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Abstract Droughts are natural events that can cause water scarcity and can consequently

have undesired environmental, social and political effects. Because droughts are related to

land use and land cover modifications, satellite images are used to monitor and identify

drought episodes through indices as Standardized Precipitation Index based on rainfall data

and vegetation-based indices as Normalized Difference Vegetation Index (NDVI). Chan-

ges in vegetation cover have as impact the increasing of the land surface temperature

(LST) that is a significant indicative of drought occurrence. This work explored the NDVI–

LST relation through the Vegetation Health Index (VHI) in a tropical environment in Tietê

River, State of São Paulo, Brazil, in order to assess changes in vegetation condition in two

periods (2000 and 2014). Results showed that stressed areas are coincident with areas

presenting high rate of modification in land cover; this areas presented low values of VHI

and high values of LST. The worst conditions are verified in 2014, the same period of the

most severe drought occurrence that reduced storage capacity in reservoirs in Tietê River.

Keywords Drought monitoring � Vegetation health index � Standardized
precipitation index � Land surface temperature

1 Introduction

Drought is a temporal process related to low relative humidity and reduced precipitation

during a season or a year and is recognized as an environmental disaster; droughts have

attracted attention around the world, in order to better understand this complex event and to

provide options to minimize their damages. Concomitantly to the drought events, water
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scarcity occurrence has often been seen in many parts of the world (Mishra and Singh

2010), as a result of population increase, urban areas growth and expansion of agriculture,

energy and industries, that do not accompany the water management policies in the same

way.

Drought assessment can be done from remote sensing data, which allow the extraction

of biophysical characteristics from land surface. Because droughts naturally involve

vegetation changes, satellite data of Earth observations can base the monitoring on veg-

etation indices (VI) and indices that are dependents only on the rainfall data as the Palmer

Drought Severe Index (PDSI) and Standardized Precipitation Index (SPI). Due to its

versatility, SPI has been widely used in monitoring droughts in the Brazilian territory, as

during Cantareira System reservoirs drought event in São Paulo State in 2014 (Nobre et al.

2016). It was also used in Rio Grande do Sul State with a study of long-term period

(1913–2009) of rainfall to monitor the drought that affected the soybean yield (Teixeira

et al. 2013) and in Paraná River watershed to monitor two periods of drought, in 2000 and

in 2014 (Melo et al. 2016).

The VI involve indices as the Vegetation Supply Water Index (VSWI), Leaf Area Index

(LAI), Global Vegetation Index (GVI) from NOAA Advanced Very High Resolution

Radiometer (AVHRR) and Normalized Difference Vegetation Index (NDVI) that are

indices based on vegetation content, rainfall and soil moisture. These indices are estimated

from satellite data, for instance Terra/Moderate Resolution Imaging Spectroradiometer

(MODIS), which has been used to monitor droughts in Brazilian northeast in a period of

2 years (2012 and 2014) through the VSWI (Cunha et al. 2015), to analyze agricultural

crops in Brazilian territory between 1996 and 1998, via GVI (Liu and Kogan 2002) and the

relation between LAI and surface temperature over the years 2003 and 2013 (Anderson

et al. 2016).

The NDVI has been widely used over the past decades and became the most common

and effective vegetation index to monitor the moisture condition and vegetation state and

cover (Bajgain et al. 2015), which are directly related to Land Surface Temperature (LST)

conditions. Therefore, NDVI and LST are indices that draw the landscape scenery and can

be used to better understand drought events and their impacts via Vegetation Health Index

(VHI). Nemani et al. (1993) and Kogan (1995, 2002) showed that for drought areas, the

NDVI–LST slope should be inversely correlated with VHI reaching low values in temporal

analysis. Temporal analysis allows quantifying all the anthropogenic changes in land use

and land cover (LULC) that have been widely considered influencing factors in global

climate changes (Nagendra et al. 2004).

In Brazil, the economic growth has been followed by significant land use changes so

that Tropical forests have become human-modified landscapes (Coe et al. 2011). One

example of this is the Atlantic Forest in São Paulo State, which presents high rates of

deforestation and fragmentation, with only 7.6% of its original composition remaining.

Most of the Atlantic Forest became a few fragments surrounded by pastures and agri-

cultural areas (Joly et al. 2014). Tropical forests, replaced by agricultural and grazing land

areas, substantially shift the rainfalls regime and increase heat fluxes in Earth surface. The

modification in precipitation processes impacts reservoirs storage, soil moisture and stream

flow; therefore, water availability. Tietê River, for instance, had its storage capacity

reduced to around 3% when São Paulo State received only about one-third to half of its

usual amount of rain and presented the most severe drought with 7 months of duration in

2014 (Coelho et al. 2015a, b; NASA 2015), which directly implied in water supply

problems (Magalhães 2017).
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The drought in southeast region of Brazil reduced the mean annual supplier of water

into the Cantareira system of 44.1 m3 s-1 (1930–2013) to 11.3 m3 s-1 in 2014. The

Cantareira reservoir system provides water to 8.8 million of habitants in the São Paulo

Metropolitan Region (SPMR) and several cities of the state (Nobre et al. 2016). The year of

2014 experienced expressive precipitation deficit besides the two anomalous high-pressure

centers over the region that enabled the occurrence of an extreme drought events in terms

of impacts and people affected (Coelho et al. 2015a, b; Nobre et al. 2016). In consequence

of that, severe policies of water rationing were implanted to adequate the water supply for

population that suffered with the availability for human consumption. Others effects of

drought were the increasing of forest fires by 150% from 2013 to 2014 and socioeconomic

impacts, mainly tourism activities in rivers and lakes surrounding areas (Marengo and

Alves 2016).

