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Abstract
This paper describes a new statistical model to predict the frequency dependence of the conductivity of conjugated polymer–
semiconductor nanoparticle composites. The model considers AC conduction in an inhomogeneous medium represented by 
a two-dimensional model of resistor network. The conductivity between two neighboring sites in the polymer matrix and the 
semiconductor particles is assumed to obey the random free energy barrier model and the Drude model, respectively. The real 
and imaginary parts of the AC conductivity were determined using the transfer-matrix technique, and the statistical model 
was applied to experimental data of thin films composed of polyaniline (PANI) and indium–tin–oxide (ITO) nanoparticles. 
The conductivity critical exponent (s) obtained in two dimensions for PANI/ITO films below the percolation threshold was 
found to be 2.7, which is greater than the universal value of s described by the classical percolation theory (s = 1.3). This 
non-universality is explained by the existence of a local electric field distribution in the bulk of the nanocomposite. Finally, 
these results are discussed in terms of the distribution of potential barriers that vary according to the concentration of ITO 
amount in the composite.

1  Introduction

Recently, polymer nanocomposites have attracted much 
attention in the academic area due to their fascinating poten-
tial for technological applications in many fields such as 
sensors, light-emitting diodes and super capacitors [1–9]. 
Polymer nanocomposites consist of a polymer matrix filled 
with inorganic/organic nanoscale additives. In particular, 
these materials have attracted a considerable research inter-
est because they have exhibited better mechanical, electri-
cal, chemical and optical properties than their counterparts 
[10, 11]. Polymer matrices filled with inorganic nanopar-
ticles combine the features of the polymer matrices such 

as low weight and flexibility with the unique characters of 
the inorganic nanoparticles. Over the past of few decades, 
many experimentalist and computer scientists are trying 
to understand the relationships between the interactions, 
phase behavior and morphology of polymer nanocomposites 
[12–15]. These studies have revealed that the macroscopy 
properties of the polymer nanocomposites depend strongly 
of the morphology, especially of the microscopy morphol-
ogy of the nanoscale additives in the polymer matrix.

Furthermore, many studies have demonstrated that the 
superior performance of the polymer nanocomposites 
compared to those made of conventional composites can 
be attributed to their much larger exposed surface area and 
the very short distance between the nanoparticles [16–18], 
which provide access to peculiar morphologies, such as 
interpenetrating networks, even at very low concentrations 
of dispersed nanoparticles [19, 20]. Consequently, the elec-
trical properties of polymer nanocomposite films can be 
dominated by nanoparticles in some ranges of concentra-
tion, and then by the percolation threshold of these systems 
[21–23]. The percolation threshold in the classical percola-
tion theory is defined as the nanoparticle amount necessary 
to form a continuous conductive path by physical contact of 
the nanoparticles.
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Several conduction mechanisms can be involved in the 
charge transport process of polymer nanocomposites and its 
investigation remains a challenge due the complex micro-
structure of these systems. The nanoparticle/nanoparticle 
interaction, polymer matrix/polymer matrix interaction and 
nanoparticle/polymer matrix interaction play an important 
role in the conduction mechanisms and they should be taken 
in consideration for a deeper understanding of the electrical 
properties of these materials.

Based on this, we developed a new statistical model of 
resistor network that generates the morphological structure 
of polymer nanocomposites and calculate the alternating 
electrical conductivity using a transfer-matrix technique 
[24, 25]. The model was applied to simulate the virtual 
microstructure of polyaniline (PANI) and indium–tin–oxide 
(ITO) polymer nanocomposites and to reproduce the real 
and imaginary parts of the AC conductivity of these films. 
ITO and PANI are materials used as transparent anodes for 
organic light-emitting displays [26–28], and the recent com-
bination of ITO/PANI nanocomposites has now generated a 
new field for the development of printed, organic, and flex-
ible transparent electrodes. The model takes into account 
the disordered structure of PANI, the random distribution of 
nanoparticles, and the aggregates of ITO in the polymeric 
matrix. The impedance between two neighboring sites of the 
polymeric matrix was calculated for PANI using the Ran-
dom Free Energy Barrier Model [29], while the impedance 
between two neighboring sites from the conductive phase 
was calculated by the Drude model [30].

