
Journal of Non-Newtonian Fluid Mechanics 247 (2017) 165–177 

Contents lists available at ScienceDirect 

Journal of Non-Newtonian Fluid Mechanics 

journal homepage: www.elsevier.com/locate/jnnfm 

The “avalanche effect” of an elasto-viscoplastic thixotropic material on 

an inclined plane 

Cassio M. Oishi a , ∗, Fernando P. Martins a , Roney L. Thompson 

b 

a Departamento de Matemática e Computação, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Presidente 

Prudente 19060-900, São Paulo, Brazil 
b Department of Mechanical Engineering, COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 

21945-970, Brazil 

a r t i c l e i n f o 

Article history: 

Received 30 March 2017 

Revised 10 July 2017 

Accepted 15 July 2017 

Available online 19 July 2017 

Keywords: 

Elasto-viscoplastic thixotropic materials 

Avalanche effect 

Finite difference Marker and Cell method 

Transient computations 

Free-surface boundary conditions 

a b s t r a c t 

The so-called avalanche effect is one of the fingerprints of thixotropic materials. This self-reinforcing pro- 

cess where the decrease in viscosity, due to a rejuvenation process triggered by a stress field, induces 

a motion which in turn contributes to decrease the viscosity again, is well exemplified by the inclined 

plane problem. In this situation, the material in its fully-structured state is placed on an inclined plane 

with respect to the gravity force which is responsible for the beginning of the breakdown process. These 

thixotropic systems generally have a yield stress, a strength that must be overcome in order to induce 

rejuvenation. In addition, they exhibit elastic features, especially in the pre-yield state. In the present 

work we numerically solve the transient evolution of an elasto-viscoplastic thixotropic material subjected 

to the action of gravity on an inclined plane. In order to handle with the moving free-surface bound- 

ary condition encountered in the avalanche effect , we have used a combination of the Marker-And-Cell 

(MAC) method with the front-tracking scheme. This formulation was successfully employed for this kind 

of material in the recent paper of Oishi et al. (2016) [28]. In the present work, we have adapted our 

finite difference formulation to analyze the effects associated with an extended Herschel–Bulkley model 

in the simulation of a transient complex free surface flow. Concerning the parameters of the flow curve, 

it is shown that the dimensionless yield stress (plastic number) is the most significant one. However, 

for a fixed plastic number, different combinations of dimensionless consistency index and dimensionless 

Newtonian viscosity plateau can lead to a diversity of responses. The thixotropic equilibrium time had 

a significant impact on shifting the instant when the flow regime changes from an accelerating (when 

the front part of the material accelerates) to a retardation one (when this front part decelerates). Higher 

elasticity, as captured by the Weissenberg number, led to longer distances covered by the material. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Time-dependent materials can be found in many processes like

he ones present in cosmetics, food, mining, and oil industries.

hey constitute a class of materials with an internal microstruc-

ure that presents a non-negligible delay between a change in

he applied stress and the corresponding rearrangement of its mi-

rostructure. The material property that is usually associated with

he structure state is viscosity. An important subclass of time-

ependent materials is the thixotropic one [1–4] . In this case, the

iscosity is a decreasing function of the applied stress and the

hanges in structure are reversible, i.e. when the stress is removed,

tructure builds up. 
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A major class of time-dependent systems are the viscoplastic

nes, i.e. materials which possess a yield stress. This class of mate-

ials exhibit solid-like to liquid-like transition when the yield stress

s overcome. Many yield-stress materials are thixotropic, and there-

ore the connections between viscoplasticity and changes in mi-

rostructure are important ones [5,6] . In addition, in the solid-like

tate, elasticity is significant in these materials while its impor-

ance decreases as structure decays. These observations have mo-

ivated the conception of models for elasto-viscoplastic thixotropic

aterials [2,7–13] . These models can be roughly divided into two

roups. One that takes a viscoplastic model as a basis to which

lasticity and thixotropic effects are added and another where a

iscoelastic model is the starting point to which viscoplasticity and

hixotropy are included. Discussions with respect to some advan-

ages and disadvantages of these two types of elasto-viscoplastic

http://dx.doi.org/10.1016/j.jnnfm.2017.07.001
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models were conducted by Mewis and Wagner [3] and by Souza

Mendes and Thompson [4] . 

Advances on the understanding of viscoplastic thixotropic ma-

terials have contributed to the investigation of geophysical flows

like avalanches of snow, the flow of volcanic lava, the flow of mud

and mining dejection. These flows are characterized by the action

of gravitational forces on the process of rejuvenation and yielding

of the material. The slump test (fifty-cent rheometer) [14–17] and

the Bostwick consistometer device [18] are usual tools that are em-

ployed to measure the rheology of such complex materials. The

dambreak is a controlled lab problem where the effects of the ac-

tion of gravity can be investigated [19,20] . 

Due to the presence of gravity currents [21] associated with

free-boundary conditions, it is crucial that these problems are tack-

led by a transient approach since the evolution of the material as

its structure is being broken is an important part of the solution of

the problem. In particular, the so-called avalanche effect constitutes

one of the fingerprints of thixotropic phenomenon. As discussed by

[22,23] the avalanche effect is the self-reinforcing process where

the initial rejuvenation due to gravity (for example) that a fully-

structured material experiences leads to a motion which in turn

increases the applied stress and contributes to a new round of vis-

cosity decrease. 

In the present work we study the avalanche effect problem rep-

resenting the material by an elasto-viscoplastic thixotropic model

that was recently developed in a series of papers [11,24–27] . The

transient numerical solution is provided through the finite differ-

ence scheme, as recently performed by Oishi et al. [28] . This nu-

merical framework combines the MAC method with front-tracking

for describing the free surface boundary condition in the pres-

ence of moving fluid interface. Moreover, the governing equations

for mass and momentum are numerically solved via projection

method (fractional step method) while the normal stress condi-

tion at free surface is treated by an implicit formulation. The latter

strategy maintains good stability properties for dealing with low

Reynolds number non-Newtonian free surface flows. 

