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Abstract This article addresses theuseofHolland’sGenetic
Algorithms (GAs) (Holland in Adaptation in natural and arti-
ficial systems, University ofMichigan Press, Ann Arbor, MI,
1975) in solving anoptimization problemnot exploited yet by
literature, whichwe have namedOptimal Billing Sequencing
(OBS). The objective of the GA proposed is to automate pick
sequencing, which addresses the process of allocating the
stock available for sale to the purchase orders in a portfolio,
so that themaximization of the billing is the optimal result for
theOBS.Amodelling and computational simulationmethod-
ology has been employed. Such methodology is designed to
enable the GA to meet the boundary conditions established
by predefined decision restrictions and parameters. We have
reached the conclusion, by means of experimental tests, that
the GA developed satisfactorily solves the problem stud-
ied. In addition to a low computational overhead, the GA
reduces operating costs and speeds picking decision-making
processes and billing processes.
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Introduction

The dynamics of changes in corporate environments and the
search for adaptations that provide immediate answers for
the competitive market are grounds on which to base the
importance of actions that identify the minimum of options
needed to restrict uncertainty. Hence, the practice of opti-
mization is an indispensable element of competitiveness and,
as stressed by Elsayed et al. (2014), it is essential in solving
many problems. The conviction that the resources, time and
money are limited have raised the importance of, and the
demand for, more robust optimization techniques, even in
the presence of analytically untreatable problems (Yang and
Koziel 2010). Thus, the current management practice con-
stantly looks for new technologies that are capable of rapidly
and consistently presenting alternatives, which result in bet-
ter corporate management. In the last decades, it has become
common among researchers such as Bäck and Schwefel
(1993), Blickle (1996), Mitchell and Taylor (1999), Runars-
son and Jonsson (1999), Yang (2005), Nobakhti (2010),
Zhang et al. (2012), for instance, to imitate evolutive genetic
mechanisms to develop Evolutionary Algorithms (EAs) that
assist managers in solving complex optimization problems.

Recently, inspired in the adaptation principles of the mod-
ern natural and biological evolution (please refer to Bowler
2001; Ghiselin 2009; Phillips and Su 2009 and Ayala 2010),
the EAs are applied to a wide range of NP-hard problems
of diverse areas in the corporate environment. Nowadays
EAs represent the most recent innovation line that had a
deep effect on science when applied to intractable problems
(Nobakhti 2010; Zhang et al. 2012). Among the different
EAs, Genetic Algorithms (GAs) is the most popular and
widely used (Goldberg 1989). These distinguish by simplic-
ity of operation, robustness and by the ease and flexibility
of implementation, including by hybridization with con-
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ventional methods (McCall 2005; Yang 2005). Indicated to
NP-hard they don’t require many mathematical requirement,
obtaining viable solutions with a cost of programming and
computer time satisfactory when compared to other meth-
ods, specially, matching and sequencing problems, and its
efficacy is attested by the big number of published papers
(Hallam et al. 2010; Whitley and Sutton 2012; Elsayed et al.
2014).

Therefore, the purpose of this article is to develop a com-
putational method, with a structure based on Holland’s GA
(Holland 1975), which presents an optimal solution for the
OBS problem. Usually, the OBS consists in optimizing the
ability to satisfy purchase orders received according to the
finished products (FP) available and maximizing revenues.
Thus, GA will work in form of attribution of each products
and quantities will be invoiced to each client is the opera-
tion is herein denominated “picking process”. In actual cases,
OBS problems aremostly triggered by restrictions or flaws in
the conception ofmanagerial systems, attributed, in itsmajor-
ity, to disorders and uncertainties caused over time because
of the dynamics of changes in, and the complexity of, the sys-
tems used by organizations. An element that aggravates the
OBS is theworldwide tendency to reduce stock, since the pur-
chase order portfolio (POP) is constantly renewed because
of increases in the frequency of orders, in addition to possible
changes or cancellations. Consequently, if at a given time the
FP are not sufficient to bear thePOP, the OBSmay become a
complex task to managers. That is because the attention cen-
tered in the restriction setting and internal guideline and also
exigencies demanded by the clients makes that the optimiza-
tion of the OBS to be subject to several assessments among
the possible billing alternatives that exist.

