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a b s t r a c t 

Background and objectives: The number of deaths worldwide due to melanoma has risen in recent times, 

in part because melanoma is the most aggressive type of skin cancer. Computational systems have been 

developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin lesions. How- 

ever, there still remains a challenge to improve classifiers for the diagnosis of such skin lesions. The main 

objective of this article is to evaluate different ensemble classification models based on input feature ma- 

nipulation to diagnose skin lesions. Methods: Input feature manipulation processes are based on feature 

subset selections from shape properties, colour variation and texture analysis to generate diversity for 

the ensemble models. Three subset selection models are presented here: (1) a subset selection model 

based on specific feature groups, (2) a correlation-based subset selection model, and (3) a subset selec- 

tion model based on feature selection algorithms. Each ensemble classification model is generated using 

an optimum-path forest classifier and integrated with a majority voting strategy. The proposed models 

were applied on a set of 1104 dermoscopic images using a cross-validation procedure. Results: The best 

results were obtained by the first ensemble classification model that generates a feature subset ensemble 

based on specific feature groups. The skin lesion diagnosis computational system achieved 94.3% accu- 

racy, 91.8% sensitivity and 96.7% specificity. Conclusions: The input feature manipulation process based on 

specific feature subsets generated the greatest diversity for the ensemble classification model with very 

promising results. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Skin cancer is one of the most common cancers worldwide,

nd its incidence has increased in recent years [1] . Computational

iagnosis systems have been developed to assist dermatologists

n early diagnosis of skin cancer from dermoscopic images. The

earch for more efficient classifiers for these computational sys-

ems is a challenging task. Several studies have proposed an en-

emble of classifiers, commonly known as a multiple classifier

ystem or an ensemble classification model to improve skin le-

ion classifications from dermoscopic images [2–4] . An ensemble

f classifiers consists of integrating several classification models in

rder to develop a more robust system that provides more accu-

ate results than by using a single classifier [5] . There are different
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oting methods [6] for integration strategies based on the outputs

f the input classifiers for ensemble classification models, e.g., ma-

ority voting that counts the votes for each class of all the input

lassifiers and then designates the class with the majority votes as

he classification result. Statistical methods, such as average, sum,

roduct and median can also be used for this same purpose [7] , as

ell as for cases of numeric predictions. 

One important requisite for constructing ensembles is to en-

ure diversity between the classification models, which can be per-

ormed by manipulating the modelling process or the input data.

anipulation of the modelling process consists of constructing the

lassification models by using either different learning algorithms

r a single learning algorithm but with different parameters. The

ore popular approaches for input data manipulation are to ma-

ipulate the training samples and the input features. Algorithms

sed to manipulate the training samples can generate multiple hy-

otheses, in which a learning algorithm is applied to different sub-

ets of the training samples. Bagging and boosting algorithms are

he traditional ways to manipulate the training samples [5] , and
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Fig. 1. Two examples of pigmented skin lesions: (a) benign lesion and (b) malignant lesion. 
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their hypotheses are integrated by a vote method. The bagging al-

gorithm consists of randomly splitting the original dataset in sev-

eral training subsets of the same size based on sampling with re-

placement, which can be applied to any learning algorithm. Like-

wise, the boosting algorithm combines the classification outputs

using the same learning algorithm; however, this type of algorithm

is iterative, where each new model is based on the result of the

previously built one. 

Algorithms for manipulating the input features generate ensem-

bles based on different feature subsets available to the learning al-

gorithm. This process can be, for example, the random splitting of

a set of features into subsets [8] , or by using a feature selection al-

gorithm combined with manipulation of the training samples [4] .

One challenge that affects the performance of classifiers is how to

define which features are meaningful to describe the patterns of

interest. Consequently, feature selection algorithms [9] can be used

for the ensemble construction in order to achieve superior perfor-

mance for skin lesion classifications. 

This article presents ensemble classification models based on

input feature manipulation to improve skin lesion computational

diagnosis from dermoscopic images. Two examples of pigmented

skin lesions in dermoscopic images are shown in Fig. 1 . The main

contributions of this study are the feature subset selection mod-

els based on specific feature groups and the feature selection al-

gorithms for the input feature manipulation. To the best of our

knowledge, few studies based on ensemble models and feature

manipulation for skin lesion classification have been presented

with successful results [10, 11] . 

This article is organized as follows: Studies relating to the

ensemble methods for skin lesion classification are discussed in

Section 2 . The proposed ensemble classification models based on

input feature manipulation are presented in Section 3 . The ex-

perimental results, which include the evaluation process, feature

subset and feature selection evaluations, ensemble classification

models evaluation and comparison between the classification al-

gorithms used are given in Section 4 . A discussion about the re-

sults obtained with the proposed ensemble classification models

taken into account the state of the art is presented in Section 5 .

Finally, the conclusions drawn for the proposed ensemble classifi-

cation models and future works about the skin lesion classification

are pointed out in Section 6 . 

2. Related studies 

An overview of computational methods for pigmented skin le-

sion classification in images, which addresses the feature extrac-

tion and selection, and classification steps, is presented in [12] . The

ensemble of classifiers based on input data manipulation has been

recently adopted for skin lesion classification to achieve better re-

sults than single classifiers. Several algorithms can be used for con-

structing ensembles; e.g., the AdaBoost [13] , which is a popular

boosting algorithm that maintains a set of weighting systems for
he training samples according to a computed error rate. In [2] , the

roposed classification system using AdaBoost obtained the best

esults by using colour features and with combinations of two to

ve base classifiers for the detection of melanomas and nevi. 

Random forest [14] is another ensemble algorithm used for skin

esion computational diagnosis. This algorithm is a variation of the

agging algorithm that is used to create an ensemble of decision

rees that ensure the diversity by using a random selection of fea-

ures to split each tree node. Its error rates are comparable to Ad-

Boost, but are more robust with respect to noise. Rastgoo et al.

15] proposed an automatic system to differentiate melanoma from

ysplastic nevi by using texture features and random forest. Barata

t al. [10] built a system for melanoma detection using the ran-

om forest algorithm based on the global and local feature fusion

f colour and texture properties. 