2 � Theory, film preparation and statistical 
model

2.1 � Percolation theory and critical exponent 
of conductivity

The electrical conductivity behavior of polymer nanocom-
posites has been commonly described by the percolation 
theory [31]. It is widely known that the DC electrical con-
ductivity of polymer nanocomposites depends of the nano-
particles concentration. For polymer nanocomposites with 
low content of nanoparticles, the conductivity is determined 
by the polymer matrix as result of the large mean distance 
between the nanoparticles. Increasing the conducting phase 
content, the nanoparticles get closer and at a critical point 
of content, known as percolation threshold, a continuous 
conductive path is formed throughout the polymer matrix 
by the physical contact of the nanoparticles and then the 
electrical conductivity is dominated by these nanoparticles. 
In the classical percolation theory, a continuous network 
must be present in a nanocomposite through the connec-
tion between adjacent nanoparticles [31]. In this case, the 

electrical conductivity (σ) of the nanocomposite may depend 
not only on the percolation threshold concentration (pc) but 
also on the conductive component concentration (p) and the 
conductivity critical exponent above (p > pc) the percolation 
threshold (t) as in the following equation: 

The exponent t in Eq. (1) is associated with different con-
duction mechanisms involved in electronic transport phe-
nomena [32–34]. However, for pc > p, the average distance 
between adjacent nanoparticles prevents the formation of a 
percolating cluster. The conductivity is then governed by 
the narrow gaps between the neighboring nanoparticles. As 
p increases and approaches pc, the conductivity of the com-
posite can be described by the following equation: 

where s is the conductivity critical exponent below the 
percolation threshold. Finally, the critical exponent s and the 
exponent t are considered universal in the theory of classical 
percolation and vary according to dimensionality d. In this 
case, s assumes values from 1.1 to 1.3 for d = 2, and from 0.7 
to 1.0 for d = 3, while the critical exponent t assume values 
from 1.1 to 1.3 for d = 2, and 1.6 to 2.0 for d = 3 [35]. Moreo-
ver, it is well known that conventional conducting compos-
ites prepared with conductive particles dispersed in an insu-
lating matrix show the percolation transition. The universal 
behavior of critical exponents of electrical conductivity has 
been experimentally found in a limited number of experi-
ments on real disordered composites and theoretically found 
for a random resistor network model [36]. The change from 
insulating to conducting state occurs when the conductive 
particles or cluster are in contact with each other and form 
a continuous percolating path throughout the matrix (geo-
metrical connectivity). On the other hand, and in contrast 
with the classical percolation theory, non-universal behav-
ior by the critical exponents of electrical conductivity has 
been observed in percolative composites by several authors 
[37–39]. In these cases, the authors have demonstrated that 
the conductive particles are connected not geometrically, but 
electrically by tunneling mechanism. Thus, the percolation 
occurs even in the absence of a geometrically connected 
network [40, 41]. Consequently, the study of the behavior 
of non-universal critical exponents of conductivity associ-
ated with impedance measurements is an important tool to 
analyze the processes of electrical conduction responsible 
for the transition from the insulating to conducting phase.

2.2 � Preparation and characterization of PANI/ITO 
nanocomposites

Polyaniline (PANI) was synthesized as described elsewhere 
[42, 43]. PANI/ITO hybrid material was obtained by the 

(1)� ∼ (p − pc)
t.

(2)� ∼ (pc − p)−s,
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addition of ITO nanoparticles purchased from Sigma-
Aldrich (diameter < 50 nm) to a solution of PANI in NMP 
(N-methylpyrrolidone). The PANI/ITO films were obtained 
by a casting method to produce 4, 8, 12, 16, and 20% of ITO 
by weight of film.