2. Mathematical formulation 

The mathematical formulation is the same as the one presented

in [28] and hence, we repeat here its dimensionless form for the

purpose of being self-contained. 

The flow curve that captures the relation between stress and

shear rate is assumed to be associated with an apparent-yield-

stress fluid that possesses a yield stress, τ y , a power-law term,

K ˙ γ n , and a constant viscosity term, η∞ 

˙ γ . 

Because of the nature of the problem, instead of adopting a

characteristic velocity scale, U c , we define a characteristic stress,

τ c , as a primitive quantity. Following [29] , τ c is defined as the

maximum stress intensity, σ , of the domain, evaluated at t = 0 .

Therefore, τ c , as well as the characteristic length scale, L c , depends

on the specific problem analyzed. In particular, the formal defini-

tion of τ c for studying the avalanche effect in the present work is

given by Eq. (37) . No flow will happen if τ c ≤ τ y , i.e. if the max-

imum stress intensity value does not overcome the yield stress.

Accordingly, the characteristic velocity, U c , is defined with respect

to the maximum potential of destruction, the difference between

the maximum stress at t = 0 and the yield stress. Needless to say,

 c = 0 , in case τ c ≤ τ y . From now on, we assume that τ c exceeds

τ y . Because of the power-law term that confers a non-linear char-

acter with respect to a characteristic velocity, U c is defined by the

implicit equation 

τc = τy + K 

(
U c 

L c 

)n 

+ η∞ 

U c 

L c 
(1)
hich can be made dimensionless using the characteristic stress,

c , as follows 

 = τ ∗
y + K 

∗ + η∗
∞ 

, (2)

here 

∗
y = 

τy 

τc 
, K 

∗ = 

K 

τc 

(
U c 

L c 

)n 

, η∗
∞ 

= 

η∞ 

ηc 
(3)

nd ηc ≡ τ c L c / U c . In Eq. (1) , K and n are the consistency and expo-

ent of the power-law term in the flow curve. 

We have used the following dimensionless variables: 

 

∗ = t 
U c 

L c 
, ∇ 

∗ = L c ∇, u 

∗ = 

u 

U c 
, 

∗ = 

τ

τc 
, p ∗ = 

p 

ρU 

2 
c 

, g 

∗ = 

g 

g 
, D 

∗ = D 

L c 

U c 
. 

(4)

q. (1) is based on the non-regularized version of the extended

erschel–Bulkley model considered here to represent the flow

urve behavior. 

The present work adopts a traditional approach to describe the

tructure level of the material, namely the use of a scalar quan-

ity, λ∈ [0, 1], that is intended to capture the current structure

tate. The extreme values correspond to the minimum structured

tate ( λ = 0 ) and the maximum structured state ( λ = 1 ). We have

dopted one of the simplest forms of evolution of the structure

arameter, whose dimensionless form is found in Eq. (11) , i.e.

he rate of change of the structure level is an increasing func-

ion of the driving potential, the difference between the current

nd the equilibrium values of the structure parameter. The param-

ter that represents the importance of the thixotropic effects is the

imensionless equilibrium time, t ∗eq = t eq U c / L c which compares the

hixotropic time with characteristic time of the flow. 

Other dimensionless quantities used in this work are the ones

ssociated with the connection between bulk quantities, like vis-

osity and elastic modulus, with the structure parameter. The di-

ensionless relaxation viscosity, η∗( λ), is given by 

∗(λ) = η∗λ
0 η

∗(1 −λ) 
∞ 

− η∗
∞ 

(5)

here the quantities η∗
0 and η∗∞ 

are the fully structured and totally

nstructured dimensionless values of viscosity, using ηc as a char-

cteristic quantity. The elastic modulus, in turn, is connected with

he structure parameter by the dimensionless function f ( λ), which

s given by 

f (λ) ≡ G 

G 0 

= exp 

[ 
m 

(
1 

λ
− 1 

)] 
, (6)

here m is a positive constant. 

The dimensionless total stress, σ , is given by 

= −p I Re + 2 η∞ 

D + τM , (7)

here τM is the non-Newtonian extra-stress tensor whose evolu-

ion equations is given by 

∂ τM 

∂t 
+ ∇ · (u τM ) − [(∇u ) · τM + τM · (∇u ) 

T 
] 

= 

f (λ) 

Wi 
[ − 1 

η(λ) 
τM + 2 D ] . 

(8)

Therefore, the versions of the mathematical modeling equa-

ions, omitting the asterisk symbol, are given by 

 · u = 0 , (9)

∂ u 

∂t 
+ ∇ · ( u u ) = −∇ p + 

1 

Re 

(
η∞ 

∇ 

2 u + ∇ · τM 

)
+ 

1 

F r 2 
g , (10)

∂λ

∂t 
+ ∇ · ( u λ) = 

1 

t eq 

(
1 − λ

λeq 

)
. (11)
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his set of equations corresponds to i) Eq. (9) , the continuity equa-

ion; ii) Eq. (10) , the balance of momentum equation; iii) Eq. (8) ,

he constitutive equation for the non-Newtonian stress, τM ; iv) Eq.

11) , the evolution equation for the structure parameter, λ. The di-

ensionless numbers corresponding to the Reynolds number, Re ,

he Froude number, Fr , and the Weissenberg number Wi are de-

ned as 

e = 

ρU 

2 
c 

τc 
, F r = 

U c √ 

gL c 
, W i = 

τc 

G 0 

, (12)

here G 0 is the elastic modulus in the fully structured state. From

ow, all variables are presented without the asterisk symbol. 

