ (k, rq(α)) = γ (k, r log(n)) ⇒ γ (k, rq(α)) ∝
α→0+

1. (A7)

Now, from the definition of lower incomplete gamma function, it follows directly that limx→∞ γ (y, x) = �(y) for
y> 0. But, since q(α)∝α→∞α, we have limα→∞ q(α) = ∞. Therefore

lim
α→∞ γ (k, rq(α)) = �(k) ⇒ γ (k, rq(α)) ∝

α→0+
1. (A8)

�

Proposition A.12: Let p(α) be the same defined in Proposition A.9 and let tm = max{t1, . . . , tn}. Then the following
results are valid for k ∈ R+ and r ∈ R+,

�(k, rp(α)) ∝
α→0+

1 and �(k, rp(α)) ∝
α→∞ αk−1 e−r log(tm/ n√∏n

i=1 ti)α (A9)

where �(y, x) = ∫∞
x wy−1 e−w dw is the upper incomplete gamma function.

Proof: From the definition of upper incomplete gamma function, it follows directly that limx→0+ �(y, x) = �(y) for
y> 0. However, as p(α)∝α→0+α2, we have limα→0+ p(α) = 0. Therefore

lim
α→0+

�(k, rp(α)) = �(k) ⇒ �(k, rp(α)) ∝
α→0+

1. (A10)

Now, by L’hospital rule and the definition of upper incomplete gamma function,

lim
x→∞

�(s, x)
xs−1e−x = 1.

However, p(α)∝α→∞α2 which implies limα→∞ p(α) = ∞ and

lim
α→∞

�(k, rp(α))
(rp(α))k−1 e−rp(α) = 1 ⇒ �(k, rp(α)) ∝

α→∞ p(α)k−1 e−rp(α).

Moreover, let c be the number of ti equal to tm for i = 1, . . . , n, then

lim
α→∞ p(α)− log

⎛
⎝ tm

n
√∏n

i=1 ti

⎞
⎠α = lim

α→∞ log
((

t1
tm

)α
+ · · · +

(
tn
tm

)α)
= log(c).

Therefore

lim
α→∞

p(α)k−1 e−rp(α)

αk−1 e−r log(tm/ n√∏n
i=1 ti)α

= lim
α→∞

(
p(α)
α

)k−1
e−r(p(α)−log(tm/ n√∏n

i=1 ti)α)

= 1k−1 × e−r log(c) = c−r > 0.

This implies that p(α)k−1e−r p(α)∝α→∞αk−1e−r log(tm/ n√∏n
i=1 ti)α . Finally

�(k, rp(α)) ∝
α→∞ αk−1 e−r log(tm/ n√∏n

i=1 ti)α .

�

Appendix 3. Proof of the theorems
Theorem A.13: Let the prior be factored in the form π(α,μ,φ) ∝ π(φ)π(α)π(μ), where π(α) ∝ αq, π(μ) ∝ (1/μ)
and π(φ)∝φ→0+φr , s ∈ R and r ∈ R. If q ≥ r then

d(t) = π(φ,α,μ)αn

�(φ)n
μnαφ

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
= ∞ (A11)
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Proof: Since (π(φ,α,μ)αn/�(φ)n)μnαφ{∏n
i=1 t

αφ−1
i } exp{−μα∑n

i=1 t
α
i } ≥ 0 by Tonelli theorem (see Folland [29])

we have

d(t) =
∫
A

π(φ,α,μ)αn

�(φ)n
μnαφ

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dθ

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

π(φ,α,μ)αn

�(φ)n
μnαφ

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dμ dφ dα

∝
∫ ∞

0

∫ ∞

0

∫ ∞

0
αn+q π(φ)

�(φ)n
μnαφ−1

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dμ dφ dα

≥
∫ ∞

0

∫ 1

0
αn+q−1π(φ)

�(nφ)
�(φ)n

(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ dφ dα

using the Propositions A.5 and A.8 we have

d(t) ≥
∫ ∞

0

∫ 1

0
αn+q−1π(φ)

�(nφ)
�(φ)n

(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ dφ dα

∝
∫ ∞

0

∫ 1

0
αn+q−1 × φr × φn−1

⎛
⎝ n
√∏n

i=1 t
α
i∑n

i=1 t
α
i

⎞
⎠

nφ

dφ dα =
∫ ∞

0
αn+q−1

∫ 1

0
φn+r−1 e−nφq(α) dφ dα

=
∫ ∞

0
αn+q−1 γ (n + r, nq(α))

(nq(α))n+r dα ≥
∫ ∞

1
αn+q−1 γ (n + r, nq(α))

(nq(α))n+r dα

∝
∫ ∞

1
αn+q−1 1

q(α)n+r γ (n + r, nq(α)) dα.