The random forest algorithm also obtained promising results in

 system proposed by Garnavi et al. [16] . The authors developed an

ptimized selection and integration of features derived from tex-

ure, border and geometrical properties. Rastgoo et al. [11] pro-

osed an automatic framework based on ensemble methods to

ifferentiate melanoma from dysplastic and benign lesions. This

ramework used a random forest algorithm and a combination of

olour and texture features based on global features. Maragoudakis

nd Maglogiannis [17] presented a novel ensemble classification al-

orithm for skin lesion diagnosis. The authors combined random

orests with the Markov blanket notion to perform an inherent fea-

ure selection process in order to obtain more informative features.

sing 32 features based on border, colour and texture properties,

he classification result using a dataset of 1041 skin lesion images

as increased from 4.5% to 6% in comparison with the traditional

andom forest, support vector machine (SVM) and k-nearest neigh-

our (KNN) algorithms, which were also combined with standard

eature reduction techniques, namely, principal component analysis

PCA) and singular value decomposition (SVD). 

Other ensemble classification models have also been proposed

or skin lesion classification. In [18] , an ensemble model, based on

eature random subsets, a linear SVM classifier and forward model

election for the ensemble fusion, was proposed. The best re-

ults were obtained by concatenating the pattern prediction values,

hich are considered middle-level features. Schaefer et al. [4] pro-

osed a multiple classifier system to deal with imbalanced classes.

uch a system consists of a random under-sampling method, an

VM using a polynomial kernel, and a neural network for the clas-

ifier fusion. In addition, a feature selection algorithm is applied to

ach classifier, and a diversity measure is used for pruning a pool

f classifiers. The authors used features based on shape, colour and

exture properties for the melanoma and benign lesion classifica-

ion. 

The ensemble of classifiers based on model manipulation pro-

ess has also been adopted for skin lesion classification, which

onsists of constructing the multiple classification models by us-

ng different learning algorithms, or a single learning algorithm
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ut with different parameters or structures. In [19] , a novel mul-

iple classifier system for the early diagnosis of melanoma was

roposed based on the combination of different classification al-

orithms, which demonstrated a superior performance relatively

o the use of each classifiers alone. The proposed system com-

ines three different types of classifiers, namely, linear discrim-

nant analysis (LDA), C4.5 decision tree and kNN classifiers, and

ses 38 geometric and colourimetric features as input for the clas-

ifiers, and a voting scheme to combine the outputs of each clas-

ifiers. The performance of the proposed system was compared

gainst the performances of each classifier when used alone and

lso relatively to the performances of eight dermatologists. The

ystem achieved a performance that was significantly higher than

he ones achieved by each classifier, and a performance compara-

le to the dermatologists. 

A novel meta-ensemble model based on multiple neural net-

ork ensembles was proposed by Xie et al. [20] . The authors used

7 features based on colour and texture properties from two le-

ion regions obtained by a combination of the self-generating neu-

al network (SGNN) method and manual interaction followed by

tsu’s threshold. In addition, the authors proposed novel lesion

order features so that the model would be insensitive to the in-

ompleteness of the lesion regions. The PCA technique was used

o reduce the feature dimensions and to define the best feature

ubset. The meta-ensemble model is composed of three ensembles

ith different structures and network types. The model combines

ack-propagation (BP) neural networks with fuzzy-neural networks

FNNs) to increase individual net diversity. The standard boosting

ethod was used to generate individual nets, and the voting and

veraging methods were designed to combine the multiple out-

uts. The authors used two dermoscopy datasets to perform the

xperiments: a dataset that includes 240 images of the xanthous

ace and a dataset with 360 images of the caucasian race. 

. Description of the proposed ensemble classification models 

In this section, the ensemble classification models based on in-

ut feature manipulation for skin lesion computational diagnoses,

s well as the dermoscopic image dataset used are presented. Fig. 2

ives an overview of three different models developed for the in-

ut feature manipulation in order to generate diversity for the en-

embles of classifiers. Given a dataset T = { x p ,y p }, with p = 1, 2…, n ,

ccording to the number of images n , where x p is a sample, and

 p is the class to which it belongs. Each sample x p is composed of

 set of features F pq , where q = 1, 2…, m , and m is the number of

eatures. An ensemble P = { C 1 , C 2 ,…, C E }, with i = 1, 2, …, E , and E

s the ensemble size, where C i ( i ∈ {1, 2, …, E }) is composed of the

lassification models obtained with the input feature manipulation,

 base classifier using optimum-path forest (OPF) [21] and an inte-

ration strategy. One classification model is obtained in each itera-

ion i by a subset of feature S i ( i ∈ {1, 2, …, E }) that is sampled from

 pq based on specific feature groups or with a feature selection al-

orithm ( Figs. 2 a and 2 b, respectively). The classification models

re also obtained by applying several feature selection algorithms

 i ( i ∈ {1, 2, …, E }) from F pq ( Fig. 2 c). 

.1. Dermoscopic image dataset 

The dermoscopic image dataset used in the experiments is

omposed of pigmented skin lesions, which were collected from

he International Skin Imaging Collaboration (ISIC) dataset [22] . In

ddition, the 1279 images are paired with an expert manual that

ontains the skin lesion diagnoses, as well as the ground-truth le-

ion segmentations in the form of binary masks. In this study, the

xtracted features from the images are based on shape properties,
olour variation and texture analysis. The images in which the le-

ion did not fully fit within the image frame (174 images identified

n the Appendix) were removed from the original dataset, since the

hape properties are obtained from the lesion borders. Thus, in the

nd, a total of 1104 images were used from the original dataset. Of

hese, 916 images were benign lesions and 188 images were malig-

ant lesions. The images of the dataset were proportionally resized

o an average resolution of 400 × 299 pixels to simplify their pro-

essing. 