In this paper, the implicit presumption toOBS are based in
the paper of Rim and Park (2008), I which it’s presupposed a
typical industrial scenario, although, based in real standards.
In fact, the literature is limited to models that presuppose
restrictions of stock and picking planning. In the biblio-
graphic investigation made only by Rim and Park (2008)
the stock shortage to the attending problem of picking orders
in distributions centers (DC) s treated. The author’s aim is to
attribute the stock to the orders in away tomaximize the order
fill rate (OFR). In this case, the OFR is pondered and used
to reflect the importance of service of each client/order. The
purchase order is done if all items are available in stock and
the not carried orders are transferred to the next day accord-
ing to importance and priority in a way to avoid excessive
delays. The linear programming (LP) totally binary is used
as a method of solution and the performance of the model is
compared to the first come, first served (FCFS) rule, in which
the results overcome the simple rules already existing.

Although we did not find any authors using GA to solve
OBS problems during the bibliographic research, GA is used
to solve various problems addressed in GA-specific litera-

ture. Evidently, the existence of different organizations that
integrate greatly varied markets, each of which with their
ownpeculiarities and specific decision-making criteria,make
it difficult to generalize the OBS problem. Hence, the con-
ception of GA necessarily requires delimiting the OBS in a
study that establishes certain particulars anddecision-making
criteria. In general terms, the boundary conditions and pro-
cedure rules are: (i) billing preference occurs in increasing
order according to the date the purchase orders are effectively
processed and picking may not take place either if there are
not any FPs available or there is a only a partial number of
FPs available, but the client does not accept such partial num-
ber; (ii) random binary representation generates attribution
structures and the fitness function penalizes undue bits by
their billing amounts; (iii) elitist selection transfers the best
individual to the new population that linked to the crossover
action and to mutation enables the GA to repeat evolution
cycles to find, if not the optimal, the best solution until the
stopping criterion is satisfied.

In methodological terms, this article is classified as an
applied research in which a quantitative modelling approach
and computational simulation are employed (Bertrand and
Fransoo 2002; Haegeman et al. 2013). The programming
will be developed in Microsoft Office Excel 2010’s Visual
Basic language for applications (VBA) and the data entry and
results analyses will be carried by the Excel’s spreadsheets
themselves. The GA proposed will be implemented and
subjected to computational experimentations in a computer
powered by a 2.3 GHz Core i5 processor with 8 GB of RAM.
This article has been structured in sections, summarized as
follows: “Contextualization and rationale” section brings all
the contextualization of the problem and the justification
of research; “Optimal Billing Sequencing (OBS)” section
describes in detail the problem studied; “Hybrid Genetic
Algorithm” section contains a brief explanation of GAs and
expresses the GA proposed; “Experimentation and discus-
sion of the results” section addresses the experimentations
and analysis of the results obtained; and “Final consider-
ations” section closes the article with the final comments,
main contributions of the research, and suggestions for future
studies on the matter.

Contextualization and rationale

Into the business range, incertitude associated to manage-
ment of demand is a critical parameter. According to Sereshti
and Bijari (2013), foreseeing the demand in an exact way
is impossible. The fact is that most companies operate in a
complex and unstable environment, which makes accurate
forecasting difficult (Baud-Lavigne et al. 2014). Further-
more, most of the quantitative tools that exist today is
analytical instead of predictable and they are incapable of