Now, from Propositions A.5, A.10 and A.11∫ ∞

1
αn+q−1 1

q(α)n+r γ (n + r, nq(α)) dα ∝
∫ ∞

1
αn+q−1 1

αn+r × 1 dα ∝
∫ ∞

1
αq−r−1 dα. (A12)

Consequently d(t) = ∞ for q ≥ r. �

A.1 Proof of Theorem 3.1
The Jeffrey prior is given byπJ(α,μ,φ) ∝ πJ(φ)/μwhereπJ(φ) ∝

√
φ2ψ ′(φ)2 − ψ ′(φ)− 1. Then, by PropositionA.6

we have

πJ(φ) ∝
φ→0+

1 and πJ(φ) ∝
φ→∞

1
φ
.

Thus π(α) ∝ 1, π(μ) ∝ (1/μ). Since q= 0 and r= 0, we have q ≥ r and by Theorem A.13 dJ(t) = ∞.

A.2 Proof of Theorem 3.2
Since (αn+1/�(φ)n+1)μnαφ+1 exp{−μα∑n

i=1 t
α
i + ψ(φ)(φ − 1/α)− φ}{∏n

i=1 t
αφ−1
i } ≥ 0, by Tonelli theorem

dZ(t) =
∫
A

αn+1μnαφ+1

�(φ)n+1

n∏
i=1

tαφ−1
i exp

{
−μα

n∑
i=1

tαi + ψ(φ)

(
φ − 1

α

)
− φ

}
dθ

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

αn+1μnαφ+1

�(φ)n+1

n∏
i=1

tαφ−1
i exp

{
−μα

n∑
i=1

tαi + ψ(φ)

(
φ − 1

α

)
− φ

}
dμdφdα

=
∫ ∞

0

∫ ∞

0
αn
�(nφ + 2

α
)

�(φ)n+1

∏n
i=1 t

αφ−1
i

(
∑n

i=1 t
α
i )

nφ+2/α exp
(
ψ(φ)

(
φ − 1

α

)
− φ

)
dφ dα.



STATISTICS 841

Letα be fixed. By the digamma recurrence relationψ(φ) = −1/φ + ψ(φ + 1)wehave that limφ→0+ (ψ(φ)/1/φ) =
−1. Therefore

lim
φ→0+

ψ(φ)
(
φ − 1

α

)− φ

1
φ

= lim
φ→0+

ψ(φ)
1
φ

(
φ − 1

α

)
− φ2 = −1 ×

(
0 − 1

α

)
− 0 = 1

α
> 0.

Since the above limit is positive by the basic properties of limit, there is a b> 0 such that ψ(φ)(φ − 1/α)− φ > 0
for all φ ∈ (0, b]. However, this also implies ψ(φ)(φ − 1/α)− φ∝φ→0+ (1/φ), which by Proposition A.4 follows that
ψ(φ)(φ − 1/α)− φ ∝ 1/φ in (0, b]. That is, there exists c> 0 such that ψ(φ)(φ − 1/α)− φ ≥ c(1/φ) for all φ ∈
(0, b]. Note that

�

(
nφ + 2

α

)
∝

φ→0+
�

(
2
α

)
∝

φ→0+
1 and

(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ+ 2
α

∝
φ→0+

(
∏n

i=1 tit)
−1

(
∑n

i=1 t
α
i )

2/α ∝
φ→0+

1.

Moreover, from Equation (A2), (1/�(φ)n)∝φ→0+φn. Therefore, we have

∫ ∞

0
αn
�(nφ + 2

α
)

�(φ)n+1

∏n
i=1 t

αφ−1
i

(
∑n

i=1 t
α
i )

nφ+2/α exp
(
ψ(φ)

(
φ − 1

α

)
− φ

)
dφ ∝

∫ b

0
1 × φn × 1 × exp

(
ψ(φ)

(
φ − 1

α

)
− φ

)
dφ ≥

∫ b

0
φn × exp

(
c
φ

)
dφ

(
φ= 1

x
)

=
∫ ∞

1/b

ecx

xn+2 dx = ∞

and

dZ(t) =
∫ ∞

0

∫ ∞

0
αn
�(nφ + 2

α
)

