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Graphical abstract

Abstract

Background: Mammography is a wordwild image modality used to diagnose breast cancer, even for asymptomatic women. Due to its large 
availability, mammograms can be used to measure breast density and to predict cancer development.
Methods: We developed a methodology to estimate breast density using post-processed digital mammogram. Our automatic approach utilizes an 
optimized Fuzzy C-Means with variable compactness algorithm to classify and quantify fibroglandular tissue in mammograms.
Results: Fibroglandular tissue percentage estimation by our method has been compared with BI-RADS assessment from radiologist and achieved 
67.8% of correct classification, with Spearman’s correlation coefficient of ρ = 0.618, for p < 0.001. Furthermore, a Bland–Altman statistics 
showed no significant differences (bias of −0.20 ± 1.52) between both methods, indicating that the assessment widely used in clinical routine is 
consistent with the results generated by the algorithms. Cohen’s kappa coefficient comparing the performance of the algorithm with the visual 
assessment for the different BI-RADS scores was 0.47 suggesting a moderate agreement.
Conclusion: Then, our methodology showed to be robust and accurate when compared with visual assessment. Furthermore, our methodology is 
fully automatic and reproducible, avoiding inter and intra observers variation, which has a potential to be implemented in clinical routine.
© 2017 AGBM. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Breast cancer risk in women may be estimated from her age, 
history of breast biopsy, family history of breast cancer and 
breast density on an initial mammogram [1]. Studies have re-
ported that women with increased mammographic density have 
a four- to six-fold increase in their risk of developing breast 
cancer [2,3].

In clinical routine, radiologists perform subjective visual as-
sessments based on Breast Imaging Reporting and Data Sys-
tems (BI-RADS) density classification [2,3]. This is an impor-
tant task to follow up patients under prevention therapy. How-
ever, BI-RADS density categories have limitations [4]. It has 
been suggested that subjective assessment of mammographic 
density shows variable intra- and inter-observer agreement [4,
5]. Furthermore, BI-RADS categories are too coarse to monitor 
breast density changes in individual women [4]. For this rea-
son, tasks such as selection of women who may benefit from 
supplemental screening exams and prediction of breast cancer 
risk, may be challenging with only subjective density assess-
ment [3,6,7].

Therefore, developing quantitative methods of measuring 
breast density has become a relevant approach, which is less 
dependent on the observer [3,8]. Fully automatic methods for 
breast density (BD) measurements have been proposed to accu-
rately quantify mammographic density [3,4,8,9]. The standard 
method to estimate BD in scientific research is the Cumulus 
software, which is an area-based approach [7,10]. However, 
these methods presents problems with accuracy and repro-
ducibility [11]. In addition, these techniques have some limi-
tations, such as dependence on the parameters of image forma-
tion, the need of a small calibration object to be imaged in each 
mammogram, and compressed breast thickness value [9,12,13]. 
Furthermore, most of these semi-automated methods necessi-
tate an experience user to define a threshold stage, which is 
time-consuming [5,14] and implies in measurement variability 
[7].

Area-based and volumetric methods in literature are often 
applied in raw images. However, most medical centers achieve 
only the post-processed images for clinical purposes. There-
fore, development of methodology to estimate BD in post-
processed mammogram would be beneficial both in terms of di-
rect clinical application and retrospective research-related stud-
ies [15,16].

An alternative modality for estimating content of tissues in-
volves Magnetic Resonance Imaging (MRI). MRI has the po-
tential to quantify fibroglandular tissue with a much higher de-
gree of accuracy and precision than mammography [2,17] and, 
therefore, has been used to estimate BD. But MRI is costly, re-
quires intravenous contrast agent administration, has a risk for 
contrast agent reactions, and is not well tolerated by all patients 
[6].

Breast is compressed during mammography exam, produc-
ing a projection image, which contains a variable combination 
of fibroglandular and adipose tissues. In general, pixels are nei-
ther pure fibroglandular nor pure adipose tissues [2]. Fuzzy 
C-Means (FCM) approach allows pixels to belong to multi-
ple clusters with reasonable degree of membership grades [18]. 
Fuzzy C-Means with Variable Compactness (FCMVC) is an ex-
tended version of this algorithm, which improves pixel classifi-
cation, when compared with popular FCM approach. Therefore, 
fibroglandular and adipose tissue may be classified with greater 
accuracy.