123



J Intell Manuf (2018) 29:405–422 407

handling with the future (Haegeman et al. 2013) or yet
introduce acceptable solutions in a short period of time.
Expressing all the variability of the setting in precise equa-
tions in an unmistakable way is still impracticable. Options
restrict in anticipating, when you know a priori, the state real-
ized or at least react to unlikely events. According to Slotnick
(2011), in a technical way, the selection of purchases depends
on the coordination and capacity with the demand and the
trade-off between the incomes and processing costs. Some
more recent researches have used demanding taxes as a level
function and time of stock cycle, obtaining increase in sales
and maximization of medium profit by unit of time (Pando
et al. 2012). Evidentially, one order is totally served when
the quantity of all the required items are available in stock
(Simchi-levi et al. 2003).However, if the production system’s
optimization depends on the market forecast, it’s not always
possible to satisfy all the potential demands to maximize the
reception and profit (Shen 2006; Baud-Lavigne et al. 2014).
The quantity of some products in stock, can, sometimes, be
smaller than the totals demanded by the orders (Rim and Park
2008).

Conventional solutions to minimize these problems are in
the extra hours, resources deviation, outsourcing or negotia-
tion of deadline and prices (Slotnick 2011). However, deals
are not always possible and some resources may not be avail-
able in moments of urgency. So, if the production mix should
be the one who maximizes the profit (vide Chen et al. 2013;
Wang and Dargahi 2013; Xiang et al. 2014 and Zhuang and
Chang 2015), then, in real practical situations the referred
approach attends, only in parts, the set of demands imposed
by internal managers and external clients. In the current mar-
ket the client’s satisfaction is linked to total availability of
the products that best adjust to their needs or overcome the
expectations in terms of quality, price and deadlines facing
the possible levels of speed and flexibility in the service.
(Hiremath et al. 2013; Risdiyono and Koomsap 2013). It’s
also seen that due to the growing demands of the clients and
levels of global competition there is a big pressure of inter-
nal managers to minimize the costs and define competitive
prices keeping the high level of quality of the products and
post-selling services (Mousavi et al. 2014; Jeang 2015). It’s
undeniable that the most reliable option and that could result
in a better level of client servicewould be keeping sufficiently
high level stocks to all the items on demand (Rim and Park
2008). This, however can lead to failures in productivity and
monetary lost due to the increase of stock prices and even-
tual obsolesces, besides the restrictions of physical space to
storage (Tompkins and Smith 1998; Rim and Park 2008).

It is fact that the globalization, the introduction and growth
of online sales and the LeanManufacturing and Just-in-Time
philosophies, and the significant reduction of lead times, have
taken the company to engage in reducing the orders cycles by
eliminating all wastes and operationswithout aggregate price

(Gu et al. 2007; Richards 2011; Haq and Boddu 2014). At the
same time, the innovations related to actual cost methodolo-
gies, from supply chain management (SCM) and the theory
of constraints paradigm among other specific practices such
as the total quality management, Downzising and Kaisen,
have made the minimization of stocks a world axiom. The
companies, then, started to aim to achieve a big volume of
production anddistributionwithminimum levels of stock and
short time of answer (Van Berg and Zijm 1999). The recent
notions that the productive systems may be able to react
quickly to unexpected changes were intensified. The adap-
tion to immediate demands of the competitive market started
to impel future directions in the preview of new technologies
directed toflexibility andoptimizationof the process. In order
to attend the demand for strategies and stronger optimization
methods advanced decision and intelligence technologies for
manufacturing and logistics are stated by Chien et al. (2012).
In general, the scientific community has proposed numerous
studies to adaptation to the incertitude of the market and the
fast demand variations aiming to optimize and integrate dif-
ferent manufacturing problems, inventory and SCM so that
in an agile and flexible way, it minimizes costs and attend
efficiently the client’s orders. (consult Bandyopadhyay and
Bhattacharya 2014; Baud-Lavigne et al. 2014; Diabat et al.
2015; Ghiami et al. 2013; Hiremath et al. 2013; Haq and
Boddu 2014; Kumar et al. 2014; Mousavi et al. 2013, 2014;
Park and Kyung 2014; Sadeghi et al. 2014; Triki et al. 2014;
Xiang et al. 2014; Yao and Huang 2014; İnkaya and Akansel
15).

