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The mean field theory results are obtained from the Bogoliubov inequality for the spin-1/2 Ashkin–Teller 
model on a cubic lattice for different cluster sizes. The phase diagram, magnetization and free energy are 
obtained. From those expressions we observed a new phase in the model. Denoted in the course of this 
work by Baxter(2) this new phase presents 〈S〉 �= 〈σ 〉 �= 0. The phase transitions between the Baxter(2)

and the others well known phases for the model are studied and classified.
© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Despite being massively studied for decades, the Ashkin–Teller 
(AT) model [1] still attracts a great interest due its application 
in different areas such as magnetism [2], chemical interactions 
in metallic alloys [3], elastic response of DNA molecule to ex-
ternal force and torque [4] and phase diagram of selenium ad-
sorbed on the Ni(100) surface [5]. The AT model due to the pres-
ence of the tricritical points and weakly first order phase transi-
tions presents a complicated and interesting phase diagram. The 
properties of the AT model were studied by a variety of meth-
ods such as mean-field theory (MFT) [6–8], effective field the-
ory (EFT) [9], rigorous inequality correlation function [10], renor-
malization group theory (RG) [11,12], mean-field renormaliza-
tion group (MFRG) [13,14] and Monte Carlo methods (MC) [6,
15–21].

In the context of short series analysis, MC simulation, MFT and 
RG Ditzian et al. [6] studied the AT model in three dimensions. 
There, the authors found what seems to be a new phase where 
〈S〉 �= 〈σ 〉 �= 0. This unexpected behavior was observed in the MC 
context for different lattice sizes; in this same work the new phase 
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was not observed in MFT context. In Ref. [6] it is also possible to 
find a discussion of the AT model results obtained from MFT in 
two and three dimensions. Later the results by Ditzian obtained 
from the MC simulations for the AT model in 3D were confirmed 
by Musial [18].

In this work we obtained the MFT results from the Bogoliubov 
inequality for the spin-1/2 AT model on a cubic lattice for clus-
ters with 1-, 2-, 4-, and 8-sites (see Fig. 1) in order to find and 
study for the first time the new phase present in the model. In 
this work the new phase will be labeled by Baxter(2). Phase tran-
sitions between Baxter(2) and the others well know phases already 
mentioned in previous works for the AT model are obtained and 
classified. The MFT approximation is used in this work as a espe-
cially tool suitable for a first view into the problem. Although we 
have historically observed that the MFT approach does not provide 
accurate results compared to other numerical and analytical meth-
ods, we can say that this is a good approach for a first qualitative 
insight into the problem.

The paper is organized as follows. The section 2 is devoted 
to obtain the MFT results from the Bogoliubov inequality for the 
spin-1/2 AT model. Expressions for the free energy and magneti-
zation were computed. For clarity analytical results for the cluster 
with 1-site are presented. In section 3, we present the results 
of the phase diagrams, magnetizations (〈S〉 = mS , 〈σ 〉 = mσ and 
〈Sσ 〉 = mσ S ) and free energy in order to find the Baxter(2) phase 
and classify its transitions with the other phases already known 
for the AT model. Our final comments are presented in section 4.
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Fig. 1. Schematic representations of a cubic lattice structure for cluster with 1-, 2-, 
4- and 8-sites.

2. Model and formulation

In this section we show the formalism used to solve the 
spin-1/2 AT model applying the MFT from the Bogoliubov inequal-
ity [22–24]. We obtain phase diagrams, magnetization and free 
energy. Equations for 1-site cluster in a cubic lattice are presented.

The AT model [1] is a generalization of the Ising model to a 
four-component system. It may be considered as two superposed 
Ising models described by variables Si and σi sitting on sites of a 
lattice. For each Ising model there is a two-spin nearest-neighbor 
interaction J and the two different Ising models are coupled by a 
four-spin interaction K . The Hamiltonian can then be written as

H = −
∑
<i j>

[
J
(

Si S j + σiσ j
) + K Siσi S jσ j

]
, (1)

where < i j > denotes a pair of nearest-neighbor spins.
The Bogoliubov variational principle [22–24] is based on a va-

lidity of the inequality

G ≤ φ = G0 + 〈H − H0〉0 , (2)

where G and H represent the true Gibbs free energy and the full 
Hamiltonian for a considered lattice-statistical model and G0 and 
H0 represent the trial Gibbs free energy and the trial Hamilto-
nian of a simplified lattice-statistical model for which the relevant 
calculations can be performed exactly (the symbol 〈...〉0 denotes 
canonical ensemble average within the simplified model defined 
by the Hamiltonian H0). The expression φ represents the varia-
tional Gibbs free energy, which provides an upper bound for the 
true Gibbs free energy.