.2. Feature extraction and data pre-processing 

The feature extraction process is based on the intensities of

he pixels belonging to the binary masks defined by specialists,

n which the non-zero pixels belong to the lesion, and the oth-

rs to the background skin. A combination of features, based on

hape properties, colour variation and texture analysis using differ-

nt feature extraction methods, were used in this study. A total of

10 features were extracted for each skin lesion image. Of these, 18

eatures were related to the shape properties, 72 features to colour

ariation, and 420 features to the texture analysis. 

a) Shape properties: shape measures are computed based on the

geometrical properties, lesion asymmetry and border irregular-

ity. To assess the geometrical properties of the lesion, the area,

perimeter, equivalent diameter, compactness, circularity, solid- 

ity, rectangularity, aspect ratio and eccentricity [23–25] were

computed. To assess the lesion asymmetry, three features were

computed from the lesion, i.e., the average, variance and stan-

dard deviation. These features were obtained from the ratios

between the shortest and longest distances of each pair of the

semi-lines that represent the perpendicular lines by overlap-

ping the two sub-regions of the lesion along an axis [26] . To

assess the border irregularity, a number of peaks, valleys and

straight lines of the border were computed using the vector

product and inflexion point descriptors based on low and high

irregularities of the border from a one-dimensional border [26] .

b) Colour variation: the RGB, HSV, CIE Lab and CIE Luv colour

spaces [27] were used to analyse the colour variation of the

skin lesions. The RGB colour space is commonly used and the

original RGB colour image can be converted to other colour

spaces, and several studies have achieved good results from

this colour space [23, 28] . The HSV, CIE Lab and CIE Luv colour

spaces represent colours based on human perception. Further-

more, CIE Lab and CIE Luv are approximately perceptually uni-

form colour spaces and can simplify the identification of colour

properties, as it is easy to maintain colour-difference ratios [29] .

Six statistical measures, i.e., average, variance, standard devi-

ation, minimum and maximum colours, and colour skewness,

are computed for each colour channel in the region of the le-

sion using the aforementioned four-colour spaces that corre-

spond to 12 channels. 

c) Texture analysis: three different texture analysis methods were

adopted to obtain the best features to represent the skin le-

sion texture based on colour images; namely, fractal dimen-

sion analysis [30] , discrete wavelet transform (DWT) [31] and

co-occurrence matrix [32] . The RGB, HSV, CIE Lab and CIE Luv

colour spaces were also used for the texture analysis. The bi-

dimensional fractal dimension using a box-counting method

[30] is computed individually for each channel of the colour

spaces. The energy and entropy measures from the coefficients

obtained by DWT are computed for each of the 10 Haar wavelet

sub-bands obtained by a-three-level decomposition, as well as

for each channel of the colour spaces. Co-occurrence matrices

were obtained for each channel of the colour spaces, and the

intensities of each channel were quantized with 16 intensity
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Fig. 2. Overview of the proposed ensemble classification models based on input feature manipulation for the skin lesion computational diagnosis: (a) feature subset ensemble 

(SE-OPF), (b) feature subset ensemble with a feature selection algorithm (SEFS-OPF), and (c) feature set ensemble with feature selection algorithms (FEFS-OPF). 
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levels. The distance between each reference pixel and its neigh-

bours was one pixel, and four orientations θ = (0 ◦, 45 ◦, 90 ◦,

135 ◦) were used. A normalized matrix was obtained from the

matrices corresponding to the four orientations. From the nor-

malized co-occurrence matrix, 14 statistical measures based on

Haralick’s texture features [32] were extracted from the image.

These measures are the angular second moment, contrast, cor-

relation, variance, inverse difference moment, sum average, sum

variance, sum entropy, entropy, variance difference, entropy dif-

ference, information measure of correlation 1, information mea-

sure of correlation 2, and the maximal correlation coefficient.

Therefore, 12 features were extracted from the fractal dimen-

sion analysis, 240 features were extracted from the discrete

wavelet transform, and 168 features were extracted from the

co-occurrence matrix. 

As the values of the dataset obtained by feature extraction con-

tain different ranges they were normalized into the same interval

[0,1] for the skin lesion classification process. The normalization

procedure scales all numeric values in the dataset by computing:

x n pq = 

x pq − min ( x pq ) 

max ( x pq ) − min ( x pq ) 
, (1)

where p = 1, 2…, n, q = 1, 2…, m, n is the number of samples and

m is the number of features. Thus, x pq is the actual value of fea-

ture q in the sample p , with the minimum and maximum val-

ues of features of all the sets of samples, and xn pq is the normal-

ized value of same feature q in the same sample p . In addition,

the unbalanced dataset problem is considered in this study, since

the dataset is composed of 916 samples of benign lesions and 188

samples of malignant lesions. These unbalanced datasets concern-

ing the number of samples in each class can decrease the accuracy
f the evaluation results, since the classification tends to be based

n the classes with the largest number of occurrences. Different

ampling methods [33] have been used to solve such classification

roblems [4, 34] . Here, the resampling procedure was applied to

he dataset [5] . This procedure produces a random subsample of

he dataset using sampling with replacement and the class distri-

ution is made into a uniform distribution. 

.3. Feature selection 

The feature selection process aims to find the best feature sub-

ets to generate the ensembles of classifiers. Feature selection al-

orithms are usually a combination of both search and evaluation

ethods [9] . Search methods can be applied to select a candidate

ubset from extracted features of skin lesions, which is evaluated

nd compared to the previous best subset until a given stopping

riterion is reached. In this study, six feature selection algorithms

ere applied to generate different feature subsets for the ensem-

le of classifiers; namely, Pearson’s correlation coefficient [35] , gain

atio-based feature selection (GRFS) [5] , information gain-based

eature selection [35] , relief-F [36] , principal-component analysis

PCA) [37] and correlation-based feature selection (CFS) [38] . These

lgorithms have been commonly used for skin lesion feature se-

ections [12] since they have several advantages, such as compu-

ationally efficiency, are simple and fast algorithms, independent

valuation criteria, and have the ability to overcome over-fitting. 

All feature selection algorithms mentioned earlier are single-

eature evaluators, with the exception of CFS that is a feature sub-

et evaluator. The single-feature evaluators are used with a ranking

ethod, where the features are ranked individually, according to

heir evaluation, i.e., the most relevant. The number of features to
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e maintained is previously defined. The feature subset evaluators

easure a subset of features and they return a value that is used

n the search [5] . In this study, both the greedy stepwise and best

rst search methods were adopted. 

The greedy stepwise method searches feature subsets in either

he forward or backward directions in a greedy way. The selection

rocess must stop when the addition or removal of any feature

ccurs that worsens the outcome of the best-found subset until

hat moment. The best first method searches the feature subsets

y greedy hill-climbing, and the search direction can be forward,

ackward or bi-direction. The forward selection process starts with

n empty set, and the best features are gradually added to the

et, according to the performance obtained from the evaluation

ethod, whereas the backward selection process starts with all

eatures and the worst features are removed at each iteration. The

i-direction selection combines both the forward and backward

earches. 