The AC conductivity of the PANI/ITO films was meas-
ured by impedance spectroscopy using a Solartron 1260 
by Impedance/Gain Phase Analyzer in the frequency range 
from 101 to 106 Hz, whereas DC conductivity was obtained 
using the two-probe method. The equipment uncertainty of 
the impedance measurement was smaller than 1%, and a 5% 
error bar was introduced to allow for uncertainty about film 
thickness and the exact area of the top electrode.

2.3 � Statistical model

A statistical model of resistor network was developed in 
this work to study the electrical transport properties of ITO/
PANI films. The model developed in Fortran 90 takes into 
account the electron hopping and tunneling mechanisms 
through the dispersed nanoparticles and aggregates of ITO 
in the PANI matrix, as well as the disordered arrangement 
of the polymer chains in the matrix and the interfacial pro-
cesses between the conducting phase and polymeric matrix. 
Consequently, the theoretical model introduced in this paper 
focuses on two important aspects of the material: its geo-
metrical structure and electrical conductivity. The statis-
tical model computes the conductance per unit length of 
networks consisting of very long two-dimensional strips 
built by juxtaposing N square cells. Each cell is formed by 
polymer chains consisting of a sequence of resistors in series 
arranged randomly, and by particles and aggregates consist-
ing of resistors connected to the nearest neighbors of the 
central site, also distributed randomly in the cell. The imped-
ance values of these resistors vary according to the structure 
and characteristics of the material. They represent the dif-
ficulty of the charge transfer processes of electronic carriers 
and can be represented by a distribution of energy barriers 
[44]. Finally, the calculation of the complex conductivity of 
the network is performed by applying a transfer-matrix tech-
nique [24, 45], which enables the calculation of DC conduc-
tivity for a random resistor network. As a result, the model 
generates the structure of the ITO nanoparticles, which are 
randomly distributed in the square cell. Nanoparticle size 
is determined by the choice of diameter, in a first approxi-
mation taken from a Gaussian distribution probability [46] 
centered in d0 with dispersion Δd. An empty lattice site m of 
the two-dimensional cell is randomly occupied, representing 
the center of a nanoparticle. All neighboring sites located 
within a radius of d0/2 are then connected by a resistor with 
ZITO impedance. A search of all of its sites is subsequently 
performed to look for a pair of nearest neighbor sites that 
does not belong to the same nanoparticles. If such a pair is 

found, then these sites are connected, with probability ph, by 
a resistor of the same impedance. The idea is to incorporate 
hopping and tunneling mechanisms. The process is repeated 
until the chosen bond density of ITO is reached.

The molecular chains are then built to generate the poly-
meric matrix. Initially, an empty site m of the cell is ran-
domly chosen and connected by a resistor with impedance 
ZPANI to an empty nearest neighbor site n, also randomly 
chosen. The process is repeated until the chosen polymer 
chain size is reached. A search in all of its sites is subse-
quently performed to look for a pair of nearest neighbor sites 
not connected by a resistor, which may or may not belong 
to the same chain. If such a pair is found, then these sites 
are connected, with probability hopping ph, by a resistor 
with ZPANI impedance. The idea is to incorporate induced 
charges and a hopping mechanism. By repeating the proce-
dure described above, new polymer chains are built inside 
the cell until a determinate concentration k of the occupied 
lattice bonds is reached.

The complex impedance ZITO between two sites of nano-
particles is represented by Drude’s model [30], proposed by 
Drude in 1900, and is applied to materials that have delocal-
ized wave functions. In our model, each resistor representing 
the bonds from ITO nanoparticles is assigned an impedance 
value in accordance with the following equation: 

where τ corresponds to the waiting time, ω is the angular 
frequency of the electric field and A is a constant that is a 
function of carrier density, charge electron, electron mass, 
and the distance between sites.

Hopping conduction is the predominant transport mecha-
nism in an insulating matrix due to the strongly localized 
electrons. The random free energy barrier model (RFEB) 
was proposed by Dyre to explain conduction in disordered 
media. According to this model, the charge carrier must 
overcome the energy barriers randomly distributed between 
a minimum Emin and a maximum energy Emax, within an 
equally probable distribution of free energy barriers.