In the context of MFT the Hamiltonian of a single spin is given 
by

Hi = −
∑

j

[
J
(

Si
〈
S j

〉 − σi
〈
σ j

〉) − Kσi Si
〈
σ j S j

〉]
, (3)

where Hi is the Hamiltonian describing site i and its neighbors j.
According to this we can write the trial Hamiltonian in the MFT 

for the spin-1/2 AT model with null external field as

H0 = −
N∑
k

(SkγS + σkγσ + σk Skγσ S) , (4)

where N denotes the total number of sites on the lattice. H0 given 
by Eq. (4) depends on three different variational parameters γτ

(τ = {S, σ , σ S}) and can be thought as an effective field acting on 
a spin in the frontier of a site k. The variable γ has the physical 
meaning of an effective field.
The partition function Z0, the Gibbs free energy G0, the mag-
netization m0 = mτ = 〈τi〉0, are given by,

Z0 =
∑
{τk}

exp(−βH0)

=
N∏

k=1

∑
τk=±1

exp
[
β
(

SkγS + σkγσ + σk Skγσ S

)]
, (5)

G0 = −NkB T ln
[

4
(∏

{τ }
cosh βγτ +

∏
{τ }

sinh βγτ

)]
, (6)

mτ = − 1

N

∂G0

∂γτ
. (7)

From the mean value of the difference between the true and 
trial Hamiltonians (〈H − H0〉0) we obtain the expression for the 
variational Gibbs free energy. This quantity determines an upper 
bound for the true Gibbs free energy and is written as

φ = G0 − Nz

2

(
Jm2

S + Jm2
σ + Km2

σ S

)
+ N

∑
{τ }

mτ γτ , (8)

where the z represents the coordination number of the lattice.
To study the stability of the model we obtain the critical points 

of the variational Gibbs free energy. The objective is to extremize 
the variational Gibbs free energy with respect to the variational 
parameters, i.e,

∂φ

∂γτ
= 0 ⇔ (γS − z JmS)

∂mS

∂γτ
+ (γσ − z Jmσ )

∂mσ

∂γτ

+ (γσ S − zKmσ S)
∂mσ S

∂γτ
= 0, (9)

which are simultaneously satisfied if the variational parameters are 
γS = z JmS , γσ = z Jmσ and γσ S = zKmσ S .

All the formalism necessary to study the model was developed 
and now we are ready to find our numerical results. For clarity we 
present in the next two equations the analytical Gibbs free en-
ergy and magnetizations (Nmτ = −∂G0/∂γτ ) obtained from the 
Bogoliubov inequality applied to the 1-site cluster of a cubic lat-
tice (z = 6).

G = −NkB T ln
[

4
(∏

{τ }
cosh βγτ +

∏
{τ }

sinh βγτ

)]

+3N
[

Jm2
S + Jm2

σ + Km2
σ S

]
, (10)

mτ = tanhβγτ + tanhβγτ ′ tanhβγτ ′′

1 + tanhβγτ tanhβγτ ′ tanhβγτ ′′
. (11)

The continuous phase transition line is obtained from the mag-
netization under the condition that (mτ → 0). The first-order tran-
sition line is determined from a comparison of the Gibbs free 
energies Eq. (10) from one ferromagnetic state with a sponta-
neous magnetization mτ and another ferromagnetic state with a 
spontaneous magnetization m′

τ both satisfying the ‘self-consistent’ 
Eq. (11), for the magnetization, i.e, G(mτ ) = G(m′

τ ) with mτ �= m′
τ .

The mean-field theory for the 2-, 4- and 8-sites clusters are 
similarly obtained using a generalization [25], where H (n)

0 is as fol-
lows

H (n)
0 = −

N ′∑
<...>

[ n∑
<i j>

(
J Si S j + Jσiσ j + Kσi Siσ j S j

)

+
n∑(

Siγ1i + σiγ2i + σi Siγ3i

)]
, (12)
i=1



274 J.P. Santos et al. / Physics Letters A 382 (2018) 272–275
Fig. 2. The Phase diagram as a function of x and T for the spin-1/2 AT model in 
a cubic lattice with 1-site cluster obtained from MFT. Second order phase transi-
tions are represented by solid lines. The first order transitions is represented by the 
dashed line. The dotted lines represent the value of the zero temperature and the 
boundary between the phases 〈σ S〉A F and 〈σ 〉.

where N ′ is given by N/n, H (n)
0 is the trial Hamiltonian describing 

the sites i and its neighbors j of the cluster N ′ (i, j = 1, ..., n).