.4. Base classifier and integration strategy 

In this study, the focus is on homogeneous ensemble methods

hat are built with only one base classifier through input feature

anipulation, and the classification model results are combined by

n integration strategy. The number of base classifiers used defines

he ensemble size. An OPF classifier [21] based on input feature

anipulation for a set of training data was used to generate the

nsemble classification models in this work. 

The OPF classifier has been applied to address pattern recogni-

ion problems as a graph based on prototypes to represent each

lass by one or more optimum-path trees, considering some key

amples. The training samples are nodes of a complete graph;

hose arcs are the links of all pairs of nodes. The arcs are

eighted by the distances between the feature vectors of their

orresponding nodes. The Euclidean D E ( i,j ), Chebyshev D C ( i,j ) and

anhattan D M 

( i,j ) distance functions [5] were used to measure the

istances between the feature vectors: 

 E ( i, j ) = 

√ 

m ∑ 

q =1 

∣∣x iq − x jq 
∣∣2 

, (2) 

 C ( i, j ) = 

m ∑ 

q =1 

∣∣x iq − x jq 
∣∣, (3) 

 M 

( i, j ) = max 
q = { 1 , 2 ,..,m } 

∣∣x iq − x jq 
∣∣, (4) 

here x iq is the feature value of a sample i, x jq is the feature value

f a sample j, q = 1, 2…, m , and m is the number of features. 

The classification of a new sample is defined according to the

trong connectivity of the path between the sample and the pro-

otype. Therefore, the path with minimum-cost, among all paths,

s considered the optimum one. The OPF classifier shows some in-

eresting properties, such as speed, simplicity, ability to deal with

ulticlass classifications and overlapping between classes, parame-

er independence and no assumption is based on the shape of the

lasses. Ensembles of OPF classifiers for reducing the size of the

raining set using under-sampling were proposed by Ponti Jr and

ossi [39] . The Weka library based on LibOPF was used to set up

he OPF classifier [21] as proposed by Amorim et al. [40] . 

Applying a good integration method is also important for the

erformance of the ensemble model. The challenge is how to inte-

rate the results produced by the base classifiers. Here, the major-

ty voting method [6] combines the classification results to gen-

rate an ensemble model. This method analyses which class re-

eives the majority votes based on the results of all base classifiers

nd therefore the ensemble model must have an odd number of

lassifiers. 
.5. Input feature manipulation for the ensemble classification models

The input feature manipulation process aims to generate di-

ersity for an ensemble classification model with the combination

f the best feature subsets for the base classifier. In this section,

hree different models for the feature manipulation of skin lesions

re presented. These models are based on specific feature groups

nd feature selection algorithms in order to create different feature

ubsets. 

.5.1. Feature subset selection model based on specific feature groups 

The feature type and feature extraction algorithm were taken

nto account in order to establish the feature subset groups to be

nalysed. Hence, the extracted features were divided into: shape

18 features), colour (72 features) and texture (420 features) sub-

ets. Also, the texture feature extraction algorithms based on all

olour spaces, i.e., fractal texture (12 features), wavelet texture

240 features) and Haralick’s texture (168 features), were stud-

ed independently. Moreover, the combination of the shape and

olour subsets (90 features), the shape and texture subsets (438

eatures), and the colour and texture subsets (492 features) were

valuated. In addition, the colour feature extraction algorithms for

ach colour space alone, i.e., RGB colour (18 features), HSV colour

18 features), LAB colour (18 features), and LUV colour (18 fea-

ures) subsets, and the texture feature extraction algorithms for

ach colour space individually, i.e., RGB texture (105 features), HSV

exture (105 features), LAB texture (105 features), and LUV texture

105 features) subsets, were explored. 

The combination of the colour and texture feature extraction

lgorithms was also taken into account for each colour space

lone, i.e., RGB features (123 features), HSV features (123 fea-

ures), LAB features (123 features), and LUV features (123 features)

ubsets. The colour and texture feature subsets were also com-

ined with the shape subset for each colour space individually,

.e., shape + RGB features (141 features), shape + HSV features (141

eatures), shape + LAB features (141 features), and shape + LUV fea-

ures (141 features) were analysed. Therefore, the specific feature

ubset groups built for feature manipulation were: 

• Group 1: shape, colour, and texture (3 subsets); 
• Group 2: fractal texture, wavelet texture, and Haralick’s texture

(3 subsets); 
• Group 3: shape + colour, shape + texture, and colour + texture

(3 subsets); 
• Group 4: RGB colour, HSV colour, LAB colour, and LUV colour (4

subsets); 
• Group 5: RGB texture, HSV texture, LAB texture, and LUV texture

(4 subsets); 
• Group 6: shape + RGB features, shape + HSV features,

shape + LAB features, and shape + LUV features (4 subsets);

and 

• Group 7: RGB algorithms, HSV algorithms, LAB algorithms, and

LUV algorithms (4 subsets). 

The effectiveness of the feature groups is also evaluated in-

ividually in the experimental results section. The feature sub-

et selection model generates a feature subset ensemble (SE-OPF).

lgorithm 1 describes the procedure to set up this ensemble classi-

cation model, which was used for the input feature manipulation

ased on the feature subset groups and was also used by the OPF

lassifier [21] and majority voting [6] . 

.5.2. Correlation-based feature subset selection model 

The correlation-based feature subsets were set up using the fea-

ure subset groups discussed in the previous section and the CFS

lgorithm for the feature selection. The CFS algorithm [38] tries to

nd a set of features that are highly correlated with the class and
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Algorithm 1 SE-OPF. 

Require: 

Ensemble size E , training sample set T , feature set F , group-based feature subsets S ′ 
i 

from the 

feature set F 

Procedure: 

1. for i = 1 to E do 

2. Select one feature subset S i from S ′ 
i 

3. Train the OPF classifier C i using T with the selected feature subset S i 
4. end for 

5. for each new sample do 

6. Compute the majority voting V of all classification models of the ensemble C i 
7. end for 

Algorithm 2 SEFS-OPF. 