In the regime of low frequencies, the charge carriers have 
sufficient time to meet high-energy barriers; consequently, 
the lowest jumping frequency γmin dominates the process. 
Therefore, a charge carrier can jump from one site to its 
neighboring empty site with a minimum frequency given by 
the following equation: 

where γo is the escape frequency, k the Boltzmann con-
stant, and T the absolute temperature. In this regime, the real 
component of the conductivity is independent of frequency. 
However, the original RFEB model takes into account 
only the electronic conduction [29], so that as proposed by 

(3)ZITO = A
(
1 − i��

�

)
,

(4)�min = �0 exp(−Emax∕kT),
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Bianchi et al. [47] for a better understanding of the phenom-
ena involved in conducting of the material—the term that 
refers to the dielectric contribution (iωε′) must be added to 
the equation proposed by Dyre. Therefore, the impedance 
ZPANI (ω) between two adjacent insulating sites, as a func-
tion of the angular frequency ω, can be written as follows: 

where γmin is the minimum frequency of jumps and γmax 
is the maximum frequency of jumps, ω is the angular fre-
quency of the electric field, and K is a constant that depends 
on the density of charge carriers, the electron charge, the car-
rier effective mass, the waiting time, and distance between 
sites. The electrical permittivity of the medium is given by 
ε′ = k ε0, where k is the dielectric constant and ε0 is the 
vacuum permittivity.

The impedance ZINT at the interface between the insulat-
ing and conducting phase is given as follows: 

where YPANI and YITO are the admittances of the PANI 
and ITO, respectively. The coefficient A = 2 is employed 
for the square lattice [48]. Thus, replacing YPANI = 1/ZPANI 
and YITO = 1/ZITO, the impedance ZINT can be rewritten as 
follows: 

The impedance provided by Eqs. (3), (5), and (7) are used 
to calculate the conductivity of a square cell using the tech-
nique of the transfer matrix. This cell consists of a resistor 
network simulating the structure of the nanocomposite. A 
schema from the structure of the statistical model for the 
nanocomposite PANI/ITO is shown in Fig. 1, which demon-
strates the three kinds of impedance: ZINT, ZPANI, and ZITO.

After construction of the first cell, a new cell is then built 
beside the first cell. Of course, care should be taken when 

(5)ZPANI =

⎧⎪⎨⎪⎩
K

⎡⎢⎢⎢⎣
−i� +

i� ln(�max∕�min)

ln
�
1+(i�∕�min)

1+(i�∕�max)

�
⎤⎥⎥⎥⎦
+ i���

⎫⎪⎬⎪⎭

−1

,

(6)ZINT = (YPANI + YITO)∕AYPANIYITO,

(7)ZINT = (ZPANI + ZITO)∕2.

passing from one cell to another: horizontal and vertical 
bonds on the boundary must be stored to correctly construct 
the next cell. This process is repeated until an infinitely long 
strip has been generated. A sample of nanocomposite thin 
film can be represented by a long strip formed by juxtapos-
ing N square cells with L × L sites.

2.3.1 � Determination of electrical conductivity

Derrida et al. [45] introduced a transfer-matrix formulation 
for computing the conductance of random resistor networks. 
The matrix AL represents the conductance of the very long 
strip with resistors placed at random on a square lattice. 
Each time a new resistor is added, the matrix A is modified. 
Derrida and colleagues studied the case in which the resis-
tors are either cut with probability (1 − p) or present with 
probability p.

When one adds a horizontal resistor R onto a site α of 
network, then the matrix Amn becomes a new matrix A′mn, 
according to the following equation: 

where R is the resistance of resistor.
The effect of the vertical bonds is given by: 

where δmn is Kronecker’s symbol (δmn = 1 if m = n and 
δmn = 0 otherwise). The conductivity per unit length σ of a 
strip of length L is given by: 

where A11 is an element at the first row and column of the 
matrix for L → ∞.