Facing this scenario, there was an expressive change in
the picking operations in the last 20 years (Richards 2011).
This is why, previously, the pallets and whole boxes pick-
ing was normal, but nowadays the clients started to require
products in smaller quantities and more frequently, so, the
orders were size-reduced and generated in shorter periods
of time (Richards 2011). This prepossession made that the
merchandise reposition and, consequently, the collocation,
processing and shipment of orders become frequent, which,
adding to eventual changes or cancelling, took POP to a con-
stant renovation cycle (Richards 2011). Rim and Park (2008)
and Matthews and Visagie (2013) point out that even if the
range of products requested and also the diversification in
the client’s profiles, based on the quantity of sales, markup
or marketing strategies, made thatPOPs with orders non uni-
forms and rankings to prioritization of service.

This way, in cases where the orders require different items
and the stock is controlled to aminimum level it is not uncom-
mon the occurrence of stock shortage to serve them (Rim
and Park 2008 and Sereshti and Bijari 2013). Soon, the ideal
service of an order can prevent the compliance of many oth-
ers and, however, develop situations where OBS solutions
can be found. When facing a big number of combinations
undergoing a series of evaluations, among the possible alter-
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natives of existing billing, the search for a better solution
to OBS can become a complex task with which the man-
agers have to handle. This implicit complexity to OBS is, in
general, associated to policies and contour conditions estab-
lished by restrictions, variables and parameters pre-defined
attached to the company who defines as decision criteria,
which generally involve: (i) client demands; (ii) quantity-
related restrictions; (iii) number of purchase orders; and (iv)
the diverse items ordered, among others. A typical example
was quoted byRim and Park (2008) referring to e-commerce,
inwhich the clients usually don’t accept to receive partial pur-
chases and that these decisions are strongly related tomatters
of increase in the shipping expenses.

The application of exacts techniques of optimization
assume that it is not a feasible option, since that, the solutions
can demand intense computational effort and time, besides
the risk of ineptitude to handle with the parameters and
number of variables and restrictions. To Whitley and Sut-
ton (2012) the GA’s use as a solution technique is a proper
option on these cases. It’s clear that amidst many existing
optimization paradigms the application of other techniques
and hallowed heuristic could also be evaluated. Dynamic
Programming, e.g., is an efficient method when used in
the resolution of combined problems and Tabu Search is
also other important approach at combined resolution of
problems. However, according to Yang and Koziel (2010),
algorithms are as varied as the optimization itself,whatwould
demand substantial effort and studies to identify which is the
most appropriate and this is not the purpose of this paper.

The search for optimized solutions for a specific OBS
problem based in the search potential and practical efficacy
from theGA’s is the focus given to this paper. The perspective
for solving the OBS applying the GA to the picking process,
which aims at meeting the needs of the POP in view of the
boundary conditions established by predefined restrictions
and parameters so that the maximization of the billing is the
optimized result for the OBS. When considering that man-
agers need to take quick decision and that they should result
in a series of consisting actions, it is believed to be of great
value the development of a computational tool able to provide
optimized solutions to a real problem not yet approached by
literature. Thisway, the proposedGA substitutes theRim and
Park methods (2008) eliminating the risk of stock shortage
after invoice and the not planning of picking orders.

Optimal billing sequencing (OBS)

This section describes the OBS problem in detail and Rg is
the number that differentiates the n products in FP. Every
Rg has a number of items defined by xi , where the subscript
i = (1, 2, . . . , n) denotes the i th Rg. If X is set xi , then
X = {x1, x2, . . . , xn} represents the maximum number of

Rgs available for sale at a given time t .POP refers to the pur-
chase order portfolio, constituted by a set of POs—purchase
orders—where the subscript j refers to the j thPO; then,
POP = {PO1, PO2, . . . , POn}∀ j = (1, 2, . . . , n), where
n is the number of POs. Usually, a POP is updated every day
in view of the PO j cycles and the demand for Rgi of PO j is
given by qi j , represented by PO j = {q1, q2, . . . , qn}, ∀i =
(1, 2, . . . , n). Although they may contain similarities, each
PO j requests qi that are the attributes of a certain client Ca,
inwhich, theGC set represents the group ofCm clients; there-
fore, GC = {C1, C2, . . . ,Cm}, ∀α = (1, 2, . . . ,m), where
m is the number of clients. Thus, C may contain PO j + 1
in the POP in t and the sum of qi of POn generates the total
demand for qi of the POP called Qi .