The thixotropic behavior of the material is taken into account

n the mathematical modeling by the following strategy: 

• Construct the deviatoric part of the non-dimensional stress,

σ dev , according to 

σde v = 

√ 

1 

2 

tr 

[(
σ − 1 

3 

tr( σ) I 
)2 

]
, (13) 

• Once obtained σ dev and considering the flow curve of the form

given by Eq. (1) , solve the non-linear equation 

σde v = ζ ( ˙ γeq ) [ τy + K( ˙ γeq ) 
n ] + η∞ 

˙ γeq , (14)

in order to calculate the non-dimensional equilibrium deforma-

tion rate value, ˙ γeq . In Eq. (14) , we have adopted 

ζ ( ˙ γeq ) = 

{ 

1 if τ ≥ τy 

( η0 − η∞ 

) ̇ γeq 

τy + K( ˙ γeq ) n 
if τ < τy 

(15) 

where 

τ = 

√ 

1 

2 

tr [ σ2 ] . (16) 

It is worth noticing that different functions could have been

adopted in the place of the chosen one for ζ ( ̇ γeq ) as discussed

by Oishi et al. [28] . This function transforms a model conceived

to capture the behavior of a yield-stress material into a model

for apparent-yield-stress fluids. 
• Compute the equilibrium viscosity using the classical definition

ηeq = 

σde v 
˙ γeq 

. (17) 

• Finally, determine λeq ( σ dev ) corresponding to ηeq using the in-

verse of the viscosity function: 

λeq = 

ln ηeq − ln η∞ 

ln η0 − ln η∞ 

, (18) 

i.e. using the inverse function of Eq. (5) . 

In the present paper, two types of boundary are used for study-

ng the avalanche effect : rigid wall and free surface. For the rigid

all, we have enforced no-slip boundary conditions for the veloc-

ty field. On the free surface, the normal stress condition 

 · σ · n 

T = 0 , (19) 

nd the tangential boundary condition 

 · σ · n 

T = 0 , (20) 

re imposed, where n = (n x , n y ) denotes the outward unit normal

ector to the boundary while m = (m x , m y ) is the unit tangent vec-

or. 

Finally, the dynamic of the moving interface is modeled by the

onvection of virtual marker particles solving the following equa-

ion 

˙  = u , (21) 

here u is a known velocity field while x represents the position

f the particles. 
. Overview of the numerical scheme and flow problem 

escription 

The finite difference numerical scheme employed to study the

ransient motions of an elasto-viscoplastic thixotropic material has

een presented by Oishi et al. [28] . Thus, the solution procedure,

ssuming that at time t = t n the total tensor σ , the structure pa-

ameter λ and the markers positions x are known, can be summa-

ized using the following steps: 

1. Solution of the thixotropy considering the structure parameter

at an intermediate time-level λ
(n +1) 

. 

In the first step of the algorithm, the non-linear equation (14) is

solved by a hybrid bisection and Newton–Raphson method.

Once computed the equilibrium deformation rate, ˙ γeq , by the

solution of the non-linear equation, this value is used to obtain

the equilibrium viscosity, ηeq , and the equilibrium structure pa-

rameter, λeq , using respectively Eqs. (17) and (18) . This step

of algorithm is completed solving Eq. (11) by a semi-implicit

scheme: (
1 

δt 
+ 

1 

t eq λeq 

)
λ

(n +1) = 

λ(n ) 

δt 
+ 

1 

t eq 
− ∇ · ( u 

(n ) λ(n ) ) , (22)

where δt is the time-step. 

2. Calculation of the non-Newtonian tensor at an intermediate

time-level ( τM ) (n +1) . 

The second step of the computational cycle is related to the so-

lution of the constitutive equation (8) by the explicit forward

Euler scheme, for instance: 

( τM 

) 
(n +1) − ( τM ) 

(n ) 

δt 
= −∇ · (u 

(n ) ( τM ) 
(n ) 

) 

+ [(∇u 

(n ) ) · ( τM ) 
(n ) + ( τM ) 

(n ) · (∇u 

(n ) ) 
T 
] 

+ 

f ( λ
(n +1) 

) 

Wi 
[ − 1 

η( λ
(n +1) 

) 
( τM ) 

(n ) + 2 D 

(n ) ] . (23) 

It is worth remarking that the latest value of the structure pa-

rameter obtained in the first step, λ
(n +1) 

, is imposed in Eqs.

(5) and (6) for constructing, respectively, the relaxation viscos-

ity, η( λ
(n +1) 

) , and the function f ( λ
(n +1) 

) . 

3. Computation of velocity and pressure fields. 

In order to uncouple the velocity and pressure fields of the con-

servation equations (9) and (10) , we have employed an adapta-

tion of the projection method for viscoelastic free surface flows

described in previous works [30,31] . Summarily, this step can

be separated in the following sub-steps: 

3.1. Based on the Crank–Nicolson/Adams–Bashforth discretiza-

tion, the momentum equation (10) is solved for computing a

provisional velocity field, ˜ u 

(n +1) = ( ̃  u (n +1) , ̃  v (n +1) ) with an ap-

proximated value of the pressure filed, denoted as p ( n ) , i.e., 

˜ u 

(n +1) 

δt 
− η∞ 

2 Re 
∇ 

2 ˜ u 

(n +1) = 

u 

(n ) 

δt 
+ 

η∞ 

2 Re 
∇ 

2 u 

(n ) − 3 

2 

∇ · (uu ) 
(n ) 

+ 

1 

2 

∇ · (uu ) 
(n −1) − ∇p (n ) + ∇ · ( τM ) 

(n + 1 2 ) + 

1 

F r 2 
g , (24) 

where 

∇ · ( τM ) (n + 1 2 ) = 

1 

2 

[ 
∇ · ( τM ) (n ) + ∇ · ( τM 

) (n +1) 
] 
. (25)