We extend this transfer-matrix technique to calculate 
the AC conductivity of a resistor network, introducing the 
impedance Z in place of the resistance R. Impedance that 
represents the difficulty of charge carrier jump from one site 
to another (potential barrier) varies according to the struc-
ture and characteristics of the material. For PANI/ITO films, 
we use the Drude model to represent the impedance of ITO 
and the Dyre model to represent the impedance of PANI.

3 � Results

The DC conductivity behaviors of the PANI/ITO nanocom-
posites with increasing concentration of ITO nanoparticles 
can be observed in the DC electrical conductivity measure-
ments shown in Fig. 2. Here, it is observed that the con-
ductivity of PANI/ITO nanocomposites shows a substantial 

(8)A�
mn

= Amn −
R.Am�A�m

1 + R.A��

,

(9)A��
mn

= A�
mn

+
1

R
(��,m − ��,m)(��,n − ��,n),

(10)� = lim
L→∞

A11∕L,

Fig. 1   Model for PANI/ITO composite based on three elements, two 
of which represent the constituent phases and one the interface
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increase of about six orders of magnitude in the percolation 
region located between the concentrations of 8 and 12 wt%, 
suggesting that the percolation threshold is 10.6 wt% of ITO.

The values of the critical exponents of electrical conduc-
tivity obtained for the PANI/ITO nanocomposites, below 
and above the percolation threshold (pc = 0.106), were cal-
culated from the determination of the angular coefficient 
obtained by linear fit of the conductivity σ as a function of 
(pc − p) and (p − pc). The values obtained for the critical 
exponent were t = 3.2 and s = 2.7, which were greater than 
the values expected based on classical percolation theory.

The code developed in Fortran 90 generates the morpho-
logical structure of PANI/ITO nanocomposites, taking into 
account the highly disordered structure of weakly doped 
PANI structure, the homogeneous dispersion of nanoparti-
cles of ITO, and the formation of aggregates. An example 
of a cell formed by 80 × 80 sites for PANI/ITO (88/12) is 
shown in Fig. 3. A sample of nanocomposite thin film can be 
represented by a long strip formed by juxtaposing N square 
cells with L × L sites. The ITO nanoparticles are represented 
by a dark line and the polyaniline chains are represented by 
a gray line.

The real and imaginary components of AC conductiv-
ity measurement, as well as the results of the simulation, 
are presented in Fig. 4. In the simulation, a strip of 1000 
square cells was used with 50 × 50 sites. The measurement 
was faithfully reproduced by our model. The free charge 
response of ITO was modeled using the Drude model, while 
the motion of charge carriers in the polymer matrix was 
modeled by Dyre’s RFEB model.

The statistical model parameters used to fit the experi-
mental data for PANI/ITO nanocomposites are presented 
in Table 1. The Dyre constant K, the minimum jumping 
frequency γmin, and maximum jumping frequency γmax are 
related to the Dyre model. Drude’s constant A and the wait-
ing time of the charge carriers τ are related to the Drude 

Fig. 2   Electrical conductivity of PANI/ITO composites as a function 
of ITO load (wt%)

Fig. 3   Example of a cell formed by 80 × 80 sites for PANI/ITO 
(88/12)

Fig. 4   Simulation and experimental measurements of complex con-
ductivity of the PANI/ITO nanocomposites as a function of frequency 
with concentrations of 08, 12, and 20 at % ITO
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model. The dielectric constants, used as fitting parameters, 
are presented in Fig. 5. It is observed that the most sensitive 
parameters are the Dyre constant and minimum jumping fre-
quency. A 10% change in the K and γmin parameters resulted 
in 10 and 9% changes in the real conductivity, respectively. 
A 10% change in the γmax, A, and τ parameters resulted in 
a 0.7% change in the real conductivity, while for the ITO 
loading it resulted in a 3% change in the real conductivity.

The value of the Drude constant was A = 4.0 × 107 Ωs for 
all PANI/ITO nanocomposite samples. In the Dyre RFEB 
model, hopping is the dominant conduction mechanism for 
the electron transport occurring in a disordered medium 
in the presence of free energy barriers between the trap-
ping sites. The energy barriers are randomly distributed 
between a minimum value Emin and a maximum value Emax, 
which results in two limiting carrier escape frequencies, 
γmax and γmin, respectively. The maximum value frequency 
γmax = 1012 rad/s was the same for all samples.