Accordingly, qi must be attributed to PO j in a non-
overlapping (disjoint) manner by comparing Qi with supply
xi , where qi is defined as the relevance of the i th product for
the j th purchase order, such that PO1 ∪ PO2, . . . , PO j ≤
xi . Such operation is called “picking process” and specifi-
cally addresses the way of designating qi of Rgi to be billed
to PO j of Ca. Nevertheless, effectively satisfying the POP
involves analyzing a set of restrictions and decision-making
criteria that are strongly related. In the OBS studied, the
satisfaction requisite is in increasing order according to the
date the purchase orders are effectively processed d, which
requires a billing sequencing for PO j , and the restrictions
reflect the condition of xi in satisfying Qi . Therefore, if
xi < Qi then yi is defined as a restriction of xi whereas
wi = (Qi − yi ) is the partial availability of xi if yi > 0.
Therefore, a picking process is incoherent if xi = 0 or at
the attribution of wi when C does not accept the billing of
wi of PO j . Table 1 shows an OBS problem by means of a
set of hypothetical data, which represents the summarization
of FP and of the POP in t and that is used as the basis for
the mathematical formulation, computational experimenta-
tion and evaluation of the GA proposed.

Table 1 shows the OBS problem and the set of notations
employed to characterize the FP and thePOP, which make
it self-explanatory. Please note that in the POP, the “Accepts
Partial Product” column portrays the parameters that spec-
ify whether Ca accepts the billing of wi of PO j , which are

called C
wi jY es
α for “Yes” and C

wi jNo
α for “No”. The restric-

tions, parameters and decision variables which configure the
OBS problem are listed below:

• Indexes

i : Index which notes the i thRg (products registry) on the
FP;

j : Index which notes the j th requested on n POP
requests;

α : Index which notes the ath client referring to j th
requested by the POP;
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Table 1 Stock of products available for sale and list of purchase orders in the portfolio

Stock (FP) Purchase order portfolio (POP)

Product
register
(Rgi )

Quantity
in stock
(xi )

Order
number
(PO j )

Client
code (Ca)

Product
register
(Rgi )

Quantity
ordered
(qi j )

Unit sales
price
(pri j )

Total
billing
(T BPOP )

Date order
was processed
(d)

Accepts
partial
qi j (wi j )