Other activities are also affected as agricultural productions of tomatoes, orange and

beans that presented increasing of the prices of approximately 30% in the most in peak of

the drought. The sugarcane harvest reduced around 5% in 2014/2015 in relation to previous

years, while production of coffee showed reduction about 15–40% in São Paulo State. The

agribusiness had losses of about US$ 5 billion in the agricultural sector. The hydropower

production, which in Brazil corresponds to 70% of electricity produced with the majority

of them in the southeast region, was reduced with the drier reservoirs, increasing the

energy prices around 20–25% in 2015. The reduction of water available for human con-

sumption also increased the water bills and creates some inconveniences for basic hygienic

of population (Nobre et al. 2016).

Despite the published results showing the southeastern Brazil 2014 drought effects, we

cannot find in the literature any mention or classification about the effects on the vegetation

health. Therefore, the aim of this work was to classify the southeastern Brazil 2014 drought

severity on the vegetation health, through the study of the combined effect of LULC

changes and drought events on the vegetation health.

2 Methodological approach

2.1 Study area

Barra Bonita Hydroelectric Reservoir (BBHR—Fig. 1) (228 360 50.1200 S; 488 200 54.5700

W), located in the middle of Tietê River Basin, state of São Paulo, is the first of six

reservoir built to hydropower generation. The reservoir catchment has shown significant

changes due to industrials and agricultural activities since the beginning of the reservoir

operation, in 1963 (Tundisi et al. 2008).

The catchment area covers 324.84 km2, with 2.600 9 106 m3 of nominal volume, used

for purposes of fluvial transport (the Tietê-Paraná Waterway), irrigation, tourism, fishing,

recreation, urban supply and for providing support to the development of the industrial

complex. The predominant vegetation is composed of monoculture of sugarcane (Maia

et al. 2008; Dellamano-Oliveira et al. 2008; Prado and Novo 2007), citric crops and cattle

breeding according to Integrated System of Water Resources Management of São Paulo

State (SigRH).

The reservoir is in the geographic transition between tropical and subtropical climates

with a wet season from October to March, and a dry season from March to October

(Tundisi et al. 2008), which characterizes a mesothermal classification (CW) based on
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Köppen classification (Maia et al. 2008). The annual BBHR rainfall is about 130 mm, with

temperatures above 30 �C in the warmest month and temperatures below 20 �C in the

coldest month.

2.2 Satellite images dataset

For the time series analysis between 2000 and 2014, the remotely sensed images were

acquired on October 22, 2000 by Thematic Mapper sensor onboard Landsat 5 and October

13, 2014 by Operational Land Imager and Thermal InfraRed sensors onboard Landsat 8

(hereafter called TM/L5 and OLI-TIRS/L8, respectively). The satellite images were

downloaded from United States Geological Survey (USGS) platform (available at http://

earthexplorer.usgs.gov/). The metadata information from each image is shown in Table 1.

These 2 years were selected in order to present data before and during a drought event.

Fig. 1 Study area in Brazilian context (a), localization of Barra Bonita Hydroelectric Reservoir in Tietê
River, State of São Paulo (b), Barra Bonita Hydroelectric Reservoir Sub-Watershed within Barra Bonita
Hydroelectric Reservoir catchment (c) and the average rainfall and relative humidity data (d) for the period
between 2000 and 2014
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2.3 Preprocessing of satellite data

The geometrical correction was made by register the TM/L5 and OLI/L8 images using at

least 12 tie points, well distributed within the entire scene, for correcting all possible

geometrical deformations. First-degree polynomial and nearest-neighbor interpolation

were used in order to avoid adding new digital numbers in the scene. The Root-Mean-

Squared Error (RMSE) was lower than 0.5 pixel, which allows comparing the pixels

between the bi-temporal images.

The atmospheric correction applied the Fast Line-of-sight Atmospheric Analysis of

Hypercubes (FLAASH) method. FLAASH is based on radiative transfer equation that

computes the absorption and scattering caused by molecules and particles presented in

atmosphere (Adler-Golden et al. 1999). The input data were L5/TM BIL format image, in

top of atmosphere radiance (LTOA, in W m-2 lm1 sr1). FLAASH result was a L5/TM

surface reflectance image (RSURF). To reduce the illumination geometry effects, we choose

two images acquired on the same month, October (in order to minimize illumination

changes derived from sun–earth distance), and applied the Iteratively Reweighted Multi-

variate Alteration Detection (IR-MAD, Canty et al. 2004) for radiometric normalization.

For the IR-MAD application, we used the L5/TM image, in RSUP (which was the FLAASH

output), and the L8/OLI image, in top of atmosphere reflectance, RTOA, (obtained as

product of the radiometric calibration that uses the metadata file information). Two images

in RSURF, L5/TM and L8/OLI were the outputs were of IR-MAD processing.

2.4 LULC changes

The registered and normalized images were used to identify the types of land covers found

at BBHR sub-watershed between 2000 and 2014. The classification was made using a

nonparametric algorithm, Support Vector Machine (SVM, Vapnik 1995). This algorithm

works with the classification error minimization that can be achieved by either fixing the

empirical risk in the classification procedure (to obtain a reduced confident interval) or

finding an optical hyper plane able to maximize the distance between nearest data that

belong to two different classes. The support vector to separate the classes is established

based on training data until the machine learn the classes and become capable to categorize

the non-training data into the learned classes. This training can add an error (represented by

tolerance, C) (Mountrakis et al. 2011) for including some trainer mistakes. The boundaries

between the two classes cannot be linear, and then, the algorithm uses a Kernel function to

separate them. The Kernel functions can be quadratic, radial (RBF) or polynomial (p).

Although the SVM method is not statistical dependent, the algorithm is sensitive to the

input parameters and the Kernel function used in the classification procedure.