The dielectric constant k showed a weak variation with 
frequency. The expected decrease in k with increasing fre-
quency, which occurs as the interfacial polarization that 
dominates in the low-frequency region, gradually diminishes 
toward high frequencies. The dielectric constant increased 
with ITO nanoparticle content at all the frequency ranges.

4 � Discussion

The electrical conductivity obeys the power law according 
to Equations (1) and (2), where t and s are the conductivity 
critical exponents determined above and below the percola-
tion threshold, respectively. These exponents are considered 
universal in classical percolation theory in which the con-
ductivity is established through the direct physical contact 
between the adjacent nanoparticles (geometric percola-
tion). Below the percolation threshold, the conductivity of 
the nanocomposites remains close to that of the insulating 
polymer matrix.

The values of the critical exponents of electrical con-
ductivity obtained for the PANI/ITO nanocomposites were 
t = 3.2 and s = 1.7. These values are greater than the expected 
values for classical percolation theory. This non-universality 
can be explained by the tunneling-percolation model, which 
takes into account the tunneling of electrons between two 
adjacent conductive particles [38, 49]. In this case, an elec-
trical percolation occurs when “current flows” through the 
system, that is, when a continuous conductive path between 
the electrodes is formed, even in the absence of a geometri-
cally connected network.

Balberg and colleagues [50, 51] have studied percolation 
and tunneling in composite materials by capacitance probe 
microscopy. They proposed a model in which the formation 
of a network of electrical percolation through the tunneling 
mechanism is considered. This mechanism is characterized 
by a distribution of values of resistances that vary according 
to the average distance between the conductive particles. In 
a resistor network model, the value of the critical exponent 
depends not only on the concentration of these resistors on 
the network, as predicted by the percolation theory, but also 
on the distribution of resistance values assigned to these 
resistors.

The real and imaginary components of AC conductivity 
measurement for the PANI/ITO nanocomposite, as well as 
the results of the simulation, are presented in Fig. 4 and in 
Table 1. The parameter that stands out in Table 1 is that of 
the minimum jumping frequency γmin, which represents the 
frequency at which the AC conductivity becomes depend-
ent on frequency and which is related to the higher energy 
barriers present in the bulk of the sample.

The behaviors of the minimum jumping frequency γmin as 
a function of the ITO content in PANI/ITO nanocomposites 

Table 1   Parameters obtained from the complex conductivity plots 
observed for PANI/ITO nanocomposite

Source: elaborated by the authors

ITO 
loading 
(wt%)

K (Ωs)−1 γmin 
(rad/s)

γmax 
(rad/s)

A (Ωs) τ (s)

1 3.6 × 10−12 4.0 × 101 1.0 × 1012 4.0 × 107 8 × 10−13

5 3.7 × 10−12 5.0 × 101 1.0 × 1012 4.0 × 107 4.0 × 10−13

8 3.8 × 10−12 1.5 × 102 1.0 × 1012 4.0 × 107 3.0 × 10−13

12 4.2 × 10−12 2.0 × 104 1.0 × 1012 4.0 × 107 2.0 × 10−13

20 1.0 × 10−11 1.0 × 105 1.0 × 1012 4.0 × 107 1.0 × 10−13

Fig. 5   Behavior of the dielectric constant in PANI/ITO composites as 
a function of the frequency



Charge transport in conjugated polymer–semiconductor nanoparticle composite near the…

1 3

Page 7 of 9  799

are shown in Fig. 6. The increase in γmin by three orders of 
magnitude in the region of the percolation threshold can be 
related to the decrease in energy barriers present in the thin 
layers of the polymeric matrix located between adjacent ITO 
aggregates. These structures form small capacitors where the 
local electric field can be sufficiently intense to allow charge 
transport by hopping or tunneling.