32417 1 100 10 372300 30 540.00 16,200.00 07/05/2015 Yes

38638 2 100 10 276618 30 464.81 13,944.30 07/05/2015 Yes

98152 4 200 20 1166149 1 6380.65 6380.65 07/05/2015 Yes

98160 5 300 30 372300 30 540.00 16,200.00 07/05/2015 Yes

98830 1 300 30 276618 5 464.81 2324.05 07/05/2015 Yes

137539 2 300 30 1166149 3 6380.65 19,141.95 07/05/2015 Yes

137620 2 300 30 726422 3 338.00 1014.00 07/05/2015 Yes

154517 1 300 30 851337 2 420.34 840.68 07/05/2015 Yes

186106 2 300 30 98830 1 1089.82 1089.82 07/05/2015 Yes

260349 3 400 40 372300 4 540.00 2160.00 07/05/2015 No

276618 5 400 40 726422 6 338.00 2028.00 07/05/2015 No

372300 30 500 50 98152 4 740.52 2962.08 07/05/2015 No

408658 − 500 50 726422 4 338.00 1352.00 07/05/2015 No

580282 1 600 60 98152 1 740.52 740.52 08/05/2015 No

726422 7 600 60 98160 3 624.50 1873.50 08/05/2015 No

851337 2 700 70 98152 3 740.52 2221.56 08/05/2015 Yes

1158608 1 700 70 98160 2 624.50 1249.00 08/05/2015 Yes

1166149 1 800 80 186106 2 624.95 1249.90 09/05/2015 Yes

1169441 3 800 80 408658 1 1272.16 1272.16 09/05/2015 Yes

900 90 98160 4 624.50 2498.00 10/05/2015 No

900 90 137620 2 2298.63 4597.25 10/05/2015 No

1000 100 1166149 1 6380.65 6380.65 10/05/2015 No

Total − Total − − − − 107,720.07 – –

• Parameters and constraints

t : FP situation and the POP in a determined moment
in time;

PO j : Refers to j th requested by POP on t .
Ca : Refers to ath client of the POP on t ;
xi : Amount of Rgi available on FP on t ;
qi j : Rgi demand on PO j of the POP on t ;
Qi : Total qi j demand of the POP on t ;
yi : xi restriction on FP on t ;
wi : Partial xi (Qi − yi ) availability on FP case yi > 0

on t ;

• Decision variables

d : POj ; treatment date

C
wi jY es
α : Determines that the client accepts wi income to

PO j ;

C
wi jNo
α : Determines that the client doesn’t accept wi

income to PO j ;

Therefore, if qi jand wi j refer to the total and partial attri-
butions of qi to the PO j respectively, and ifBO is the income

to be obtained, then, the OBS problem to maximize the POP
income on a given t moment can be expressed as a BOmax

programming model:

Maximize BOmax = max

PO j∑

j=1

n∑

i=1

qi j .pri j

+
PO j∑

j=1

n∑

i=1

wi j .pri j (1)

Subject to :
xi > 0 i = 1, 2, . . . , n (2)

Qi ≤ xi i = 1, 2, . . . , n (3)

wi j > 0 if C
wi jY es
α j = 1, 2, . . . ,m (4)

PO j order for d descending (5)

The restriction (2) assures that xi will only be assigned to
PO j if xi > 0 in the FP in t . The restriction (3) guarantees
that qi can only be attributed to POn if Qi ≤ xi in the FP
in t . The restriction (4) will check if wi is being attributed to
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PO j case C
wi jY es
α . The variable (5) will allow that d of PO j

be satisfied. Essentially, the OBS may then be defined as an
optimization of the picking process in view of the relevance
of xi for qi of PO j in order to satisfy Qi of POP on the
d negotiated, depending on the boundary conditions estab-
lished by restrictions and on the predefined decision-making
criteria, in which the solution expected is the maximization
of the billing.

Hybrid Genetic Algorithm

John Holland proposed GAs in 1975. A GA is a global opti-
mization heuristic that uses an initial set of solutions, called a
population, where every individual is a candidate to solve the
problem (Goldberg 1989; Mitchell 1996; Gen et al. 2008).
Genetic Algorithms may be defined as a generic adaptive
searchmethod that imitates the genetic process and Darwin’s
natural evolution of living beings by means of the selection,
reproduction and survival of the fit strings, with a structured,
despite random, exchange of information (Goldberg 1989;
Michalewicz 1996). Such strings or artificial chromosomes
represent the individuals, which are formed by genes that
quantify possible solutions to a problem (Bäck and Schwefel
1993; Mitchell and Taylor 1999).

The main ideia of GAs is to improve solutions by making
evolutive changes to the chromosomes by means of genetic
operators (De Jong 1988; Gen and Cheng 2000; Biegler and
Grossmann 2004). Initially, based on parameters, the infor-
mation on the problem is represented in the chromosomes
according to the codification schema chosen (Gen and Cheng
1997; Yang 2005). From there onward, n individuals are gen-
erated to compose the initial population that usually has a
constant size (Whitley 1994; Gen et al. 2008). Next, each
individual is evaluated by a fitness function, which measures
the quality of the solution to the problem (Holland 1975;
Goldberg 1989). Selection elects a percentage of the most fit
individuals to be subjected to genetic changes by means of
crossover and mutation operators, which are applied accord-
ing to previously determined crossover (pc) and mutation
(pm) probabilities (Goldberg 1989; Mitchell 1996).