3.2. A correction of the pressure, named ψ 

(n +1) , is obtained

solving the Poisson equation 

∇ 

2 ψ 

(n +1) = ∇ · ˜ u 

(n +1) , (26)
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Fig. 1. Sketch view of the flow problem description. 
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with homogeneous Neumann boundary condition imposed in

the rigid wall. At the free surface, the following equation needs

to be solved: 

ψ 

( n +1 ) 

δt 
− 2 η∞ 

Re 

[(
∂ 2 ψ 

( n +1 ) 

∂y 2 

)
n 

2 
x + 

(
∂ 2 ψ 

( n +1 ) 

∂x 2 

)
n 

2 
y 

− 2 

(
∂ 2 ψ 

( n +1 ) 

∂ x∂ y 

)
n x n y 

]
− η∞ 

2 Re 
∇ 

2 ψ 

( n +1 ) 

= 

2 η∞ 

Re 

[
−
(

∂ ̃  v ( n +1 ) 

∂y 

)
n 

2 
x −

(
∂ ̃  u 

( n +1 ) 

∂x 

)
n 

2 
y 

+ 

(
∂ ̃  u 

( n +1 ) 

∂y 
+ 

∂ ̃  v ( n +1 ) 

∂x 

)
n x n y 

]
+ 

1 

Re 

[ (
τ M 

xx 

)( n +1 ) 
n 

2 
x + 2 

(
τ M 

xy 

)( n +1 ) 
n x n y + 

(
τ M 

yy 

)( n +1 ) 
n 

2 
y 

] 
− p ( n ) , 

(27)

where ( τM 

xx ) 
(n +1) , ( τM 

xy ) 
(n +1) and ( τM 

yy ) 
(n +1) are the components

of the non-Newtonian tensor at an intermediate time-level. 

3.3. The final velocity and pressure fields are updating, respec-

tively, by the following equations: 

u 

(n +1) = ̃

 u 

(n +1) − ∇ψ 

(n +1) , (28)

p (n +1) = p (n ) + 

ψ 

(n +1) 

δt 
− η∞ 

2 Re 
∇ 

2 ψ 

(n +1) . (29)

More details about these sub-steps can be found in our recent

paper [28] . 

4. Updating the structure parameter λ(n +1) . 

The step of the algorithm for computing λ(n +1) is basically a

repetition of step 1 using the latest values of the variables,

i.e., (
1 

δt 
+ 

1 

t eq λeq 

)
λ( n +1 ) = 

λ
( n +1 ) 

δt 
+ 

1 

t eq 
− ∇ ·

(
u 

( n +1 ) λ
( n +1 ) 

)
. 

(30)

5. Updating the non-Newtonian stress tensor ( τM ) (n +1) . 

The final non-Newtonian stress tensor is obtained solving Eq.

(8) by the second order Runge–Kutta scheme, for instance: 

( τM ) 
(n +1) − ( τM 

) 
(n +1) 

δt 
= 

1 

2 

[ F 1 (u , τM , λ) + F 2 (u , τM , λ)] , 

(31)

where 

F 1 
(
u , τM , λ

)
= F 

(
u 

(n ) , ( τM ) (n ) , λ
(n +1) 

)
(32)

and 

F 2 
(
u , τM , λ

)
= F 

(
u 

(n +1) , ( τM 

) (n +1) , λ(n +1) 
)

(33)

with 

F (u , τM , λ) = −∇ · (u τM ) + [(∇u ) · τM + τM · (∇u ) 
T 
] 

+ 

f (λ) 

Wi 
[ − 1 

η(λ) 
τM + 2 D ] . (34)

6. Treatment of the moving interface. 

In the last step of the algorithm, the positions of the virtual

markers are updated from time level t = t n to t = t n +1 . For

this purpose, we use the second order Runge–Kutta scheme for

solving Eq. (21) in order to obtain the final particle positions

x (n +1) : 

x − x 

(n ) 

= u 

(
x 

(n ) , t n 
)
, (35)
δt 
x 

(n +1) − x 

(n ) 

δt 
= 

1 

2 

[
u 

(
x 

(n ) , t n 
)

+ u ( x , t n +1 ) 
]
, (36)

where the velocities are calculated at the required positions us-

ing a bilinear interpolation from the nearest values in the mesh.

The x is an intermediate position (predictor) for the more accu-

rate calculus using equation (36) . More informations about this

step can be found in previous works [30,31] . 

The flow problem addressed in this work is an isosceles trape-

oid block of an elasto-viscoplastic material which is initially at

est in an inclined plane, as sketched in Fig. 1 . The trapezoidal

hape was chosen in order to avoid a possible tumbling that could

appen in the case we chose the more natural rectangular shape.

he top and bottom bases of the trapezoid block are considered

ith lengths L 1 = 1 m and L 2 = 5 m, respectively, while the angle of

he bottom base is adopted as α = 45 ◦. The height of trapezoid is

sed as a characteristic length of the problem, i.e., L c = H = 0 . 2 m.

n t = 0 , the front position, i.e., the most extreme right vertex of

he trapezoid, is considered in the point (0, 0) of the Cartesian

lan. The characteristic stress is given by 

c = 

ρgH 

cos θ
. (37)

he influence of the slope is captured by varying the angle θ as

ill be shown in Section 4 . 

. Results 

.1. Verification: a mesh refinement study 

In order to present a verification of the method, we have simu-

ated the transient evolution of an elasto-viscoplastic thixotropic

aterial subjected to the action of gravity on an inclined plane

onsidering three different meshes: M1 ( δx = δy = 0 . 05 ), M2 ( δx =
y = 0 . 025 ) and M3 ( δx = δy = 0 . 0125 ). For this mesh refinement

tudy, the following data were used: τy = 0 . 3 , K = 0 . 5 , t eq = 100 ,

= 30 ◦, F r = 0 . 0816 and Re = 0 . 01 . 