The aim of this work is to use an optimized FCMVC [19]
algorithm to estimate the percentage of BD using digital mam-
mography. The methodology, presented in Section 2, is applied 
in post-processed mammograms. Section 3 is dedicated to com-
pare the BD results from the proposed algorithm with BI-RADS 
system, and shows its accuracy and reproducibility.

2. Materials and methods

2.1. Dataset

The present study was developed with ethical approval from 
the authors’ institutions under protocol number 50547315.8.
0000.5411.

Women aged 18 years or older undergoing screening mam-
mography between 2013 and 2015 at Botucatu Medical School 
were included. For a woman who has been included in the 
study, she must have had no previous history of breast cancer or 
breast surgery, and had a BI-RADS assessment of either 1 or 2 
(negative or benign finding, respectively). Only mammography 
of one side, left or right, was used for each patient in craniocau-
dal view, allowing assessment of different breast compositions. 
A total of 30 mammograms were evaluated.

The mammography system used was a Senographe 600T 
(GE Healthcare, Milwaukee, WI) with a CR-85X image digi-
tizer (Agfa-Gevaert Group, Mortsel, BE). An Agfa image plate 
(18 × 24 cm2 or 24 × 30 cm2) with a pixel pitch of 50 µm was 
employed. A Mo/Mo anode/filter combination was used for all 
X-ray exposures. Processed images were used, since raw data 
is often not achieved in clinical practice [16].

For each evaluated mammography, an experienced radiolo-
gist rated breast density according to the qualitative BI-RADS 
density category (4th edition): category 1 implies breast tissue 
that is less than 25% glandular; category 2, breast tissue that 
is approximately 25–50% glandular; category 3, breast tissue 
that is approximately 51–75% glandular; and category 4, breast 
tissue that is more than 75% glandular.

2.2. Developed algorithm

The proposed algorithm has been developed in Matlab soft-
ware to estimate fibroglandular breast tissue percentage. The 
algorithm is a fully automatic hybrid method, which uses dif-
ferent image processing techniques. It is based on FCMVC [19,
20]. Detailed process is explained in the following subsections.

2.2.1. Preprocessing
In the first stage, the mammogram is segmented into the 

breast area by thresholding based on the gray-level intensity 
histogram, as literature employs [15], resulting in a mask with 
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Fig. 1. a) Filtered image; b) Equalized image; and c) Rough fibroglandular mask.
the region of interest. A median filter is then applied in the 
breast area to reduce image noise.

2.2.2. Optimizing fuzzy C-means with variable compactness
FCMVC approach is based on FCM algorithm, which is an 

unsupervised clustering algorithm [19,20]. The advantage of 
FCMVC is that any cluster definition is improved by classify-
ing pixels with a parameter called compactness (pi ). FCMVC 
is formulated as the minimization of the following objective 
function with respect to the fuzzy membership functions, the 
centroids and parameter pi :

JFCMV C =
n∑

j=1

c∑

i−1

μ̂ij (xj − vi)
2pi

where n is the number of pixels which are classified into c clus-
ters, μij ∈ [0,1] is the fuzzy membership of the input pixel xi

and vi is the ith centroid associated to each cluster. Minimiza-
tion of JFCMV C gives the membership functions as:

μij =
(
xj − vi

)−2pi

∑c
i=1

(
xj − vi

)−2pi

For the implementation of FCMVC algorithm, it is necessary 
to introduce values for compactness and initial centroids. To 
do so, we optimize the algorithm by using information from 
equalized image, as described below.

The parameter pi is a measure of compactness of a clus-
ter, which should be large for small classes and small for large 
classes [19,20]. Therefore, for mammographic image, it is nec-
essary to use different compactness values depending on breast 
type. As an example, adipose breasts has low amount of fibrog-
landular pixels representing a small group. Thus, in this exam-
ple, adipose and fibroglandular clusters should have small and 
large compactness values, respectively. An exhaustive search 
was performed to estimate pi , such that pixel classification 
generated could segment fibroglandular and adipose tissue effi-
ciently.

For the purpose of the current study, the algorithm pre-
classifies mammograms combining the two top and bottom BI-
RADS category as “dense” and “fat” groups.
The classification is based on skewness values from equal-
ized histogram image. “Fat” group has greater skewness values 
than “dense” group. Then, a threshold was stablished to auto-
matically differentiate breast groups. Thus, a different compact-
ness value is applied for each breast group.