3. Numerical results and diagrams

In this section, we present the phase diagram, magnetizations 
and the Gibbs free energy in order to find and study the Baxter(2)

phase. Once the Baxter(2) phase is found we classify its phase tran-
sition with the others phases already known for the system. The 
spin-1/2 AT model presents different phases; here we make a brief 
description of those phases as a function of magnetizations mτ (for 
more details of the description of the phases please see Ref. [6])

i) The Paramagnetic-phase labeled by “Para” where mτ = 0.
ii) The 〈σ 〉-phase denoted by “〈σ 〉” where m′

S = 0, m′
σ �= 0 or 

m′
S �= 0, m′

σ = 0 and m′
σ S = 0.

iii) The 〈σ S〉A F -phase indicated by “〈σ S〉A F ” where mS = 0, 
mσ = 0 and mσ S �= 0.

iv) The Baxter(1)-phase labeled by “Baxter(1)” where mS = mσ �= 0
and mσ S �= 0.

v) The Baxter(2)-phase denoted in this work by “Baxter(2)” where 
m′′

S �= m′′
σ �= 0 and m′′

σ S �= 0.

For the following discussions, let us define the parameters x =
K/ J and T ≡ kB T / J .

We present in Fig. 2 results for the phase diagram as a func-
tion of T and x for the spin-1/2 AT model in a cubic lattice for the 
1-site cluster. The region for x considered in this work shows the 
following phases of lower Gibbs free energy: Para, 〈σ 〉, 〈σ S〉A F , 
Baxter(1) and Baxter(2). The second order phase transition lines 
between the phases Para-Baxter(1), Para-〈σ 〉 and Para-〈σ S〉A F are 
represented by solid lines and the first order phase transition line 
between the phases Baxter(1) and 〈σ 〉 is represented by dashed 
line. This phase transition was also obtained by other authors [6,
9,15,18]. The dotted lines represent the value of the zero temper-
ature and the boundary between the phases 〈σ S〉A F and 〈σ 〉. Two 
other second order phase transitions were observed between the 
phases Baxter(1)–Baxter(2) and Baxter(2)–〈σ 〉 and are represented 
by solid lines. Phase diagrams for 2-, 4- and 8-sites clusters were 
obtained and present similar characteristics as those obtained for 
the 1-site cluster.

The magnetizations are illustrated in Fig. 3 as a function of T
for the spin-1/2 AT model in a cubic lattice for the 1-site cluster, 
for a fixed x = −0.8. In the selected region limited by the points 
Fig. 3. The Magnetizations (mS , mσ and mσ S ) as a function of T obtained for the 
spin-1/2 AT model in a cubic lattice with 1-site cluster from the MFT for fixed 
x = −0.8. The points D1, D2, D3 and D4 represents the values for T where the 
phase transitions occurs.

Table 1
Numerical values of T at the points D1, D2, D3

and D4 in the Fig. 3 for different clusters.

Cluster D1 D2 D3 D4

1-site 0.936 1.084 1.204 6.000
2-sites 0.957 1.076 1.176 5.745
4-sites 0.980 1.069 1.148 5.462
8-sites 1.007 1.065 1.120 5.138

D1, D2, D3 and D4 that represent the values for T where first 
and second order phase transitions occurs the model presents the 
following phases:

(a) In the region that goes from T = 0 until T = D1 the model 
presents the phases Baxter(1) with magnetizations mS , mσ and 
mσ S and the phase 〈σ 〉 with magnetizations m′

S , m′
σ and m′

σ S .
(b) In the region between D1 and D3 the Baxter(1) phase, 

〈σ 〉 phase and a new phase Baxter(2) are present. This new 
phase presents the magnetizations m′′

S , m′′
σ and m′′

σ S , where m′′
S >

m′′
σ �= 0. After the point D1 we observed m′′

S → m′
S at A3 and m′′

σ , 
m′′

3 going to zero at D3. Therefore in the points B1 and C1 oc-
curs a second order phase transition between the phases Baxter(1)

and Baxter(2). The Baxter(2) phase ends at the points A3 and D3
where a second order phase transition occurs between the phases 
Baxter(2) and 〈σ 〉. We also observed a first order phase transition 
at the points A2, B2, C2 at T = D2 between the phases Baxter(1)

and 〈σ 〉. This transition is in agreement with other works [6,9,15,
18].