�(φ)n+1

∏n
i=1 t

αφ−1
i

(
∑n

i=1 t
α
i )

nφ+2/α exp
(
ψ(φ)

(
φ − 1

α

)
− φ

)
dφ dα =

∫ ∞

0
∞ dα = ∞

A.3 Proof of Theorem 3.4
Let θ = (μ,φ,α), where the parameter space of θj is independent of θ−j for j= 1,2,3. Then, after some algebraic
manipulations in Equation (7), we have

h1/21,1 (θ) = α

μ

√
φ2ψ ′(φ)2 − ψ ′(φ)− 1

ψ ′(φ)
(
1 + 2ψ(φ)+ φψ ′(φ)+ φψ(φ)2

)− ψ(φ)2
= f1(μ)g1(φ)g1(α)

where f1(μ) = 1/μ, g1(φ) =
√
φ2ψ ′(φ)2 − ψ ′(φ)− 1/ψ ′(φ)(1 + 2ψ(φ)+ φψ ′(φ)+ φψ(φ)2)− ψ(φ)2 and

g1(α) = α.

h1/22,2 (θ) =
√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1
= g2(μ)f2(φ)g2(α),

where g2(μ) = 1, f2(φ) =
√
ψ ′(φ)− ψ(φ)2/2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1 and g2(α) = 1.

h1/23,3 (θ) =
√
1 + 2ψ(φ)+ φψ ′(φ)+ φψ(φ)2

α
= g3(α)g3(μ)f3(φ),

where g3(μ) = 1, g3(φ) =
√
1 + 2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 and f3(α) = 1/α.

Following the Proposition 3.3, for the ordered parameters (μ,φ,α) the conditional reference prior are

π(α|φ,μ) ∝ f3(α) ∝ 1
α
, π(φ|μ) ∝ f2(φ) ∝

√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1

and

π(μ) ∝ f1(μ) ∝ 1
μ
.

Therefore, the joint θ-reference prior is given by

πR(μ,φ,α) ∝ π(α|φ,μ)π(φ|μ)π(μ) ∝ 1
αμ

√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+ φψ ′(φ)+ φψ(φ)2 + 1
.
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A.4 Proof of Theorem 3.5
The reference prior is given by πR(α,μ,φ) ∝ πR(φ)

μα
where by Proposition A.7 we have

πR(φ) ∝
φ→0+

1√
φ

and πR(φ) ∝
φ→∞

1
φ
.

Since (αn−1πR(φ)/�(φ)
n)μnαφ−1{∏n

i=1 t
αφ−1
i } exp{−μα∑n

i=1 t
α
i } ≥ 0, by Tonelli theorem

dR(t) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

αn−1πR(φ)

�(φ)n
μnαφ−1

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dμ dφ dα

=
∫ ∞

0

∫ ∞

0
αn−2 πR(φ)�(nφ)

�(φ)n
(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ dφ dα ≥
∫ 1

0

∫ ∞

1
αn−2 πR(φ)�(nφ)

�(φ)n
(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ dφ dα

∝
∫ 1

0

∫ ∞

1
αn−2 �(nφ)

φ�(φ)n
(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ dφ dα ∝
∫ 1

0
αn−2

∫ ∞

1
φ(n−1)/2−1nnφ

(
∏n

i=1 t
α
i )
φ

(
∑n

i=1 t
α
i )

nφ dφ dα

=
∫ 1

0
αn−2

∫ ∞

1
φ(n−1)/2−1

⎛
⎝ n

√∏n
i=1 t

α
i

(1/n)
∑n

i=1 t
α
i

⎞
⎠

nφ

dφ dα. =
∫ 1

0
αn−2

∫ ∞

1
φ(n−1)/2−1 e−np(α)φ dφ dα

=
∫ 1

0
αn−2 �((n − 1)/2, np(α))

(np(α))(n−1)/2 dα ∝
∫ 1

0
αn−2 1

(nα2)(n−1)/2 dα ∝
∫ 1

0
α−1dα = ∞.

A.5 Proof of Theorem 3.6
The Jeffreys/Reference prior is given by πJR(α,μ,φ) ∝ πJR(φ)

μ
√
α

where πJR(φ) = √πJ(φ)πR(φ) and by Propositions A.6
and A.7 we have

πJR(φ) ∝
φ→0+

1
4√φ and πJR(φ) ∝

φ→∞
1
φ
.