To achieve an efficient classification in BBHR sub-watershed, several inputs were tested

[the pyramid depths (P), the radial basis function parameter (c), the threshold (L), and the

Table 1 Summary of the TM/L5 and OLI-TIRS/L8 images used for this study

Sensors Image date Path/row Solar azimuth angle Sun elevation angle

TM 10/22/2000 220/76 74.16 57.40

OLI/TIRS 10/13/2014 220/76 63.99 60.06
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error tolerance (C)], and the efficiency were evaluated using Kappa Index and Overall

Accuracy. After several tests, the most efficient parameters were chosen following the

recommendations described in Martins et al. (2016), where SVM was processed using the

Radial Base Function. The best SVM results achieved a Kappa of 98% and overall

accuracy of 0.98. The classes of LULC within the BBHR sub-watershed were defined as

UNEP/FAO protocol. The classes used in SVM processing were water, bare soil, urban

area, grazing land, sugarcane crop, agriculture area (that includes fruit growing such as

orange cultivation), forest (dense forest vegetation), vegetation area (non-dense forest

vegetation) and residuals (integrating diverse harvested crop areas and eventual forest

areas that have been burned).

2.5 Vegetation health index (VHI)

The VHI has been applied in a large range of applications. One of these uses is the drought

monitoring detection as well as your severity and duration in a period of time (Karnieli

et al. 2010). The VHI consists into combine the Vegetation Condition Index (VCI) and the

Temperature Condition Index (TCI) that are derived from NDVI and LST, respectively

(Kogan 1995, 1997, 2002). The use of NDVI and LST shows significantly relationships to

extract information about the water stress on plants, which are related to drought processes.

The methodology used to obtain VHI for BBHR sub-watershed consisted of calculating the

NDVI and LST for Landsat images taken in 2000 and 2014. To ensure the accuracy of

LST, the radiance atmosphere correction was made considering the emissivity of land

surface. The emissivity values were derived from NDVI image. Subsequently, the VCI and

TCI were calculated and, in combination, they generated the VHI map. Figure 2 sum-

marizes the methodology to obtain the VHI.

Equation (1) shows the relation between VCI and TCI with comparable magnitudes to

obtain the VHI values.

VHI ¼ 0:5 � VCI þ 0:5 � TCI: ð1Þ

The VCI, proposed by Kogan (1995, 1997, 2002), rescaling the NDVI between its

maximum (NDVImax) and minimum (NDVImin) values found in the period of interest

(Eq. 2). This index highlights the relevant differences in NDVI through the time, mini-

mizing the influence of the vegetation spatial variability between different coverage and

climate conditions (Karnieli et al. 2010).

Fig. 2 Schematic flowchart of methodology applied to retrieve NDVI and LST from satellite images to
obtain VHI map
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VCI ¼ NDVI0 � NDVImin

NDVImax � NDVImin

ð2Þ

where NDVI’ is the mean value of NDVI for each year, NDVImax and NDVImin represent

the maximum and minimum value within the scene, respectively. The NDVI is the most

frequent index of the vegetation index (VI) used (Valor and Caselles 1996; Sobrino et al.

2004; Karnieli et al. 2010). This is calculated by the ratio between the maximum

absorption of radiation in red spectral region (Red) and the maximum reflectance in near-

infrared (NIR) spectral region (3).

NDVI ¼ Red � NIR

Red þ NIR
: ð3Þ

An adaption of TCI, index able to estimate the thermal conditions drought the surface,

was developed based on LST results (Eq. 4) (Kogan 1995, 2002).

TCI ¼ LSTmax � LST0

LSTmax � LSTmin

ð4Þ

where the LSTmax, LSTmin, and LST0 are maximum, minimum and medium temperatures

(in Celsius), respectively, of the land surface for the 2 years considered in this study.

The VHI map was classified following Kogan (2002) and Kogan et al. (2004) method,

with variation ranging from no drought (favorable) to extreme drought (stressed)

conditions.

2.6 Land surface temperature

In the surface–atmosphere interface studies, LST also has a great representative role in

physics processes of energy exchange and water balance at local and global scales (Li et al.

2013). Derived from thermal infrared data, LST is useful for land surface conditions as

evapotranspiration, vegetation water stress and soil moisture, in addition to providing rich

temporal and spatial variability information and can be applied to many purposes (Karnieli

et al. 2010). The LST calculation is computed in three steps. Firstly, we convert digital

numbers (DN) into radiance at the top of atmosphere for the thermal bands (Eq. 5).

Ll ¼ Grescale � DNl þ Brescale ð5Þ

where Grescale is the rescaling gain factor or multiplicative rescaling factor, DN is the pixel

value resident in the specific band and Brescale is the band-specific rescaling bias factor or

additive rescaling factor. The rescaling factors were available in the metadata file from

each image.

For a temporal analysis of LST, it is necessary to remove the atmospheric effects in the

thermal region. The space-reaching radiance registered at sensor (Lk) is attenuated and

enhanced by the atmosphere and must be convert to a surface-leaving radiance for the

infrared thermal bands. Barsi et al. (2003) developed an atmospheric correction method,

using the radiative transfer model, that requires a specific date, time and location as input

besides atmospheric conditions as air temperature (�C), relative humidity (%) and pressure

(mb). The outputs are the estimations of the transmission and the upwelling and down-

welling radiances, calculated by a web-based tool (Atmospheric Correction Parameter

Calculation) available and provided by NASA. Once these values are known, it is possible

to calculate the surface radiance (Eq. 6).
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LT ¼ Lk � Lu þ s 1� eð ÞLd
se

ð6Þ

where s is the transmission, e is the emissivity of the surface, Lk is the radiance at the top of

atmosphere or the space-reaching radiance, Lu is the upwelling or atmospheric path

radiance, Ld is the downwelling or sky radiance and LT is the surface radiance.