In FCMVC, the energy function is minimized if high mem-
bership values are assigned to observations close to centroids 
and low membership values to observations far away from cen-
troids. In each iteration, the centroid values are updated to 
achieve pixel classification. However, the choice of initial cen-
troid value is important to reduce bias classification, to mini-
mize number of iterations, time and computational cost.

In this work, initial centroid values are estimated for each 
image. This step is represented in Fig. 1. The segmentation 
of dense tissue is roughly estimated by a thresholding process 
in the equalized image (Fig. 1b), resulting in a fibroglandular 
mask (Fig. 1c). This mask is employed in the filtered image 
(Fig. 1a) to have the mean pixel intensities values. The mean 
adipose pixel values are computed with the remaining pixels. 
These values are then used to estimate the initial centroids in 
FCMVC.

2.2.3. Applying fuzzy C-means with variable compactness
FCMVC is applied in filtered mammography image to seg-

ment tissues in three different clusters, using the centroids and 
compactness parameters achieved before.

Defuzzification process was made by alpha-cut technique, 
using 0.95 as thresholding value. According to breast groups, 
classified in Section 2.2.2, each cluster represents different tis-
sues. For “fat” breast group, clusters 1 and 2 represent pixels 
from adipose tissue; and cluster 3, fibroglandular tissue. On the 
other hand, for “dense” breast group, cluster 1 represents adi-
pose tissue, while clusters 2 and 3 correspond to fibroglandular 
tissue.

As tissues are represented by different clusters in each mam-
mogram groups (“fat” and “dense”), a different weight is given 
to clusters to calculate the percentage of fibroglandular tissue.

As a result, algorithm estimates the fibroglandular tissue per-
centage (FTP) in mammograms. FTP was computed by divid-
ing the fibroglandular tissue area by total breast area.
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Table 1
Confusion matrix to compare breast 
groups using results from skewness 
versus BI-RADS density score.

Algorithm
B

I-
R

A
D

S Fat Dense
Fat 16 1 17
Dense 4 9 13

20 10 30

Table 2
Confusion matrix for breast density 
using our algorithm versus BI-RADS 
density score.

Algorithm

B
I-

R
A

D
S

1 2 3 4
1 1 3 0 0 4
2 0 12 1 0 13
3 0 1 7 0 8
4 0 3 2 0 5

1 19 10 0 30

3. Results

From BI-RADS assessment made by the radiologist 4 mam-
mograms were classified as category 1, 13 as category 2, 8 as 
category 3 and 5 as category 4, totalizing 30 mammograms.

As a result of using skewness to previously separate breasts 
into “fat” and “dense” groups, we obtained 83.3% of correct 
classification. At−test, comparing skewness values, shows sig-
nificant difference (p < 0.05) between the “dense” and “fat” 
breast groups. Table 1 shows the confusion matrix to compare 
breast groups classified using results from skewness versus BI-
RADS density score given by the radiologist. Cohen’s kappa 
coefficient comparing breast groups was 0.65 suggesting good 
agreement.

The estimated FTP by our method was compared with the as-
sessment made by radiologist using BIRADS system, for each 
evaluated image, and achieved a 67.8% rate of correct classifi-
cation.

Agreement between the BI-RADS density category and es-
timated FTP by the proposed method were determined with the 
Spearman’s correlation coefficient. This results showed a highly 
significant positive correlation with visual assessment, with 
Spearman’s correlation coefficient of ρ = 0.618, for p < 0.001. 
Table 2 shows the confusion matrix for BD using results from 
our algorithm versus BI-RADS density score given by the radi-
ologist. Furthermore, Cohen’s kappa coefficient comparing the 
performances of the algorithm with the visual assessment for 
the different BI-RADS scores was 0.47 suggesting a moderate 
agreement.

In addition, Bland–Altman statistics were used to evaluate 
agreement between both assessments, to quantify the amount 
and direction of bias, and to determine the upper and lower lim-
its of agreement (bias ±1.96 of the difference). Fig. 2 shows 
the Bland–Altman plot of the score difference between FTP es-
timated by our method and the radiologist evaluations.
Fig. 2. Bland–Altman plot for brest density assessment. The difference refers 
to the BI-RADS minus the algorithm assessment. The difference between BI-
RADS and algorithm scores was compared with the average score between the 
radiologist and computational results. Dashed lines represents the interval of 2 
standard deviations. The middle line represents bias of −0.20 ± 1.52.

Fig. 3. Mammogram assessed as category 3 by BI-RADS. a) Filtered mammog-
raphy; b) Cluster 1: adipose tissue; c) Cluster 2: almost completely fibroglan-
dular tissue; and d) Cluster 3: fibroglandular tissue.