The convergence of the free surface profile with the mesh re-

nement can be seen in Fig. 2 . According to results described in

his figure, one can see that the surface profiles of meshes M2

nd M3 are near each other showing a good convergence with the

esh refinement. In particular, the resolution of the free surface

round of the wall boundary on the right side of the block fluid

or M2 and M3 is similar; thus in the remaining simulations, M2

esh will be adopted. 

.2. Parametric studies on the dynamic of the “avalanche effect”

One important feature of the flow on the inclined plane is the

rogression of the front of the material as time elapses. In order

o evaluate this evolution we compute the distance of the farther

ortion of the material with respect to the origin, dist x , made di-

ensionless with the aid of the characteristic length, as presented

n Fig. 2 . 
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Fig. 2. Free surface profiles at selected times ( t = 0 , t = 25 , t = 50 and t = 100 ) on meshes M1, M2 and M3 using θ = 30 ◦ . 

Fig. 3. Time variation of the front position, dist x , varying the inclination angle and the plastic number. (For interpretation of the references to color in the text, the reader is 

referred to the web version of this article.) 
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Fig. 3 shows a number of this kind of evolution with respect to

he dimensionless time, tU c / L c . These first results compare inclina-

ion angles of 15 ◦, 30 ◦, and 45 ◦ and plastic number of 0.2, 0.3,

nd 0.4, for fixed values of W i = 0 . 1 , K = 0 . 5 , and t eq = 100 . Fix-

ng the inclination, represented by a particular type of line, we can

nd the expected result that, once the plastic number is increased,

he different colors show that, the front velocity is slower and the

ront portion of the material takes a longer dimensionless time to

volve. In general, this evolution shows two regimes: an acceler-

ting regime followed by a retardation one. We can observe that

ower values of plastic number induces earlier inflection points.

owever, in some cases, time ends before the achievement of the

nflection point. For the highest value of plastic number and the

owest inclination angle (blue full line), the material almost does

ot move. 

The corresponding evolution in time of the shape as well as

he field of the structure parameter associated with the cases an-
lyzed in Fig. 3 are shown in Figs. 4–7 where each figure is as-

ociated with a specific dimensionless time, from tU c /L c = 25 to

U c /L c = 200 . In every case, a fully structured state is set as ini-

ial condition. It is interesting to notice that, during a first elapsed

ime, the trapezoidal shape does not change, while the structure

arameter is evolving towards less structured states. This fact is

 fingerprint of having the stress as the breaking agent, since

he material experiences a significant rejuvenation process even

ith a vanishing deformation rate. At this stage, this evolution is

ainly due to the action of gravity. For example, at tU c /L c = 25 ,

ig. 4 , for the pair ( θ = 45 ◦, τy = 0 . 4 ), we can notice that break-

ng is happening near the solid surface, but not near the high-

st position where there is a smaller portion of material (verti-

ally) above. When the material starts to deform, shear stresses

ncrease gradually their importance in the role of breaking down

he material. The shape evolution from a starting trapezoidal form

enerally ends with a configuration where occurs an accumulation
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Fig. 4. Numerical prediction of the structure parameter λ at the dimensionless time t = 25 using W i = 0 . 1 , K = 0 . 5 and t eq = 100 . From (column) left to right: θ = 

15 ◦, 30 ◦, 45 ◦, and from (row) the top to bottom: τy = 0 . 2 , 0 . 3 , 0 . 4 . 

Fig. 5. Numerical prediction of the structure parameter λ at the dimensionless time t = 50 using W i = 0 . 1 , K = 0 . 5 and t eq = 100 . From (column) left to right: θ = 

15 ◦, 30 ◦, 45 ◦, and from (row) the top to bottom: τy = 0 . 2 , 0 . 3 , 0 . 4 . 

Fig. 6. Numerical prediction of the structure parameter λ at the dimensionless time t = 75 using W i = 0 . 1 , K = 0 . 5 and t eq = 100 . From (column) left to right: θ = 

15 ◦, 30 ◦, 45 ◦, and from (row) the top to bottom: τy = 0 . 2 , 0 . 3 , 0 . 4 . 

Fig. 7. Numerical prediction of the structure parameter λ at the dimensionless time t = 200 using W i = 0 . 1 , K = 0 . 5 and t eq = 100 . From (column) left to right: θ = 

15 ◦, 30 ◦, 45 ◦, and from (row) the top to bottom: τy = 0 . 2 , 0 . 3 , 0 . 4 . 
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of material in the moving front forming a kind of “head” while

a “tail” is formed behind. At time tU c /L c = 50 , Fig. 5 , we notice

that cases ( θ = 45 ◦, τy = 0 . 2 ) and ( θ = 30 ◦, τy = 0 . 2 ) had already

departed from trapezoidal shape and are significantly broken in

the parts near the solid surface. We notice that in the tail break-

ing occurs at high rates, even without having much material above.

This happens because the no-slip condition induces high deforma-

tion rates and consequently high stresses in this region. The part

of the material that is more “protected” from rejuvenation is the

one located at the upper front corner of the trapezoid, since grav-

ity effects and shear stresses are weaker in this region. After that,

and until the last time shown ( tU c /L c = 200 ) the evolution is such

that higher angles induce less uniform evolutions in the sense that

the head becomes much thicker than the tail. The intense destruc-

tion of the materials with lower yield stresses that happens at the
arly stages of the problem induces the formation of thin shapes

ery rapidly. This configuration is less susceptible to high gravity

nd shear stresses. In this scenario, a build-up process takes place,

pecially at the tail and at the upper front corner, as illustrated in

ig. 7 corresponding to tU c /L c = 200 . It seems that the aging pro-

ess is responsible for the passage from the accelerating regime to

he retardation one. 