To estimate the LST accurately, the emissivity must be estimated; therefore, the NDVI

Thresholds (NDVITHM) method was used to accomplish this task (Eq. 7). NDVITHM was

developed by Sobrino et al. (2008) and distinguishes soil pixels, vegetation pixels, and

mixed pixels (composed by the both covers) from the threshold values of NDVI. Sobrino

and Raissouni (2000) proposed values for soil pixels (NDVIs = 0.2) and vegetation pixels

(NDVIv = 0.5) that could be applied in global conditions.

ek ¼
esk for NDVI\ NDVIS
ek ¼ esk þ ðevk � eskÞPv þ Ck for NDVIS � NDVI � NDVIV
evk para NDVI [ NDVIV

8
<

:
ð7Þ

where esk corresponds the emissivity value for pixels full of soil, evk is used to represent

emissivity values with vegetation and Ck is a roughness factor of the surface (for flats

surface the value for C is equal zero). PV is the vegetation proportion, and it is calculated

from difference ratio between NDVIS and NDVIV.

Aiming to obtain consistent Pv values, it is necessary to set zero for pixels with

NDVI\NDVIS (no vegetation) and to set one (PV = 1) for pixels with NDVI[NDVIV
response that means that the pixel is fully of vegetation. Sobrino et al. (2008) reduces the

ek = esk ? (evk-esk) 9 Pv ? Ck using a typical value for evk = 0.985 and Ck = 0.005,

considering a mixed area. Simplifying, the final value of evk is 0.99. Meanwhile, pixels

with NDVI\NDVIS means that they are represented by soil and the esk will be set to

values for soil emissivity. For mixed pixels (NDVIS B NDVI B NDVIV), the NDVITHM

applied mean values for proportion among vegetation and soil emissivities, since the

variations of soil emissivity can be low in cases like the use of low-resolution sensors and it

justifies the mean value use.

The NDVITHM was applied to the TM image with satisfactory results (Root-Mean-

Square Error—RMSE—less than 0.01 in relation to in situ measures). The equations used

for this sensor are found in Table 4 in Sobrino et al. (2008). The NDVITHM methodology

was also used for the OLI image following the equations of land surface emissivity

estimations that were applied according to Yu et al. (2014) that presented RSME of 0.8 K

(kelvins) when provides LST estimations.

Sobrino et al. (2004) evaluated two algorithms to retrieve LST from the Landsat-8, the

SC (Single-Channel) and SW (Split-Window) algorithms. The SC algorithm can be applied

to any of the TIRS’ bands, but the preference is to band 10 (TIRS-1 band) due its spectral

position—in a lower atmospheric absorption region. The SW algorithm uses both TIRS

bands. Yu et al. (2014) compared LST recovery by SC algorithm, SW algorithm and

radiative transfer equation-based method. The last one had the highest accuracy with

RSME less than 1 K when provide surface temperatures. The radiative transfer equation to

estimate LST (Eq. 8), proposed by Chander and Markham (2003) to improve calibration

procedures for Landsat-5 imagery, is obtained from the Planck’s Law equation.
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LST ¼ K2

ln K1

LT
þ 1

� �

0

@

1

A� 273; 15 ð8Þ

where K1 and K2 are calibration specifics factors of thermal bands (available at metadata

file). This equation was applied to thermal band 6 in TM/L5, and band 10 in TIRS/L8 to

estimate LST values.

2.7 Drought assessment

In order to detect droughts in an easy and statistically relevant way, McKee et al. (1993)

developed the Standardized Precipitation Index (SPI). The SPI is able to analyze the dry

and wet periods based on probability of precipitation as the only input parameter that turns

it easily applicable. The SPI was developed to quantify the precipitation deficit in a period

of time, thereby the input should correspond a timescale at the minimum of 3 months. The

efficiency of SPI depends on the density of meteorological stations in the region of interest

and preferably on a long time scale of data (Cunha et al. 2015).

The SPI was developed for 3-, 6-, 9-, 12-, 24- and 48-month timescales that turn it

possible to evaluate different temporal conditions of precipitation and, therefore, allow

describing the different impacts related to water supply. The basis of calculation is a long-

term precipitation that is fitted to a probability distribution transformed into a normal

distribution. The normal distribution contributes to observe the frequency of extreme and

severe droughts classifications with consistency. For any location, the timescale of 6-month

up to 24-month SPI or more is adequate to verify hydrological drought and applications.

McKee et al. (1993) classified the SPI in categories of intensity of the drought as shown in

Table 2.

Hayes et al. (1999) used the SPI for monitoring a severe drought in southern Great

Plains and in southwestern of USA and showed that the index was able to detect and

monitoring the drought. Moreover, it was illustrated how the SPI works to keep up with

regional and local progress of the drought along the years. The time identification of

emerging drought conditions is also a benefit to appropriate federal and state actions. Du

et al. (2013) showed that the SPI at long time scales is more stable to changes in daily

precipitation and is more able to highlight periods of annual and temporal series of dry and

wet conditions.

Table 2 Categories of drought
according to SPI classification

SPI values Category

C2.00 Extremely wet

1.50 to 1.99 Very wet

1.00 to 1.49 Moderately wet

-0.99 to 0.99 Near normal

-1.00 to -1.49 Moderately dry

11.50 to -1.99 Severely dry

B-2.00 Extremely dry
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3 Results

3.1 Drought detection in BB sub-watershed

The SPI values for Barra Bonita reservoir in Tietê River between 2000 and 2014 were

computed from São Carlos gauge station, which is the nearest station with a monthly

dataset above 14 years available in the Meteorological Dataset to Teaching and Research

(BDMEP) organized by the National Institute of Meteorology (INMET). The data were

generated using the 12-month timescale that is able to monitor water crisis as the one

occurred in Tietê River in 2014. Figure 3 shows that in 2014 the SPI value in Barra Bonita

sub-watershed was -2.35, and it means an extremely dry situation according the SPI

classification proposed in Table 2, registering the most severe event since 2000.