Require: 

Ensemble size E , training sample set T , feature set F , group-based feature subsets S ′ 
i 

from the 

feature set F 

Procedure: 

1. for i = 1 to E do 

2. Select one feature subset S i from S ′ 
i 

3. FS ← Selected features from S i using the CFS algorithm 

4. Train the OPF classifier C i by using T with the selected features FS 

5. end for 

6. for each new sample do 

7. Compute the majority voting V of all classification models of the ensemble C i 
8. end for 

Algorithm 3 FEFS-OPF. 

Require: 

Ensemble size E , training sample set T , feature set F 

Procedure: 

1. for i = 1 to E do 

2. FS ← Selected features from F by using a feature selection algorithm A i 
3. Train the OPF classifier C i using T with the selected features FS 

4. end for 

5. for each new sample do 

6. Compute the majority voting V of all classification models of the ensemble C i 
7. end for 
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have low inter-correlation between them. The degree of correlation

between the features is computed by a symmetrical uncertainty,

which is a modified version of the information gain measure. Such

an algorithm is adopted for this subset selection model, since ex-

perimental results using the OPF classifier [21] showed that this

algorithm improved the classification performance more than the

other feature selection algorithms. 

The correlation-based subset selection model generates a fea-

ture subset ensemble with a feature selection algorithm (SEFS-

OPF). Algorithm 2 describes the procedure to set up this ensem-

ble model, which was used for feature input manipulation based

on feature subset groups and the CFS algorithm, as well as the OPF

classifier [21] and majority voting [6] . 

3.5.3. Subset selection model based on feature selection algorithms 

All features discussed in the previous sections were used to

generate the feature subsets. The diversity for an ensemble classifi-

cation model is obtained by using different feature selection algo-

rithms; namely, correlation coefficient [35] , GRFS [5] , information

gain [35] , relief-F [36] , PCA [37] and CFS [38] . This subset selection

model generates a feature set ensemble with feature selection al-

gorithms (FEFS-OPF). Algorithm 3 describes the procedure to set up

this ensemble model, which was used for the input feature manip-

ulation based on the feature selection algorithms A i ( i ∈ {1, 2, …,

E }), and with the OPF classifier [21] and majority voting [6] . 

4. Experimental results 

In this section, the classification results are described. In or-

der to evaluate the effectiveness of the ensemble models for the
lassification of benign and malignant skin lesions, three experi-

ents were performed. First, the experiments for the feature sub-

et and feature selection evaluations; second, the experiments for

he ensemble classification model evaluation; and finally, the ex-

eriments to compare the results with the classification methods

eported in the literature. In addition, the evaluation process used

o evaluate the results is introduced. 

.1. Evaluation process 

The performance of the ensemble classification models based

n the input feature manipulation as described in the previous sec-

ion was evaluated by using a stratified k-fold cross-validation pro-

edure [5] . This kind of procedure consists of splitting the train-

ng set in k subsets of equal size; the procedure being repeated k

imes. In each procedure, one subset is used as a test set while the

thers are used as the training set. The best model based on its

erformance is chosen. Performance is the average accuracy ob-

ained from each trial. The k-fold cross-validation procedure can

e applied to avoid over-fitting while testing the capacity of the

lassifier to generalize. In addition, it has shown good results com-

ared with other procedures [41] . 

The measures used to evaluate the performance of the clas-

ification are accuracy (ACC), sensitivity (SE) and specificity (SP),

hich are based on outcomes of the ensemble of classifiers, ac-

ording to the majority voting. These outcomes represent the num-

er of correct and incorrect classifications for each class, positive

benign) and negative (malignant). These measures are commonly

sed [12] and they are defined as: SE is the percentage of correctly

lassified positive samples with respect to all positive samples, SP
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Table 1 

Performance results for the feature subsets 

compared to different feature groups (best re- 

sult for each group is in bold). 

Group Feature subset ACC 

1 Shape 89.1% 

Colour 91.0% 

Texture 91.6% 

2 Fractal texture 89.9% 

Wavelet texture 90.7% 

Haralick’s texture 88.3% 

3 Shape and colour 90.5% 

Shape and texture 91.3% 

Colour and texture 91.7% 

4 RGB colour 90.6% 

HSV colour 92.0% 

LAB colour 90.3% 

LUV colour 90.3% 

5 RGB texture 91.8% 

HSV texture 91.1% 

LAB texture 91.2% 

LUV texture 90.8% 

6 Shape and RGB features 91.6% 

Shape and HSV features 93.0% 

Shape and LAB features 92.7% 

Shape and LUV features 91.7% 

7 RGB features 90.8% 

HSV features 91.2% 

LAB features 92.5% 

LUV features 91.4% 
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Table 2 

Comparing several feature selection algorithms 

(best result is in bold). 

Feature selection Features ACC 

Correlation coefficient 75 89.6% 

GRFS 25 91.1% 

Information gain 75 90.8% 

Relief-F 75 91.0% 

PCA 31 91.0% 

CFS 50 91.6% 
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s the percentage of correctly classified negative samples with re-

pect to all negative samples, and ACC is the percentage of cor-

ectly classified positive and negative samples based on all sam-

les. 

A cost function C adopted from Barata et al. [2] is used to deal

ith the trade-off between SE and SP, which is defined as: 

 = 

c 10 ( 1 − SE ) + c 01 ( 1 − SP ) 

c 10 + c 01 

, (5) 

here c 10 is the cost of an incorrectly classified benign lesion (FN),

nd c 01 is the cost of an incorrectly classified malignant lesion

FP). The costs used to evaluate the classification were c 10 = 1 and

 01 = 1.5, since an incorrect classification of a malignant lesion is

ore critical. The lower the value of cost C , the better the classifi-

ation is. 

.2. Evaluation of the feature subset and feature selection 

In order to define the best feature subsets for the ensem-

le classification models, several subsets based on specific feature

roups discussed in the previous section were evaluated. Table 1

hows the results for each feature subset using the OPF classifier.

hree distance functions, i.e., Euclidean, Chebyshev and Manhattan

ere compared using this classifier, in order to find the distances

etween the feature vectors. The Euclidean distance was the best

istance function for this classifier, according to the experiments

sing all features, which achieved an ACC of 92.3%. Consequently,

his distance function was used for all other experiments in this

tudy. 