(c) In the region between D3 and D4 we observe the phases 
Baxter(1) and 〈σ 〉 that present a second order phase transition at 
the point D4.

Studying the effect of lattice size we found similar results for 
phase diagram, magnetizations and the Gibbs free energy obtained 
from the 1-site cluster. The numerical values of T at the points D1, 
D2, D3 and D4 are presented in Table 1 for 1-, 2-, 4- and 8-site 
clusters. We observe that the new phase obtained in this work 
presents a decrease in the region between D1 and D3 with the 
increase of the size of the cluster, however, it is important to men-
tioned that the new phase was also found in the MC context for 
a considerable larger lattice comparing with the one used in this 
work [6]. There the authors also observed that the region where 
the new phase is present remains the same changing the size of 
the lattice. For more precise results about the effect of increasing 
the lattice size, please see Ref. [26]. Where the new phase can be 
studied under the effect of increasing the lattice size in the EFT 
context.
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Fig. 4. The Gibbs free energy as a function of T for fixed x = −0.8 obtained for the 
AT model from MFT considering 1-site cluster.

In Fig. 4 we present the Gibbs free energy as a function of T
for x = −0.8. From the Eqs. (10) and (11) the Baxter(1), Baxter(2)

and 〈σ 〉 phases were studied. In the dot-dashed line G1G2G3 we 
have a discontinuity in the point G2, a behavior characteristic of 
first order phase transitions. The solid line G1G3 has no disconti-
nuity which is a characteristic of second order phase transitions. 
In the region between T = 0 and T = D2 the 〈σ 〉 phase presents 
energy greater than the Baxter(1) phase. At the point D1 a new 
phase emerges, labeled in this work by Baxter(2). This new phase 
presents energy smaller than the phases Baxter(1) and 〈σ 〉, that 
is, there is a second order phase transitions between the phases 
Baxter(1) and Baxter(2) until the point G3 where a second order 
phase transition occurs between the phases Baxter(2) and 〈σ 〉. We 
also found the first order transition between the phases Baxter(1)

and 〈σ 〉 at the point G2. In the region between the points G1G2G3
we have two situations: First, G1G2 with the energy of 〈σ 〉 greater 
than the Baxter(1) and second G2G3 with the energy of Baxter(1)

greater than 〈σ 〉. It is also possible to observe that both Baxter(1)

and 〈σ 〉 have energy greater than Baxter(2) in the region G1G2G3.
In the Ref. [6] Ditzian et al. observed from MC simulations that 

for −0.75 > x > −0.78 an unexpected behavior occurs. The system 
seems to have both 〈σ 〉 and 〈S〉 different from zero but 〈σ 〉 �= 〈S〉. 
The system presents two fixed values for the order parameters 
| 〈σ 〉 | and | 〈S〉 | with | 〈S〉 | > | 〈σ 〉 |. Moreover they also observed 
that if there is really a range in which mS > mσ > 0, this is a 
new phase not seen in MFT at that time. The transitions between 
the phases Baxter(1) and 〈σ 〉 were also classified like first order 
transitions by Musial [18] (he observed a small presence of latent 
heat in this region). However, in the present work we have shown 
the existence of the new Baxter(2)-phase, where mS �= mσ �= 0. In 
addition, the new phase transitions were classified in the region 
−1 > x > −0.5.
4. Final comments

We have presented the MFT results obtained from the Bogoli-
ubov inequality for the spin-1/2 AT model on the cubic lattice. The 
free energy, magnetization and critical frontiers are obtained for 
different cluster sizes. Studying the phase diagram in the region 
−1 < x < −0.5 we observed a new phase never studied before. 
The Baxter(2)-phase, as denoted in this article, presents the follow-
ing properties: first 〈S〉 �= 〈σ 〉 �= 0 and 〈σ S〉 �= 0, studied in details 
in the region x = −0.8 and second it presents a second order 
phase transition with the phases Baxter(1) and 〈σ 〉. In the inter-
val that was found this new phase we also observed the phases 
Baxter(1) (〈S〉 = 〈σ 〉 �= 0 and 〈σ S〉 �= 0) and 〈σ 〉 (〈S〉 = 〈σ 〉 = 0
and 〈σ S〉 �= 0) with higher free energy. The first order phase tran-
sition between these two phases was also obtained and is in agree-
ment with other authors [6,9,15,18].
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