3.2 Land use and land cover changes

Table 3 highlights the LULC changes between 2000 and 2014 in percentage; in other

words, it reveals the transformations of a class through the years according to changes in

land cover and land use. The total of changes that occurred in each class is described in

Class Changes lines, meanwhile the values in the diagonal represent the unchanged areas

from 2000 to 2014.

The LULC maps (Fig. 4) were generated from the SVM classification of BBHR sub-

watershed area for 2000 and 2014. In the left side, we can see the map correspondent to

2000 scenery, and in the right side, it is possible to see 2014 scenery.

The changes in northwest (Fig. 4a, b—number 1) and northeast area (Fig. 4a, b—

number 2) are mainly related with the urban areas concentration near the river and the

grazing land advance, respectively. Although the grazing land advance, the changes per-

centage of this class presented low value, 23.49%, among the other classes as shown in

Table 3. The vegetation class showed the lowest percentage of transformation (19.02%)

with the most expressive change of 12.63% corresponding to agricultural areas (See

Fig. 4a, b—number 2), followed by a rate of 2.64% corresponding to the sugarcane crops

in the streamside areas, and slight changes that were also verified to bare soil, grazing land,

urban areas and residual areas.

The changes in sugarcane crop were 44.55% with transformations of original area into

agricultural areas (26.99%), as observed in Fig. 4a, b (numbers 1 and 3). The second most

-3.00
-2.50
-2.00
-1.50
-1.00
-0.50
0.00
0.50
1.00
1.50
2.00

Fig. 3 SPI values for BB watershed from 2000 to 2014
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changing was 16.04% of sugarcane crop that became residual areas, which can be related

to the fires used in the pre-harvest. To complete the total of sugarcane crop changes, 1.52%

of the transformations are related to bare soil that can be explained by the continuity of the

pre-harvest burning practice and the intensification over the years by 2014. The residual

areas, that presented 26.04% of changes, are mainly linked to sugarcane crop with change

Table 3 Percentage of LULC changes in BBHR’s watershed

Initial state

Forest Bare
soil

Grazing
land

Sugarcane
crop

Agricultural
areas

Vegetation
areas

Residual
areas

Final state

Forest 69.86 1.15 0 0 4.79 0 0.74

Bare soil 0.43 62.43 0.43 1.52 1.74 0.93 0.42

Grazing land 1.53 8.60 76.51 0 31.69 1.53 0

Sugarcane
crop

0.98 13.94 9.16 55.45 9.93 2.64 21.90

Agricultural
areas

24.25 0 0 26.99 45.11 12.63 0

Vegetation
areas

2.65 2.55 4.54 0 0 80.98 2.98

Residual
areas

0.30 11.33 9.36 16.04 6.74 1.29 73.96

Class total 100 100 100 100 100 100 100

Class changes 30.14 37.57 23.49 44.55 54.89 19.02 26.04

Fig. 4 Land use and land cover of BBHR’s sub-watershed in a 2000 and in b 2014
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of 21.90%. In sequence, some residual areas became vegetated area with 2.98% that can be

seen in central region of the BBHR sub-watershed.

The transformations in grazing lands were of 23.49%, replaced mainly in the streamside

area (Fig. 4a, b—numbers 2 and 4) by sugarcane crops and residual areas with 9.16 and

9.36%, respectively. The grazing lands showed huge advance in 2014 when compared to

2000, mainly in southeast of BBHR sub-watershed (Fig. 4a, b—number 4) taking the place

of 31.69% of the agricultural areas in 2000 as shown in Table 3. The agricultural areas had

the highest value of class changes (54.89%) with the higher value related to grazing lands

(31.69%), followed by sugarcane crops (9.93%), due to increasing of production in

streamside areas (some parts in numbers 3 and 4 in Fig. 4a, b).

The bare soil were modified to sugarcane crops (13.94%) and some areas become

grazing lands (8.60%). Some small areas of bare soil were replaced by forest (1.15%), what

can be related to revegetation practices as can be seen in the central area of BBHR sub-

watershed. The forest areas had a significant transformation of 30.14%, for which the

highest change was the agricultural areas that took 24.25% of the total change verified for

this class (Fig. 4a, b—numbers 2 and 3). The percentage of 1.53% of the forest areas

became grazing lands in 2014 (Fig. 4a, b—numbers 2) and 0.98% of the changes is related

to sugarcane crops mainly in areas near the reservoir (numbers 1 and 3—Fig. 4a, b).

3.3 Land surface temperature (LST)

Temperature has been playing an important role in obtaining useful information about the

land surface condition. The surface temperatures found in BBHR sub-watershed ranged

between 20.6 and 40.7 �C. The LST calculations allowed the creation of the temperature

maps (Fig. 5).

In number 2 of Fig. 5a, b, the increase of the temperature in the bi-temporal analysis is

visible. The heat was spread in the north direction near the green areas found in the LULC

image of 2000 (Fig. 4a—number 2). Furthermore, in the north area of the BBHR sub-

Fig. 5 LST maps of BBHR sub-watershed in a 2000 and in b 2014
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watershed, where there is a forest area, it is possible to see colder temperatures in 2000

than in 2014, when the same area had the percentage of forest reduced by the grazing lands

and sugarcane crops advance (Fig. 4a, b—numbers 2 and 3). The central area of BBHR

sub-watershed revealed decreasing temperatures over the years that could be explained by

the hypothesis of reforestation that should have taken the place of some residual areas that

can be seen in Fig. 4a, b. The heat was intensified in areas near the reservoir (numbers 1

and 3—Fig. 5a, b) where there was sugarcane expansion in 2014.