Simoes [52, 53] observed an anomalous percolative 
behavior in carbon nanotube composites. These composites 
show lower electrical resistance and higher dielectric con-
stant with increases in the conductive filler below the perco-
lation threshold. This can be explained as a consequence of 
the formation of capacitor networks in the bulk of the com-
posites. The capacitance of the local capacitors is calculated 
by taking into account the distance between the neighboring 
carbon nanotubes, as well as their relative positions. As a 
consequence, the statistical model developed in this work 
applies the modified equation of Dyre, expressed by Eq. (5), 
to represent the conducting mechanism of charge carriers 
between adjacent sites of the polymer matrix. The behavior 
of the minimum jumping frequency γmin, which is associated 
with the heights of the highest potential barriers, indicated 
an increase in conductance in the matrix regions of PANI 
with increasing content of conductive particles. This can be 
explained by taking into account the increased local electric 
field in the interior of small capacitors.

As the content of ITO nanoparticles increases, the num-
ber of conductive paths increases. Thus, the average dis-
tance between the conductive particles becomes smaller. The 
structure of the nanocomposite ITO before the percolation 
threshold is shown in Fig. 7. In this case, the conductor paths 
do not allow connection between the electrodes.

The structure of nanocomposite before the percola-
tion threshold is also shown in Fig. 7. In this case, the 
conductive paths formed by ITO aggregates do not allow 
physical contact between the electrodes. The conductive 
nanoparticles (represented by black circles) are randomly 
dispersed in the polymer matrix. The circuit formed by 
metallic wires and small capacitors, as shown in Fig. 8, is 
an equivalent circuit of the structure shown in Fig. 7. This 
circuit represents the conductive paths and the charges 

Fig. 6   Minimum jumping frequency γmin as a function of the ITO 
content observed in PANI/ITO composites

Fig. 7   Schematic representation of conductive paths of ITO nanopar-
ticles, considered before the percolation threshold is reached; parallel 
segments represent the regions in the matrix where the electric field 
is intense

Fig. 8   Black segments represent the paths formed by particles of 
ITO; capacitors represent regions of interface where the electric field 
is more intense
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accumulated in certain regions in the bulk of the sam-
ple. The electrical field is illustrated by parallel segments 
between the capacitor plates.

The potential difference applied to samples of the PANI/
ITO nanocomposites is divided between the capacitors that 
are present along a path that connects the two electrodes. 
Thus, a distribution of potential differences will occur in 
the bulk of the sample. Since the distance between the 
plates is of the same order of magnitude as the conductive 
particle aggregates, the result is a significant increase in 
the local electric field intensity and the number of charge 
carriers at the interfaces between the phase conductor and 
polymeric matrix. The increased electric field intensity 
decreases the effective height of the potential barriers due 
to the Poole–Frenkel effect [54, 55] which favors the hop-
ping and tunneling conduction mechanism.

5 � Conclusions

We introduced a two-dimensional statistical model that 
was developed based on resistor networks that reproduce 
the morphological structure and that calculate the alter-
nating conductivity of a PANI/ITO nanocomposite. The 
calculation of the conductivity was carried out using the 
modified Dyre’s model in the polymer matrix (PANI) 
region and Drude’s model in the nanoparticles and aggre-
gates of ITO. The simulations reproduced the alternating 
conductivity measurements in samples in a large range of 
frequencies and explained the conduction mechanism near 
the percolation threshold that give rise to the conductivity 
critical exponents larger than those provided by the clas-
sical percolation theory.

Near the percolation threshold, the PANI/ITO nano-
composite becomes less resistive before the physical con-
tacts between ITO nanoparticles have been reached, due 
to the accumulation of charge carriers at the interfaces and 
the occurrence of hopping and tunneling mechanisms in 
the regions of high intensity of local electric field, which 
are randomly distributed in the bulk of the material. This 
distribution of values of local electric field, which vary 
according to the average distance between the conduc-
tive nanoparticles, clarifies the behaviors of the minimum 
jumping frequency γmin and the increase in dielectric con-
stant k in the polymeric matrix in response to increases in 
the concentration of nanoparticles in the composite.
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