Reproduction is equivalent to sexual reproduction and
mutation aids genetic diversity, thus avoiding premature con-
vergences (Prebys 1999; Gen et al. 2008). The population of
the next generation is then formed by the children generated
by the previous population and by inserting new individuals
that will complete it (Gen et al. 2008). The effectiveness of
themembers of such population, as a solution to the problem,
is evaluated by the fitness function (Michalewicz 1996; Gen
and Cheng 2000). Evaluation is responsible for the evolution
of the population, since the most fit have better chances of
survival and transmitting their genetic material to the next
generations (Whitley 1994; Mitchell 1996).

Fig. 1 The general structure of Genetic Algorithms (Gen et al. 2008)

After n generations have occurred, the stopping conditions
have to be satisfied and it is expected that the final population
will present a solution that, if not excellent, is the best pos-
sible for the problem (Goldberg 1989; Michalewicz 1996).
Figure 1 shows a general structure of GA. Let P(t) and C(t)
be parents and offspring in current generation t , the general
implementation structure of GA is described in Fig. 2.

Figure 1 in conjunction with the general structure GA
application described in Fig. 2 demonstrates that when a
stopping condition is satisfied, the GA stops and provides
the best individual as solution. While the stopping condi-
tion is not satisfied, the GA executes further interations that
consist in applying genetic operations to the current popula-
tion. Such process generates a new solution that is evaluated
in the same manner as the one before and such process is
repeated while necessary during the entire execution of the
GA.

Thus, the following subsections describes the steps to for-
mulate and implement each element of the GA proposed
to solve the OBS expressed by means of mathematical
modeling. The conception of GA methodically follows the
steps addressed in the bibliographic references and the pro-
gramming environment used is the Microsoft Office Excel
2010 Visual Basic for Applications (VBA). The next section
describes the computational experimentations and perfor-
mance analysis of the GA in a 2.8 GHz, Core i5 with 8 GB
RAM and HD 750 GB.

Maximum possible billing (MB)

TheMB is the maximum billing amount that can be obtained
relating to the set of data existing at t . The purpose of the
MB is to serve both as a verifier of the need to execute the
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Fig. 2 The general
implementation structure of
Genetic Algorithms (Lin and
Gen 2009)

Fig. 3 Picking process
chromosome representation

GA and a parameter that improves the picking mechanism.
Hence, if wi is a partial attribution of xi , and if each i can
have a different unit price pri for each PO j , because of the
various matters that influence negotiations withCa then bwi j

is the billing amount of wi j when qi j is not fully satisfied
due to the restrictions of xi and bqi j the billing amount of all
i whose xi is more than enough to satisfy qi j . According to
such assumption, the calculation criteria to obtain theMB is
to prioritize qi as greater than pri j , i.e., if pri2 > pri j , then
the billing of qi2 is simulated, and so on, depending on the
restriction, as demonstrated by expression 6.

if Qi > xi → pri j .wi j = bwi j or

if Qi ≤ xi → pri j .qi j = bqi j (6)

The calculation of theMB can be written based on expres-
sion 1 as presented in Eq. 7,

MB =
Nbits∑

j = 1
i = 1

bqi j +
Nbits∑

j = 1
i = 1

bwi j (7)

By adopting the notation T BPOP as the total billing of the
POP, Eq. 7 verifies the actual need for executing the GA,
and that process is performed as follows: if xi ≥ Qi , then
MB = T BPOP , therefore xi is sufficient to satisfy all PO j .

Otherwise, it is implied that there are yi restrictions for xi ;
hence, it is necessary to execute the GA to find, among the
possible alternatives, an optimal solution for the OBS.