The results in Table 1 indicate that there is diversity between

he feature subsets. The three best feature subsets were the shape

ombined with the HSV features, the LAB features, and the HSV

olour. The shape, colour and texture features provided an im-

rovement to the classification when they were combined. The

exture features, i.e., the fractal, wavelet and Haralick’s features,

chieved better results when the features were combined than

hen they were used individually. The feature extraction algo-

ithms for each colour space provided better results when com-

ined with the shape features. 
The diversity for an ensemble classification model is also ob-

ained by using different feature selection algorithms. Such algo-

ithms were used to find the best features for the classification

rocess. The single-feature evaluators use a ranking method, i.e.,

he correlation coefficient, GRFS, information gain, relief-F and PCA,

nd a set of retained number of features is empirically defined by

 = {25, 50, 75}, with the exception of PCA that chooses a suffi-

ient number of eigenvalues to rank the new transformed features.

he maximum number of features F = 5 was used to include the

ransformed features, and the proportion of variance V = 0.95 was

sed to retain a sufficient number of PC features. Accordingly, 31

igenvalues were selected by the PCA algorithm to represent the

ector with the new features. The feature estimation defined the

umber of nearest neighbours k = 10 for the relief-F. 

In the case of the feature subset evaluator, i.e., CFS, the greedy

tepwise search method, in either forward or backward directions,

s applied until the addition or removal of any feature produces a

ecrease in evaluation. Consequently, 37 features were selected in

he forward direction and 50 in the backward direction. The best

rst search method was also carried out until five consecutive non-

mproving features, in the directions: forward (37 features), back-

ard (50 features) or bi-direction (37 features) were found. How-

ver, experimental results, using the OPF classifier as discussed in

he previous section, showed that this method did not improve

he classification when applied with the stepwise search method.

herefore, only the stepwise search method was used with CFS and

ompared with the other feature selection algorithms. 

Table 2 shows the best classification results using the feature

election algorithms. Although all the feature selection algorithms

btained good results, the OPF classifier using the features selected

y the CFS algorithm achieved the best results. These algorithms

ere applied to generate the feature subsets for the ensemble clas-

ification models. 

.3. Evaluation of the ensemble classification models 

The performance of the three ensemble classification models

ased on the input feature manipulation, OPF classifier and ma-

ority voting; namely, the SE-OPF, SEFS-OPF, FEFS-OPF algorithms,

ere evaluated using ten-fold cross-validation. Four ensembles of

lassifiers were generated for each algorithm, where E = {3, 5, 7,

} describes the ensemble size, i.e., the number of base classifiers.

everal subsets based on the combination of the specific feature

roups were performed for the feature manipulation using the SE-

PF algorithm. The best subsets of the specific feature groups were

erformed for the feature manipulation based on the SEFS-OPF al-

orithm using the CFS algorithm for each ensemble. In addition, all

xtracted features were performed using different feature selection

lgorithms for the feature manipulation based on the FEFS-OPF al-

orithm. Table 3 shows the combination of the subsets and feature

election algorithms for each ensemble that achieved the best clas-

ification results. 

Table 4 shows the best classification results for each ensem-

le model. The SE-OPF algorithm achieved its best classification
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Table 3 

Combination of the subsets and feature selection algorithms for each ensemble. 

Ensemble classification model Number of classifier Feature subsets 

SE-OPF 3 Shape, colour and texture 

5 Shape, RGB features, HSV features, LAB features and LUV features 

7 Shape, colour, texture, shape + RGB features, shape + HSV features, shape + LAB features and shape + LUV 

features 

9 Shape, RGB colour, HSV colour, LAB colour, LUV colour, RGB texture, HSV texture, LAB texture and LUV texture 

SEFS-OPF 3 Shape + CFS, colour + CFS and texture + CFS 

5 Shape + CFS, RGB features + CFS, HSV features + CFS, LAB features + CFS and LUV features + CFS 

7 Shape + CFS, colour + CFS, texture + CFS, shape + RGB features + CFS, shape + HSV features + CFS, shape + LAB 

features + CFS and shape + LUV features + CFS 

9 Shape + CFS, RGB colour + CFS, HSV colour + CFS, LAB colour + CFS, LUV colour + CFS, RGB texture + CFS, HSV 

texture + CFS, LAB texture + CFS and LUV texture + CFS 

FEFS-OPF 3 All features + PCA, all features + CFS and all features + GRFS 

5 All features + PCA, all features + correlation coefficient, all features + GRFS, all features + information gain and 

all features + relief-F 

7 All features + PCA, all features + correlation coefficient, all features + GRFS, all features + information gain, all 

features + relief-F, all features + CFS (best first) and all features + CFS (stepwise) 

9 All features + PCA + OPF (ED), all features + CFS + OPF (ED), all features + GRFS + OPF (ED), all 

features + PCA + OPF (CD), all features + CFS + OPF (CD), all features + GRFS + OPF (CD), all features + PCA + OPF 

(MD), all features + CFS + OPF (MD) and all features + GRFS + OPF (MD) 

ED: Euclidean distance, CD: Chebyshev distance and MD: Manhattan distance. 

Table 4 

Classification results for the ensemble classification models (best results are in 

bold). 

Ensemble classification model ACC SE SP C 

SE-OPF (feature subsets + OPF) 94.3% 91.8% 96.7% 0.053 

SEFS-OPF (feature subsets + CFS + OPF) 93.9% 91.8% 96.0% 0.057 

FEFS-OPF (all features + FS + OPF) 93.7% 90.4% 96.9% 0.057 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Variation of the classification measures, according to the ensemble size es- 

tablished for each ensemble classification model: (a) accuracy, (b) sensitivity and 

(c) specificity. 
results using E = 9. Likewise, 9 classifiers for the ensemble yielded

the best results for the SEFS-OPF algorithm, whereas the FEFS-OPF

algorithm obtained its best results using E = 3. Although the SE-

OPF algorithm did not have all the best classification measures, it

resulted in a more balanced classification between the benign and

malignant classes, i.e., with a lower classification cost. The classifi-

cation results are presented in more detail in Fig. 3 , which shows

the variation of the accuracy, sensitivity and specificity measures,

according to the ensemble size defined for each ensemble classifi-

cation model. 