In Fig. 8 , we have investigated the influence of the Weissenberg

umber together with inclination. There is no significant change

etween W i = 0 . 01 and W i = 0 . 1 , what is probably an indication

hat elasticity is not important at these levels. However, when

 i = 1 we can notice a more pronounced effect on the distance

chieved by the material. This high Weissenberg number leads to

 longer distance covered by the material, when the inclination an-

le is fixed. 
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Fig. 8. Time variation of the front position, dist x , varying the inclination angle and the Weissenberg number. 

Fig. 9. Time variation of the front position, dist x , varying the inclination angle and the thixotropic equilibrium time. 
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Fig. 9 shows how dist x evolves over time exploring the

hixotropic dimensionless number, t eq , together with inclination.

he other conditions are fixed at W i = 0 . 1 , K = 0 . 5 , and τy = 0 . 3 .

s expected, increasing t eq leads to a slower advance of the front of

he material, since higher values of t eq represents a longer time to

djust microstructure with respect to the new stress state. Interest-

ngly, the range associated with the accelerating regime increased

ubstantially when t eq was raised from t eq = 100 to t eq = 250 . The

urves associated with t eq = 10 0 0 show that there were almost

o progress along the inclined plane. The discrepancies associated

ith inclination angles obeyed the same trend analyzed previously,

.e. higher inclinations lead to higher rejuvenation rates. 

Figs. 10 and 11 illustrate how shape and structure parameter are

ffected by the thixotropic time for the fixed inclination angle of

= 30 ◦ and the rest of the parameters as in Fig. 9 . We can see

y the comparing the columns of these figures that the breaking

own rate of the material is clearly postponed in the case higher

 eq values, as expected. The evolution of each t eq value is similar if
e discount an appropriate elapsing time. Here we can notice that

or the t eq = 10 0 0 case there was almost no change in shape until

U c /L c = 200 , but we can notice that the structure parameter kept

hanging during this process. 

As discussed previously, the three ranges that are generally

resent in the flow curve of a viscoplastic material are not cap-

ured by the Bingham or the Hershel–Bulkley models. In this con-

ection, we investigate how the presence of the power-law range

hanges the results provided by the Bingham model (where K = 0 ).

Fig. 12 shows the dimensionless longitudinal distance covered

y the material during the firsts 200 units of dimensionless time,

U c / L c for a number of cases where the inclination angle, the Weis-

enberg number, and the dimensionless thixotropic time are main-

ained fixed at values: θ = 30 ◦, W i = 0 . 01 , and t eq = 100 , respec-

ively. It is worth noticing that the values of K and plastic num-

er τ y and the dimensionless viscosity, η∞ 

are complementaries

ith respect to unity. For fixed values of K , the results are quite

ntuitive. Increasing the plastic number, it becomes harder to break
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Fig. 10. Numerical prediction of the structure parameter λ using θ = 30 ◦, K = 0 . 5 , τy = 0 . 3 and W i = 0 . 1 . From (column) left to right: t eq = 100 , t eq = 250 , t eq = 10 0 0 . 

Fig. 11. Continuing. Numerical prediction of the structure parameter λ using θ = 30 ◦, K = 0 . 5 , τy = 0 . 3 and W i = 0 . 1 . From (column) left to right: t eq = 100 , t eq = 250 , 

t eq = 10 0 0 . 

Fig. 12. Time variation of the front position, dist x , varying the consistency index and the plastic number and fixing W i = 0 . 01 . 
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down the material and, therefore, it takes a longer period of time

to achieve the same distance. From a comparison between the

curves 
(
K = 0 , τy = 0 . 4 

)
and 

(
K = 0 . 2 , τy = 0 . 4 

)
, where the plastic

number is the same, we notice that the difference between the

covered distances reached by these materials increases during a

first stage, but at a certain instant, corresponding to tU c / L c ≈ 200,

this difference starts to decrease becoming small at tU c /L c = 200 .

This happens because during the firsts steps of the process, the

stress intensity induced by gravity is able to impose a higher shear

rate to the material corresponding to 
(
K = 0 , τy = 0 . 4 

)
, since the

constant viscosity range is achieved for a larger portion of the

domain. The same trend is found for the case where K is raised

once more, 
(
K = 0 . 4 , τy = 0 . 4 

)
, namely the distance difference in-

creases at a first stage and then decreases with respect to the(
K = 0 , τy = 0 . 4 

)
case. Although this difference remains quite con-
tant with respect to the 
(
K = 0 . 2 , τy = 0 . 4 

)
case, it seems that

t will decrease for future times. The curves corresponding to the

ases 
(
K = 0 , τy = 0 . 6 

)
, 
(
K = 0 . 2 , τy = 0 . 4 

)
, and 

(
K = 0 . 4 , τy = 0 . 2 

)
ave the same η∞ 

. We can notice how spread are the results, what

n turn means that the variables K and τ y affect the transient mo-

ion in the inclined plane more significantly. 

The progress of dist x in time of this set of cases is shown in

ig. 13 . In general, we can observer a shorter accelerating regime

ore pronounced for the K = 0 cases. However, we found larger

alues for dist x at the final time tU c /L c = 200 . The same sets of

hree curves are observed, i.e. in the accelerating regime, red,

reen, and blue curves evolve separately from each other. 

Again, after showing the dimensionless distance dist x we show

he materials evolve in deformation together with the field of

tructure parameter. This sequence is shown from Figs. 14–19 . The
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Fig. 13. Time variation of the front position, dist x , varying the consistency index and the plastic number and fixing W i = 1 . (For interpretation of the references to color in 

the text, the reader is referred to the web version of this article.) 