Since αn−1/2(πJR(φ)/�(φ)
n)μnαφ−1{∏n

i=1 t
αφ−1
i } exp{−μα∑n

i=1 t
α
i } ≥ 0, by Tonelli theorem we have

dJR(t) =
∫
A
αn−1/2 πJR(φ)

�(φ)n
μnαφ−1

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dθ

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
αn−1/2πJR(φ)

1
�(φ)n

μnαφ−1

{ n∏
i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dμ dφ dα

=
∫ ∞

0

∫ ∞

0
αn−3/2πJR(φ)

�(nφ)
�(φ)n

(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ dφ dα dφ dα

= s1(t)+ s2(t)+ s3(t)+ s4(t),

where s1(t), s2(t), s3(t) and s4(t) are presented below

s1(t) =
∫ 1

0

∫ 1

0
αn−3/2πJR(φ)

�(nφ)
�(φ)n

(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ dφ dα

∝
∫ 1

0

∫ 1

0
αn−3/2 × φ−1/4 × φn−1

⎛
⎝ n
√∏n

i=1 t
α
i∑n

i=1 t
α
i

⎞
⎠

nφ

dφ dα =
∫ 1

0
αn−3/2

∫ 1

0
φn−1/4−1 e−nφq(α) dφ dα

=
∫ 1

0
αn−3/2 1

(nq(α))n−1/4 γ

(
n − 1

4
, nq(α)

)
dα ∝

∫ 1

0
αn−3/2 1

1n−1/4 × 1 dα =
∫ 1

0
αn−3/2 dα < ∞.
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s2(t) =
∫ ∞

1

∫ 1

0
αn−3/2πJR(φ)

�(nφ)
�(φ)n

(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ dφ dα

∝
∫ ∞

1

∫ 1

0
αn−3/2 × φ−1/4 × φn−1

⎛
⎝ n
√∏n

i=1 t
α
i∑n

i=1 t
α
i

⎞
⎠

nφ

dφ dα =
∫ ∞

1
αn−3/2

∫ 1

0
φn−1/4−1 e−nφq(α) dφ dα

=
∫ ∞

1
αn−3/2 1

(nq(α))n−1/4 γ

(
n − 1

4
, nq(α)

)
dα ∝

∫ ∞

1
αn−3/2 1

αn−1/4 × 1 dα =
∫ ∞

1
α−5/4 dα < ∞.

s3(t) =
∫ 1

0

∫ ∞

1
αn−

3
2 πJR(φ)

�(nφ)
�(φ)n

(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ dφ dα

∝
∫ 1

0

∫ ∞

1
αn−

3
2 × 1

φ
× nnφφ

n−1
2 (

n
√∏n

i=1 t
α
i∑n

i=1 t
α
i
)nφ dφ dα =

∫ 1

0
αn−3/2

∫ ∞

1
φ(n−1)/2−1 e−nφp(α) dφ dα

=
∫ 1

0
an−3/2 1

(np(α))(n−1)/2 �

(
n − 1
2

, np(α)
)
dα ∝

∫ 1

0
αn−3/2 1

(α2)(n−1)/2 × 1 dα =
∫ 1

0
α−1/2 dα < ∞.

s4(t) =
∫ ∞

1

∫ ∞

1
αn−

3
2 πJR(φ)

�(nφ)
�(φ)n

(
∏n

i=1 ti)
αφ−1

(
∑n

i=1 t
α
i )

nφ dφ dα

∝
∫ ∞

1

∫ ∞

1
αn−3/2 × 1

φ
× nnφφ(n−1)/2

⎛
⎝ n
√∏n

i=1 t
α
i∑n

i=1 t
α
i

⎞
⎠

nφ

dφ dα =
∫ ∞

1
αn−3/2

∫ ∞

1
φ(n−1)/2−1e−nφp(α) dφ dα

=
∫ ∞

1
an−3/2 1

(np(α))(n−1)/2 �

(
n − 1
2

, np(α)
)
dα

∝
∫ ∞

1
αn−3/2 1

α(n−1)/2 × α(n−1)/2−1 e−n log(tm/ n√∏n
i=1 ti)α dα =

∫ ∞

1
α−5/2 e−L(t)α dα < ∞.

where L(t) = n log( tm
n√∏n

i=1 ti
) > 0. Therefore, we have dJR(t) = s1(t)+ s2(t)+ s3(t)+ s4(t) < ∞.
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