In Fig. 5a, b—number 2, the intensification of temperatures in 2014 compared with

2000 followed the same direction of grazing lands advance on forest areas in the north of

BBHR sub-watershed. The transformations in grazing lands verified in Fig. 4b—number 4

also caused the increasing of the temperatures as shown in Fig. 5a, b—number 4 that were

spread along the northeast direction of the sub-watershed. In the total area of the BBHR

sub-watershed, the warmest areas in 2014, represented by temperatures near 40.6 �C,
outweighed the highest temperatures with 36.14% in relation to 30.1% in the fourteen

previous years.

3.4 Vegetation health index (VHI)

The VHI, as a drought indicator, assumes that the NDVI values should increase with the

decrease of LST values, while the VCI and TCI variations are dependent on the local

humidity conditions. In this way, when the NDVI values are high it means that VCI values

are also high and the same happens for the LST and TCI values. Relied on the inversion

proportionality between the LST and NDVI indices, the VHI was computed for BBHR sub-

watershed. The VCI is able to estimate the moisture condition of the area, whereas the TCI

can estimate the thermal conditions. Therefore, when these indexes are joined it is possible

to know the climate and vegetation conditions within the study area and relate them with

the land use and land cover. Thus, VHI can be used to obtain the moisture availability as

well as the coverage resistance by classifying vegetation stress and/or soil water stress

(Karnieli et al. 2010). The VHI map was created from VCI and TCI (Fig. 6) and represents

how much vegetation is stressed or not into the range from 0 to 100 (Table 4) according to

Kogan (2002) and Kogan et al. (2004).

In Fig. 6, four major regions can be highlighted showing the correlation between the

existences of vegetation, low temperatures and, consequently, high values of VHI. The

number 1 in Fig. 6 highlights some central and western areas of BBHR sub-watershed with

favorable values of vegetation condition (around 100) due to the increasing of green areas

in 2014 when compared to 2000 (See Fig. 4a, b).

Number 2 represents an area with low NDVI values, with high portions of urban areas

and sugarcane crops, revealing high temperatures and low values of VHI. An area without

vegetation shows a stressed environment condition and confirms the opposite relation

observed in this study between LST and NDVI values that generated the map of VHI.

Number 3 in Fig. 6 also reveals a vegetation area, in that case, a forest structure according

the maps of LULC (Fig. 4a, b) and it presents a health vegetation condition and low

temperature values, even with some changes that occurred over the years. The number 4 in

Fig. 6 highlights low values of VHI due to the grazing land advance in this region that

reduced NDVI values and increased the temperatures as shown in Fig. 5b—number 4.

According to Kogan et al. (2015), the crops productivity and pastures have strong corre-

lation with VHI in countries such as Brazil, Poland, Russia, India and Mongolia and can be

used as an indicator of agricultural losses in pre-harvest.
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Vegetation areas present a great response of VHI, as some central areas and forest area

in north region as shown in Fig. 4—numbers 1 and 2, which means that exists a favorable

moisture condition and do not exists stress. In the central region, the residuals replaced by

vegetation and agricultural crops through 2000 to 2014 have medium values of VHI (see

Fig. 6), showing satisfactory moisture availability and no drought condition. The grazing

lands in number 4—Fig. 6 have conditions close to the severe and moderate classification

(Table 4). There are soil moisture deficiencies represented by the high LST values

(Fig. 3d—number 4) with the increase of grazing land class in 2014. High LST values

mean low NDVI values, given that the NDVI value for vegetation pixel is higher than for

soil pixel and that the vegetation proportion is considered in the calculation of mixed

Fig. 6 Vegetation Health Index (VHI) applied to BBHR sub-watershed

Table 4 Classification of VHI
values in terms of drought

VHI values Drought

VHI B 10 Extreme drought

10\VHI B 20 Severe drought

20\VHI B 30 Moderate drought

30\VHI B 40 Mild drought

VHI[ 40 No drought
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pixels. It means that the reduction of vegetation area through the years caused temperatures

increasing in this portion of study area.

The sugarcane areas in northwest of the sub-watershed (Fig. 6—number 2) showed the

most severe drought conditions, mainly due to the practices of pre-harvest burning that

reduce the soil moisture, increasing the LST and causing stress on vegetation (Fig. 5a, b—

number 1 and 3). The urban areas also demonstrate low values of VHI and extreme drought

condition (Fig. 6—number 2) due to the prevalence of compounds that absorb heat in these

areas, such as concrete and asphalt, and the absence of green areas, what increase LST

values and generate low values of NDVI.

4 Discussion

Henderson-Sellers et al. (1993) concentrated some studies about all the impacts that the

changes in tropical forests to grazing lands can causes and concluded that the deforestation

and reducing in vegetation areas modify the surface roughness that is highly linked to the

canopy hydrology and it is the greatest responsible for the changes in surface temperature.

The removal of forests reduces the root and leaf density, reducing the water demand and

evapotranspiration and warming land surfaces. Water reducing in vegetation characterizes

hydrological stress that turns in a drought situation (Panday et al. 2015; Silvério et al.

2015).

In the BBHR sub-watershed, some forest areas in north regions (Fig. 4a, b—numbers 2

and 3) were reduced by the grazing land advance and by the intensification of sugarcane

production in areas near the reservoir, increasing the temperatures as can be seen in

Fig. 5a, b (numbers 2 and 3). Figure 6 (number 3) shows a favorable condition of the

vegetation moisture revealing that the human intervention in this forest area was not so

severe. However, in areas apart from the forest fragment the vegetation condition has been

affected, which is represented by low values of VHI. Some vegetation areas were replaced

by agricultural areas (Fig. 4a—number 2) and some parts of vegetation near the forest

areas also were reduced due to urban areas, grazing lands and sugarcane crops advance.