An example of FCMVC as a tool to segment tissues is 
showed in Fig. 3 for a “dense” breast group. Fig. 3a shows 
a mammogram classified as category 3 by radiologist BI-
RADS evaluation. Figs. 3b–d illustrate membership function 
for the three clusters. In this example, Fig. 3b shows an 
adipose cluster while Figs. 3c–d shows fibroglandular clus-
ters.
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4. Discussion

We developed a methodology to estimate BD based on post-
processed digital mammogram. Our automatic approach uti-
lizes an optimized FCMVC algorithm to classify and quantify 
fibroglandular tissue in mammograms. FTP estimation by our 
method was compared with BI-RADS assessment from radiol-
ogist.

In relation with the results of breast groups pre-classification, 
skewness values could be used with high accuracy to signif-
icantly differentiate breast as “fat” and “dense”. As mammo-
graphic images has high resolution, statistics may reliably be 
performed in histogram analysis [15], such as skewness mea-
surement. This classification was important to stablish com-
pactness and initial centroid values. Therefore, compactness 
values could be correctly assigned for each breast group. Fur-
thermore, initial centroids values resulted in a few iteration 
in FCMVC, showing their good estimations. The dispended 
time by radiologists to make BI-RADS assessment may vary in 
the clinical practice according to radiologist experience, breast 
composition, and others [21]. The developed method showed 
be fast and easy to run, which implied in a short computational 
time (∼ 130 s per exam in a mammogram with approximately 
4700 × 5600 pixels).

Comparing the proposed method with BI-RADS, results 
suggest that this computational procedure offers a reliable, ob-
jective, and precise method that can be used to supplement 
visual grading, thereby providing a more advanced method for 
assessing BD in mammograms. Different from BI-RADS as-
sessment, algorithm results presented no score equal to 4, as 
shows Fig. 2. Literature shows that when subjective visual eval-
uation is used, radiologists tend to give the maximum value [7]. 
Quantitative methods to evaluate breast density tend to under-
estimate values when compared to BI-RADS and MRI assess-
ment [3,4,7], and our results corroborate with this.

From the statistical analyses comparing both methods, there 
was a positive association between FTP and the BI-RADS den-
sity scale. The rate of correct classification and Spearman’s 
correlation coefficient found in this work represents a good as-
sociation and low dispersion between methods. Results from 
confusion matrix and Cohen’s kappa coefficient comparing the 
performances of the algorithm with the visual assessment for 
the different BI-RADS suggests a moderate agreement. The 
Bland–Altman analysis showed no significant differences (bias 
of −0.20 ± 1.52) between both methods, indicating that the as-
sessment widely used in clinical routine is consistent with the 
results generated by the algorithms. These differences were suf-
ficiently small to have the same confidence level for the results 
for both methods.

Fig. 3 shows an example of original and the three clus-
ters used in our method. Visual examination of the clusters 
(Figs. 3b–d) revealed good segmentation of tissues.

One of the limitations of our study is that our approach is 
based in projected area, since it does not take the thickness 
of dense tissue into account. Dense volume is expected to be 
a more ‘biologically relevant’ measure and to be a better pre-
dictor of breast cancer risk [3,7,22]. However, no volumetric 
method for mammography has been used as standard method 
yet [23]. Furthermore, differences in breast positioning, com-
pression, and technical parameters have also been suggested 
as factors that could influence the apparent volumetric density 
of a mammogram [6,14]. Other limitation is that only one ra-
diologist evaluated mammograms accordingly with BI-RADS 
and, therefore, intra and inter variability could not me assessed. 
Furthermore, future works should be done to evaluate the per-
formance of our methodology using different mammography 
systems with different imaging parameters.

Automatic BD measurements would be easier to implement 
in screening programs due to the tendency to be less time-
consuming and labor-intensive than visual assessment with BI-
RADS breast density [7]. Objective BD measurements is im-
portant to develop breast cancer risk models and may be used 
in the development of personalized screening protocols [3]. The 
methodology presented herein, is free from variability inter-
and intra-observer. In conclusion, our study shows that it is 
feasible to obtain automatic measurements of BD from digital 
mammograms.

This encouraging result invites us to improve our algorithm. 
We expect that it will have the capability to segment breast tis-
sue objectively and accurately, avoiding subjective assessment 
by BI-RADS.
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