4.4. Comparison between classification algorithms 

The classification results achieved by the best ensemble model

proposed here, based on the input feature manipulation as pre-

viously discussed, were compared against the ones obtained us-

ing three different ensemble algorithms. These algorithms are

commonly used in the literature; namely, bagging [6] , AdaBoost

[13] and random forest [14] . The proposed ensemble model was

also compared to the individual OPF classifier [21] to analyse the

effectiveness of the ensemble algorithms. In addition, this classifier

was adopted as a base classifier for the bagging and AdaBoost algo-

rithms, since these algorithms can be used with any learning algo-

rithm. The classification algorithms were applied with and without

feature selection based on all the extracted features. The CFS algo-

rithm was used in these experiments, since it improved the classi-

fication more than the other feature selection algorithms, as men-

tioned previously. Table 5 shows the results using different classi-

fication methods, as well as the results of the proposed model; the

best results for each measure are shown in bold. 

The results in Table 5 indicate that only the bagging and Ad-

aBoostM1 algorithms achieved better results by using the features

selected by the CFS algorithm rather than without the feature se-

lection. Although the AdaBoostM1 algorithm without the feature

selection yielded a better accuracy and achieved an average dis-
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Table 5 

Comparative results between classification algorithms (best results 

are in bold). 

Classification algorithms ACC SE SP C 

OPF 92.3% 87.5% 97.1% 0.067 

OPF (CFS) 91.6% 87.0% 96.2% 0.075 

Bagging (OPF) 89.7% 85.9% 93.5% 0.095 

Bagging (CFS + OPF) 91.8% 88.4% 95.3% 0.075 

AdaBoostM1 (OPF) 92.3% 92.3% 92.3% 0.077 

AdaBoostM1 (CFS + OPF) 91.6% 87.0% 96.2% 0.075 

Random forest 93.9% 91.3% 96.6% 0.055 

Random forest (CFS) 93.7% 90.4% 96.9% 0.057 

Proposed model (SE + OPF) 94.3% 91.8% 96.7% 0.053 
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inction between the benign and malignant classes, the cost was

igher because the specificity was not very expressive. On the

ther hand, the random forest algorithm was more effective with-

ut the feature selection, since it obtained a better accuracy and a

ower cost between the sensitivity and specificity. In addition, this

lgorithm obtained better classification results than the bagging

nd AdaBoostM1 algorithms. Likewise, the individual OPF classifier

ithout the feature selection achieved better results than the bag-

ing and AdaBoostM1 algorithms. Nevertheless, the accuracy ob-

ained by the OPF classifier was not better than the random for-

st algorithm and the proposed model. Moreover, the classification

ost was higher between the sensitivity and specificity. The pro-

osed model showed good generalization between the benign and

alignant classes. Furthermore, this model achieved a better ac-

uracy and lower cost compared to other classification algorithms

sed in the literature. 

. Discussion 

The main objective of this study was to develop and evalu-

te different classification models based on ensemble methods us-

ng input feature manipulation in order to improve the classifi-

ation results for early image based diagnosis of skin cancer. The

est proposed ensemble classification model achieved ACC = 94.3%,

E = 91.8% and SP = 96.7% in a dataset of 1104 dermoscopic images.

his model was built by using the feature subset selection based

n the combination of the specific feature subset groups for in-

ut feature manipulation, the OPF as base classifier, and the ma-

ority voting strategy to integrate several classification models. The

lassification results from the proposed model were more accurate

han when the OPF classifier was used alone, and also more accu-

ate than the standard ensemble algorithms, which are commonly

ound in the literature. Since this study did not use all the im-

ges from the original dataset, as mentioned previously, the re-

ults cannot be directly compared with the results obtained in

he works that used the same dataset and the ground-truth lesion

egmentation masks presented in [22] . These works used the full

et of images from the data set which consisted of 1279 images

nd they divided them into test and training sets. The best results

ere achieved by Lequan et al. [42] using the whole dataset, ob-

aining ACC = 0.855, SE = 0.547 and SP = 0.931. These latter authors

roposed a novel method for melanoma recognition by leveraging

ery deep convolutional neural networks. 

Several automatic diagnosis systems based on ensemble meth-

ds have been proposed in the literature for the skin lesion clas-

ification as described in the previous section about related stud-

es. The results obtained from the proposed model are in line with

hose of other studies found in the literature, which also proposed

nsemble methods to improve the classification of skin lesions and

chieved high values of accuracy, sensitivity and specificity. In con-

rast, the studies presented in the literature usually computed the

E measure to represent the number, or percentage, of correctly
lassified malignant lesions, and the SP measure to represent the

umber, or percentage, of correctly classified benign lesions. For

xample, Barata et al. [2] proposed a classification system using

he AdaBoost algorithm that achieved SE = 96% and SP = 80% in a

ataset of 176 dermoscopic images. Rastgoo et al. [15] developed

n automatic system based on texture features and random for-

st algorithm, which achieved SE = 98% and SP = 70% in a dataset

f 180 dermoscopic images. Barata et al. [10] built a classification

ystem based on the fusion of global and local features using the

andom forest algorithm, which obtained SE = 98% and SP = 90% in

 dataset of 200 dermoscopic images, and SE = 83% and SP = 76%

n a dataset of 482 images. Rastgoo et al. [11] proposed an au-

omatic framework that used a random forest algorithm and a

ombination of colour and texture features based on global fea-

ures, which obtained SE = 94% and SP = 92% in a dataset of 193

ermoscopic images. Abedini et al. [18] developed an ensemble

odel based on feature random subsets, a linear SVM classifier and

orward model selection for the ensemble fusion, which achieved

CC = 91%, SE = 97% and SP = 65% in a dataset of 200 dermoscopic

mages. Schaefer et al. [4] proposed a multiple classifier system

hat consists of a random under-sampling method, an SVM with

 polynomial kernel, and a neural network for the ensemble fu-

ion, which obtained ACC = 93.83%, SE = 93.76% and SP = 93.84% in

 dataset of 564 dermoscopic images. Xie et al. [20] developed a

ovel meta-ensemble model based on multiple neural network en-

embles, which achieved ACC = 94.17%, SE = 95% and SP = 93.75% in

 dataset of 240 dermoscopic images of the xanthous race, and

CC = 91.11%, SE = 83.33% and SP = 95% in a dataset of 360 dermo-

copic images of the caucasian race. 