The vegetation removal near the forest areas allows alien plants invasion limiting resources

for the native plants. They also can alter soil stability; promote erosion; colonize open

substrates; and promote or suppress fire. All these processes affect native biodiversity and

ecosystem function (Brooks et al. 2004).

The transformations in soil conditions are related to the temperature changes as reveals

Fig. 5b—number 2 that shows high temperatures in 2014 due to the modifications in

vegetation areas in 2000. High temperatures cause stress condition, and it can be verified in

Fig. 6, with low values of VHI in the areas that had the vegetation suppressed. The

vegetation removal exposed the soil directly to the solar radiation, increasing the emis-

sivity, and consequently the temperatures. In this same region in 2000, the temperatures

were lower revealing the important role of vegetation in the temperature control. The

central area of BBHR sub-watershed presented increasing of vegetation areas in 2014,

replacing some residual areas in 2000, which resulted in low temperatures in Fig. 5b and

favorable values of VHI in Fig. 6.

In sugarcane scenario, Brazil is the world’s leader in ethanol production presenting a

recent boom with production of 19 billion of liters in 2017. This production is concentrated

in northeast and south central regions. The State of São Paulo accounts for 60% of pro-

duction of both sugar and ethanol. Together with that production, many of unsustainable
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environmental and social outcomes factors have been associated. They are atmospheric

pollution from fires started to facilitate the harvest, soil degradation, loss of biodiversity,

aquatic environments pollution, among others. The sugarcane is continuously harvested in

dry season among May and October (Uriarte et al. 2009).

The pre-harvest fires produce carbon monoxide and ozone by burning biomass,

increasing its levels in cities where sugarcane is produced. Lara et al. (2005) found that

agricultural related factors have an expressive participation in aerosols (black carbon and

organic aerosol) in the State of São Paulo, where around 10% of the total area is used for

sugarcane plantations. These aerosols play the major role in the absorption of solar radi-

ation, increasing the surface temperature as can be observed between LULC (specifically

sugarcane crops) and LST maps from 2000 and 2014.

Some vegetation and urban areas almost totally became sugarcane crops in 2014 as

shown in Fig. 4b (Sect. 3), emphasizing the advanced of these areas. In BBHR sub-

watershed, the total cultivation of sugarcane increased 4515 hectares between 2003 and

2013 according to surveys made by IBGE (Brazilian Institute of Geography and Statistics)

and INPE (Brazilian Institute of Space Research) through Canasat, a research of sugarcane

crops monitored by observing Earth satellite images. Figure 7 shows the sugarcane

expansion data from Canasat among 2003 and 2013 in BBHR sub-watershed.

The pre-harvest burning practice generates some residuals in the land cover and it was

classified as residual areas. These residuals can be related with the pre-harvest burning or

recent harvesting of other crops. Therefore, along with the sugarcane crops, we can notice

the residual areas advancing in the same direction and presenting high temperatures and

deficient moisture conditions (see the numbers 1 and 3 in Fig. 5b and number 2 in Fig. 6).

Some residual areas in the central region of the BBHR sub-watershed turned into vege-

tation areas revealing supposed reforestation of some old sugarcane areas, improving the

vegetation condition of this area, and reducing the temperatures (view Fig. 5b).

The increasing of the sugarcane production and the concentration of the urban areas in

the streamside areas caused extremely high temperatures in 2014 (Fig. 4b—numbers 1 and

3). Although the shadow caused by the sugarcane cultivation, the pre-harvest practicals

modify the soil dynamics and its water content, increasing the temperature. Dourado-Neto

et al. (1999) measured the soil temperature in two types of harvest, one with sugarcane tips

and straw from the last harvest and another with the residuals left after the traditional burn

practice before the harvest, in a field study in Piracicaba, State of São Paulo, Brazil and it
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Fig. 7 Total sugarcane cultivation between 2003 and 2013 in BBHR sub-watershed according to Canasat—
INPE

1416 Nat Hazards (2017) 89:1401–1420

123



was found an increasing of 5.1 �C in the soil that was burned. The reduction of water

followed by increasing of temperatures decreases the VHI values, indicating stress of the

land cover as highlight Fig. 6 (number 2) and Fig. 5b—numbers 1 and 3 that reveal the

high temperatures found in this region.

The urban areas also showed changes in BBHR sub-watershed with the population

density increasing of 7% according demographic census of 2000 and 2010 raised by IBGE.

Population migrated to areas near the reservoir and became more concentrated along the

sugarcane crops and in the northeast region of the sub-watershed (Fig. 5a, b—number 2)

where were verified the increasing of grazing lands and reducing of vegetation areas. The

expansions of urban areas are driven in direction to high temperatures. The modification of

the land surface with the great amount of concrete and asphalt in urban areas increases the

rate of solar radiation absorption and, consequently, increases the production and energy

emission as heat, modifying the exchange of energy and moisture in surface-atmosphere

system, increasing the LST trough 2000 and 2014 (Fig. 5a, b—number 2).

Flores et al. (2016) conducted a study about the surface urban heat island from MODIS

sensor data in the metropolitan area of São Paulo city that showed strong negative cor-

relations between NDVI and LST in urban areas. The more urbanized areas present lower

values of NDVI than rural areas and increasing of around 10 �C in seasonal amplitudes of

LST in relation to rural areas (*5 C). Areas classified as urban in 2000 already showed

high temperatures in Fig. 5a, the same areas had the intensification of temperatures with

the increasing of population density and some new urban areas in 2014 also increased the

surface temperature as can be seen in Fig. 5b.