Fig. 14. Numerical prediction of the structure parameter λ at the dimensionless time t = 25 using W i = 1 , θ = 30 ◦ and t eq = 100 : a) K = 0 . 0 and τy = 0 . 4 , b) K = 0 . 0 and 

τy = 0 . 5 , c) K = 0 . 0 and τy = 0 . 6 , d) K = 0 . 2 and τy = 0 . 3 , e) K = 0 . 2 and τy = 0 . 4 , f) K = 0 . 2 and τy = 0 . 5 , g) K = 0 . 4 and τy = 0 . 2 , h) K = 0 . 4 and τy = 0 . 3 , i) K = 0 . 4 and 

τy = 0 . 4 . 

Fig. 15. Numerical prediction of the structure parameter λ at the dimensionless time t = 50 using W i = 1 , θ = 30 ◦ and t eq = 100 : a) K = 0 . 0 and τy = 0 . 4 , b) K = 0 . 0 and 

τy = 0 . 5 , c) K = 0 . 0 and τy = 0 . 6 , d) K = 0 . 2 and τy = 0 . 3 , e) K = 0 . 2 and τy = 0 . 4 , f) K = 0 . 2 and τy = 0 . 5 , g) K = 0 . 4 and τy = 0 . 2 , h) K = 0 . 4 and τy = 0 . 3 , i) K = 0 . 4 and 

τy = 0 . 4 . 

Fig. 16. Numerical prediction of the structure parameter λ at the dimensionless time t = 75 using W i = 1 , θ = 30 ◦ and t eq = 100 : a) K = 0 . 0 and τy = 0 . 4 , b) K = 0 . 0 and 

τy = 0 . 5 , c) K = 0 . 0 and τy = 0 . 6 , d) K = 0 . 2 and τy = 0 . 3 , e) K = 0 . 2 and τy = 0 . 4 , f) K = 0 . 2 and τy = 0 . 5 , g) K = 0 . 4 and τy = 0 . 2 , h) K = 0 . 4 and τy = 0 . 3 , i) K = 0 . 4 and 

τy = 0 . 4 . 
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Fig. 17. Numerical prediction of the structure parameter λ at the dimensionless time t = 100 using W i = 1 , θ = 30 ◦ and t eq = 100 : a) K = 0 . 0 and τy = 0 . 4 , b) K = 0 . 0 and 

τy = 0 . 5 , c) K = 0 . 0 and τy = 0 . 6 , d) K = 0 . 2 and τy = 0 . 3 , e) K = 0 . 2 and τy = 0 . 4 , f) K = 0 . 2 and τy = 0 . 5 , g) K = 0 . 4 and τy = 0 . 2 , h) K = 0 . 4 and τy = 0 . 3 , i) K = 0 . 4 and 

τy = 0 . 4 . 

Fig. 18. Numerical prediction of the structure parameter λ at the dimensionless time t = 125 using W i = 1 , θ = 30 ◦ and t eq = 100 : a) K = 0 . 0 and τy = 0 . 4 , b) K = 0 . 0 and 

τy = 0 . 5 , c) K = 0 . 0 and τy = 0 . 6 , d) K = 0 . 2 and τy = 0 . 3 , e) K = 0 . 2 and τy = 0 . 4 , f) K = 0 . 2 and τy = 0 . 5 , g) K = 0 . 4 and τy = 0 . 2 , h) K = 0 . 4 and τy = 0 . 3 , i) K = 0 . 4 and 

τy = 0 . 4 . 

Fig. 19. Numerical prediction of the structure parameter λ at the dimensionless time t = 200 using W i = 1 , θ = 30 ◦ and t eq = 100 : a) K = 0 . 0 and τy = 0 . 4 , b) K = 0 . 0 and 

τy = 0 . 5 , c) K = 0 . 0 and τy = 0 . 6 , d) K = 0 . 2 and τy = 0 . 3 , e) K = 0 . 2 and τy = 0 . 4 , f) K = 0 . 2 and τy = 0 . 5 , g) K = 0 . 4 and τy = 0 . 2 , h) K = 0 . 4 and τy = 0 . 3 , i) K = 0 . 4 and 

τy = 0 . 4 . 
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first feature of the distribution of structure parameter that calls

the attention is the fact that at the early stages, there is a sharper

change between fully structure (dark red) and mostly unstructured

(blue) regions. There are almost no intermediate regions and the

more structured state occupies a larger portion of the domain.

The relative increase in elasticity has diminish the importance of

shear stress and what we see at tU c /L c = 25 , Fig. 14 , is associated

with the stress that equilibrates gravitational forces. The remain-

ing part of the domain experiences a strong breakdown process,

more pronounced for lower values of K and τ y , i.e. when η∞ 

is

high (column corresponding to the cases a)-d)-g)). The evolution

occurs with less destruction in the original unyielded regions when

compared with the less elastic counterpart. It seems that the less

viscous layer near the inclined plane acts as a lubricating material

and induces higher deformations. A build up process takes place

specially at the tail and also in the middle in the cases where the

material assumes an elongated configuration as it can be seen in

Figs. 17–19 . 

When K is increased and the material has a more important

power-law range in the flow curve, the scenarios become more

complex. In Fig. 20 , the colors are associated with fixed values of

η∞ 

. We can notice that keeping K fixed, the behavior of dist x can

be rather different, depending on the plastic number. The same

happens for fixed η∞ 

(same colors). When the plastic number is

fixed the material tends to exhibit a more similar behavior than

fixing other quantities, as exemplified by the curves with τy = 0 . 3 .
n these cases, increasing K decreases the value of dist x . Again,

igher values of η∞ 

leads to a higher portion of the material hav-

ng the lowest structure level as an attractor for the current state,

hat induces higher rejuvenation. 