Usually, the automatic computational systems, like the ones

roposed in the above-mentioned studies, include the segmenta-

ion of the skin lesions. Segmentation is an important step that al-

ows the extraction of the regions of interest (ROIs) from an input

mage. Previous studies have shown that computational methods

or image segmentation can provide suitable results for the identi-

cation of skin lesions in images [43, 44] . The classification results

btained can depend on the segmentation method used, since the

eatures are extracted from the segmented ROIs. Thus, segmenta-

ion methods that obtain suitable ROIs may facilitate the classifi-

ation process and lead to better classification results. The lack of

 lesion segmentation process can be seen as a limitation of the

resent study; however, one should note that ground-truth lesion

egmentation masks were used in order to obtain trustworthy clas-

ification results and conclusions. A possible skin lesion segmenta-

ion approach to be combined with the proposed ensemble clas-

ification model can be the one presented in [45] , which is based

n a level-set model and colour models and it has obtained very

romising results. 

Although the ensemble algorithms improve accuracy by com-

ining the different classification models, these algorithms can

resent a high computational complexity and are rather hard to

nalyse [5] . Comprehensible models [46] , which can be used to

olve such problems, aim to produce a single classification model

rom an ensemble model without losing too much accuracy com-

ared to using the integrated hypothesis model. 

The proposed ensemble classification model based on input fea-

ure manipulation was developed using: 1) Visual Studio Express

012 environment, C/C ++ and OpenCV 2.4.9 library for the fea-

ure extraction algorithms; and 2) Eclipse IDE 4.6.1 environment,

avaSE-1.8, and Weka 3.8 library for the classification algorithms.

he feature extraction times for all the images from the binary

asks were: shape - 10.26 min; colour - 10.12 min; fractal texture

 26.79 min; wavelet texture - 34.37 min; and Haralick’s texture -

9.48 min. Finally, the best ensemble classification model required

 total of 60.09 s to process all the samples. These values show

hat the feature extraction step was the most time-consuming;
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however, the computation time required by this step can be con-

siderably decreased using optimized C/C ++ implementations. All

algorithms were performed on an Intel(R) Core(TM) i5 CPU 650 @

3.20 GHz with 8 GB of RAM, running Microsoft Windows 7 Profes-

sional 64-bits. 

6. Conclusion and future works 

In this article, three ensemble classification models based on

input feature manipulation from the shape properties, colour vari-

ation and texture analysis, were presented; namely, the SE-OPF,

SEFS-OPF and FEFS-OPF algorithms. The first model manipulates

the features by using different subsets based on specific feature

groups. The second model manipulates the features by using the

CFS algorithm for the feature selection from the subsets defined in

the first model. Finally, the third model manipulates the features

by using different feature selection algorithms, i.e., correlation co-

efficient, GRFS, information gain, relief-F, PCA and CFS, from all ex-

tracted features. Each ensemble model was generated by using the

OPF base classifier and integrated with the majority voting strat-

egy. The effectiveness of the feature groups and feature selection

algorithms used were individually evaluated to find the best fea-

tures for the classification process, as well as to generate diversity

for the ensemble classification models. 

Promising results were achieved with the proposed ensemble

classification models. The best classification results were obtained

by the feature subset selection model based on feature groups

(SE-OPF algorithm). Nine base classifiers were used for this model

based on shape, RGB colour, HSV colour, LAB colour, LUV colour,

RGB texture, HSV texture, LAB texture and LUV texture subsets,

which yielded the following results: ACC = 94.3%, SE = 91.8% and

SP = 96.7%. The feature manipulation process based on these spe-

cific feature subsets also provided an excellent generation of diver-

sity for the ensemble classification model. 

Future studies for pigmented skin lesion classification from der-

moscopic images should search for new methods to develop more

efficient and effective systems. In order to approach other chal-

lenges of dermoscopy image diagnoses, the proposed ensemble

classification models should be taken into account in future works

to identify the presence of global and local patterns. Discriminat-

ing between benign and malignant skin lesions is a challenging

task for pattern analysis [47] . Essentially, the classification results

can be improved by using deep learning architectures [48] , since

these architectures have revealed their capacity to learn from large

amounts of data. Therefore, deep learning architectures should be

taken into account in future works concerning skin lesion classifi-

cation in dermoscopic images. 
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Appendix 

The International Skin Imaging Collaboration (ISIC) image

dataset [22] was used in the experiments presented in this article.

This dataset is composed of 1279 images, however, 175 lesions did

not fully fit into the image and were therefore excluded from this

study; the excluded images were the XXXXX with XXXXX equal to:

0 0 0 04, 0 0160, 0 0183, 0 0,187, 0 0,188, 0 0,189, 0 0195, 0 0202, 0 0203,
 0204, 0 0205, 0 0207, 0 0208, 0 0209, 0 0212, 0 0215, 0 0,217, 0 0224,

 0230 0 0233, 0 0235, 0 0258, 0 0259, 0 0282, 0 0285, 0 0288, 0 0289,

 0290, 0 0292, 0 0293, 0 0294, 0 0295, 0 0299, 0 030 0, 0 0301, 0 0302,

 0303, 0 0307, 0 0310, 0 0311, 0 0321, 0 0359, 0 0368, 0 0371, 0 0390,

 0408, 0 0415, 0 0426, 0 0433, 0 0481, 0 0517, 0 0519, 01142, 09896,

9897, 09904, 09921, 09928, 09934, 09962, 09970, 09980, 09983,

9988, 09990, 09995, 10 0 0 0, 10 0 05, 10 022, 10 029, 10 035, 10 037,

0038, 10041, 10051, 10056, 10057, 10062, 10063, 10065, 10068,

0071, 10073, 10075, 10078, 10093, 10169, 10189, 10190, 10194,

0202, 10204, 10213, 10222, 10228, 10231, 10232, 10235, 10238,

0239, 10242, 10252, 10257, 10267, 10320, 10322, 10323, 10324,

0329, 10331, 10334, 10335, 10342, 10348, 10349, 10369, 10382,

0448, 10454, 10455, 10457, 10459, 10477, 10492, 10495, 10497,

0572, 10588, 10589, 10596, 10603, 10604, 10605, 10847, 10857,

1079, 11088, 11104, 11105, 11109, 11112, 11120, 11121, 11122, 11126,

1128, 11139, 11149, 11151, 11156, 11158, 11159, 11167, 11175, 11203,

1212, 11229, 11295, 11300, 11322, 11327, 11329, 11334, 11347,

1348, 11349, 11350, 11356, 11360, 11361, 11373, 11374, 11387,

1390, 11402. 
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