The expansion of grazing lands over the vegetation areas occurred in direction to the

forest areas in north region (Fig. 4a, b—number 2), turning it into an isolated green area in

2014. Vegetation areas converted into grazing lands can cause lots of damages such as

changing hydrological conditions and the water quality in addition to be alarming to the

biodiversity of the region (Zedler 2003). The grazing lands modify soil temperature, and

these modifications are related to soil respiration. The temperature increases with the

increasing of carbon dioxide, accounting for 65% of carbon dioxide efflux variability (Cao

et al. 2004).

In São Paulo state, the grazing lands are used in the most for cattle production that

increased 20% in Brazil between 2000 and 2014 (FAOSTAT 2017). In BBHR sub-wa-

tershed the production was around 33,540 heads between 2000 and 2014 according to

IBGE Agricultural Census. This grazing lands increasing is easily seen in Fig. 4b—number

4, in the east part of the BBHR sub-watershed with an extensive area and some areas near

the expansion of the sugarcane crops. It is possible to notice the expansion of the high

temperatures in the same direction that the grazing lands advance and the increasing of

temperatures in areas nearby the reservoir, resulting in stressed areas according with the

VHI map (Fig. 6).

The areas classified as extreme drought and stressed conditions in BBHR sub-watershed

according to the VHI were close to the reservoir that suffered a drought period in 2014 and

it could have aggravated a condition already installed due to the changes in land use and

cover. In fact, the VHI map highlighted areas that presented expressive changes in LST and

LULC maps. Areas with expressive changes in the land use presented high values of VHI

such as the vegetation and forest areas that were replaced by grazing land and agricultural

activity, mainly sugarcane crops and regions that presented expansion of urban areas. The

high values of VHI in this study represented low values of VCI and high values of TCI that

reveal the decreasing of NDVI and increasing of LST, respectively. All these changes are

responsible for modifying the hydrological dynamic and warming the land surface over the
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years, reducing the VHI values that identified extreme, severe and moderate conditions of

drought in areas of the Barra Bonita sub-watershed, confirming the presence of drought

event in SPI results.

5 Conclusions

The LULC maps revealed relevant changes occurred mainly in relation with some agri-

cultural cultures expansion, such as sugarcane crops and grazing land areas that advanced

nearby the reservoir. Some portions of sub-watershed land had increase of vegetation areas,

while other vegetation areas were suppressed by the grazing land advance. All these

changes represented impacts in the LULC and consequently caused water supply chal-

lenges and stressed vegetation condition that can be monitored by the VHI. The VHI is a

strong tool of drought detection and allows verify the temporal relation between LST and

NDVI for monitoring the major changes in the land use and land cover. For the BBHR sub-

watershed a wide range, from extreme to no drought conditions, occurred due to extension

of this area. The difference of 14 years between our analyses showed many variations in

use and land cover and allowed the perception of relating them with the temperature

changes. The correlation between LST and NDVI was strongly negative confirming the

hypothesis that the areas with low rates of water content in soil and vegetation demon-

strated high values of LST and became more stressed areas with low values of VHI. Areas

with less modifications that presented high rates of vegetations (high values of NDVI),

revealed low values of LST and more health conditions that avoid drought.
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State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Sci
Agric 56:1215–1221

Du J, Fang J, Xu W, Shi P (2013) Analysis of dry/wet conditions using the standardized precipitation index
and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stoch Environ Res
Risk Assess 27:377–387

Flores RJL, Pereira Filho AJ, Karam HA (2016) Estimation of long term low resolution surface urban heat
island intensities for tropical cities using MODIS remote sensing data. Urban Clim 17:32–66

Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the
standardized precipitation index. Bull Am Meteorol Soc 80:429–438

Henderson-Sellers A, Dickinson RE, Durbidge TB, Kennedy PJ, McGuffie K, Pitman AJ (1993) Tropical
deforestation: modeling local to regional scale climate change. J Geophys Res 98:7289–7315

Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic forest: ecological findings
and conservation initiatives. New Phytol 204:459–473

Karnieli A, Agam N, Pinker RT, Anderson M, Imhoff ML, Gutman GG, Panov N, Goldberg A (2010) Use
of NDVI and land surface temperature for drought assessment: merits and limitations. J Clim Am
Meteorol Soc 24:618–633

Kogan FN (1995) Application of vegetation index and brightness temperature for drought detection. Adv
Space Res 15:91–100

Kogan FN (1997) Global drought watch from space. Bull Am Meteorol Soc 78:621–636
Kogan FN (2002) World droughts in the new millennium from AVHRR-based vegetation health indices.

Eos Trans Am Geophys Union 83:557–564
Kogan F, Stark R, Gitelson A, Jargalsaikhan L, Dugrajav C, Tsooj S (2004) Derivation of pasture biomass in

Mongolia from AVHRR-based vegetation health indices. Int J Remote Sens 14:2889–2896
Kogan F, Guo W, Strashnaia A, Kleshenko A, Chub O, Virchenko O (2015) Modelling and prediction of

crop losses from NOAA polar-orbiting operational satellites. Geomat Nat Hazards Risk 7:886–900
Lara LL, Artaxo P, Martinelli LA, Camargo PB, Victoria RL, Ferraz ESB (2005) Properties of aerosols from

sugar-cane burning emissions in Southeastern Brazil. Atmos Environ 39:4627–4637
Li Z, Tang B-H, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA (2013) Satellite-derived land surface

temperature: current status and perspectives. Remote Sens Environ 131:14–37
Liu WT, Kogan F (2002) Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation

condition indices. Int J Remote Sens 23:1161–1179
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