When the overall elasticity is raised from W i = 0 . 01 to W i = 1 ,

he curves do not change their relative positions, as shown in

ig. 21 . However, we can notice that a higher value of dist x is

chieved when Wi is higher, as already reported. 

The combined variation of plastic number and Weissenberg

umber, as illustrated in Fig. 22 , shows that changing τ y in this

ange is more significant than changing Weissenberg number. Al-

hough we can see that at least from W i = 0 . 1 to W i = 1 , elastic

ffects have an influence on the distance covered by the material,

lastic number clearly splits the general cases into the groups of

onstant values of this parameter. In the case of Fig. 22 increasing

lastic number is to decrease the viscosity contribution, η∞ 

, since

 is fixed. 

Because of the transient nature of the problem analyzed, we

ave produced some movies that are available as a supplemen-

ary material (see Electronic Annex 1 in the online version of this

ubmitted paper). These movies are related to Figs. 4 –9 (secondary

iagonal) and two additional ones have been created to highlight

he influence of the plastic number and the thixotropic equilib-

ium time during the transient process of the “avalanche effect”.

s in the figures of the present manuscript, the movies show the

volution of the structure parameter and of the shape and posi-
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Fig. 20. Time variation of the front position, dist x , varying the consistency index and the plastic number and fixing W i = 0 . 01 . (For interpretation of the references to color 

in the text, the reader is referred to the web version of this article.) 

Fig. 21. Time variation of the front position, dist x , varying the consistency index and the plastic number and fixing W i = 1 . 
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ion of the material with respect to the inclined plane, helping

o improve the visualization and the understanding of the present

roblem. 

. Concluding remarks 

In the present work we analyzed the free-surface problem of an

lasto-viscoplastic thixotropic material on an inclined plane sub-

ected to the gravity force. The initial state of the material is fully

tructured and its motion occurs as a consequence of the breaking

own process in the regions where the stresses induced by gravity

vercome the yield stress of the material. 

This investigation was conducted by using a finite difference

ormulation recently proposed in [28] . In summary, the incom-

ressible unsteady Navier–Stokes equations were solved via projec-

ion method applying the Crank–Nicolson/Adam–Bashforth scheme

o time-discretize the momentum equation while the constitutive

quation for the non-Newtonian tensor was treated by the second
rder Runge–Kutta method. Based in a combined MAC and front-

racking approach, an implicit discretization was applied in the

ree-surface normal stress condition resulting in a stable formu-

ation for solving moving interface problems. In order to take into

ccount the thixotropic behavior of the material, a conventional it-

rative scheme was employed for solving an extended Herschel–

ulkley model equation while the transport equation for the struc-

ure parameter was computed by a semi-implicit scheme. 

The constitutive model employed has an embedded equation

or the flow curve that contains three dimensionless parameters

hat encompasses the advantage of the Bingham model, the pre-

iction of non-vanishing viscosity for high shear rates, together

ith the advantage of the Herschel–Bulkley model, an asymptotic

pproach to the yield stress in the limit of small values of shear

ate. Choosing the maximum stress of the domain as the charac-

eristic stress the dimensionless parameters that compose the flow

urve are restricted to τ ∗
y + K 

∗ + η∗∞ 

= 1 . The other important pa-
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Fig. 22. Time variation of the front position, dist x , varying the plastic number and Weissenberg number. 
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rameters analyzed are: the dimensionless thixotropic time, t eq , the

Weissenberg number, Wi , and the inclination angle, θ . 

The so-called avalanche effect , i.e. the self-reinforcing process

where the rejuvenation process induces motion what in turn in-

duces additional rejuvenation was found to happen in every case,

at least at a first stage of the evolution of the material. This process

can be detected by the acceleration of the front of the material.

The results obtained in the range investigated indicate that high

values of the plastic number, low inclination angles, high elastic

effects, and high values of t eq favor the accelerating regime, which

can eventually happen throughout the whole domain. On the other

hand, the opposite qualitative tendency of the dimensionless pa-

rameters can lead to a thin layer of material after a relatively low

elapsed time. This configuration is no longer significantly affected

by the stresses induced by gravity and a build up process is initi-

ated. During this period, the material starts a retardation process a

sign that the material will stop. 

Generally speaking, the most determinant property associated

with the evolution of the material over the inclined plane is the

yield stress, evaluated by the plastic number, in the intuitive direc-

tion, i.e. increasing τ ∗
y makes the material harder to break down.

However, the combination of K 

∗ and η∗∞ 

can lead to rather differ-

ent evolutions showing that the both parameters that detach the

material from the more classical Bingham and Herschel–Bulkley

viscoplastic models play an important role in the process. For fixed

values of the plastic number higher η∗∞ 

induces more breakage,

since this parameter is associated with the lowest structuring level

of the material and a large η∗∞ 

increases the driving stress poten-

tial for rejuvenation. 

The results concerning changes in elastic effects as represented

by the Weissenberg number were less intuitive. In this connection,

the evolution of the configuration of the material, together with

the structure parameter were helpful on understanding the overall

process. Increasing elasticity, induces a higher deformation with no

breaking, hence a more abrupt change of structure state from the

fully structured one to a low structuring level state takes place in

the domain. Therefore the shear rate near the inclined plane in-

creases, what in turn induces the material to progress more rapidly

on the inclined plane. 

Changes on inclination angle and thixotropic time lead to intu-

itive responses. Increasing inclination induces higher rejuvenation

rate and consequently a more rapid advancing front. Higher values
f thixotropic time lead to slower changes in the structure param-

ter and the opposite trend happens. 

The present approach was able to handle this important free-

urface problem which is transient, and involves a complex mate-

ial. An important feature of this problem is the fact that motion is

 consequence of the stress distribution in the material, i.e. there

s no imposed flow rate or initial velocity profile. 
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