Chromosome representation

The manner of representing the picking process in the struc-
ture of the string is an adaptation of the binary chromosome
representation proposed byZukhri andOmar (2006) inwhich
every position of the chromosome is a binary vector type
solution s, where sε{0, 1}. Thus, item i may, or may not, be
supplied for the j th purchase order. Therefore, if the binary
selection is si j = 1, then xiεPO j , which means there has
been a picking process, otherwise si j = 0. Hence,POP chro-
mosome divides into PO j genes, and the j th gene represents
the j th purchase order, where qi is an allele. Chromosome
representation is illustrated by Fig. 3.

Initial population generation

The initial population is randomly generated by means of
a random number generator with uniform distribution. By
employing the logical notation proposed byHaupt andHaupt
(2004), an Npop matrix represents the population; Nbits is the
number of bits in the string; and Nger refers to the genera-
tions. In the parameter setting, Npop is always defined by the
user and never varies from the current Nger to Nger+1 during
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Fig. 4 Procedure to the
generation of chromosomes of
initial population of individuals
(Npop)

Table 3 List of purchase orders in the portfolio and decoding of chromosomes

Purchase order portfolio (POP) Decoding of chromosome (C)

PO j Ca Rgi qi j d wi j pri j T BPOP C1 C2 C3 C4

100 10 372300 30 07/05/2015 Yes 540.00 16,200.00 16,200.00 16,200.00 16,200.00 16,200.00

100 10 276618 30 07/05/2015 Yes 464.81 13,944.30 2324.05 2324.05 2324.05 2324.05

200 20 1166149 1 07/05/2015 Yes 6380.65 6380.65 6380.65 6380.65 6380.65 6380.65

300 30 372300 30 07/05/2015 Yes 540.00 16,200.00 16,200.00 – – –

300 30 276618 5 07/05/2015 Yes 464.81 2324.05 – 2324.05 – 2324.05

300 30 1166149 3 07/05/2015 Yes 6380.65 19,141.95 19,141.95 – – –

300 30 726422 3 07/05/2015 Yes 338.00 1014.00 – 1014.00 1014.00 1014.00

300 30 851337 2 07/05/2015 Yes 420.34 840.68 – 840.68 840.68 –

300 30 98830 1 07/05/2015 Yes 1089.82 1089.82 – 1089.82 1089.82 1089.82

400 40 372300 4 07/05/2015 No 540.00 2160.00 2160.00 2160.00 – 2160.00

400 40 726422 6 07/05/2015 No 338.00 2028.00 2028.00 – 1352.00 –

500 50 98152 4 07/05/2015 No 740.52 2962.08 2962.08 2962.08 2962.08 2962.08

500 50 726422 4 07/05/2015 No 338.00 1352.00 338.00 – – –

600 60 98152 1 08/05/2015 No 740.52 740.52 – – – –

600 60 98160 3 08/05/2015 No 624.50 1873.50 1873.50 1873.50 1873.50 1873.50

700 70 98152 3 08/05/2015 Yes 740.52 2221.56 2221.56 2221.56 – 2221.56

700 70 98160 2 08/05/2015 Yes 624.50 1249.00 – – 1249.00 –

800 80 186106 2 09/05/2015 Yes 624.95 1249.90 1249.00 – 1249.90 1249.90

800 80 408658 1 09/05/2015 Yes 1272.16 1272.16 1272.16 – – –

900 90 98160 4 10/05/2015 No 624.50 2498.00 – 1249.00 – 1249.00

900 90 137620 2 10/05/2015 No 2298.63 4597.25 – 4597.25 4597.25 4597.25

1000 100 1166149 1 10/05/2015 No 6380.65 6380.65 6380.65 6380.65 – 6380.65

Billing obtained (BO) 107,720.07 80,731.60 51,617.29 41,132.93 52,026.51

Fitness function (Ff itness) − 33,355.28 37,282.03 41,132.93 37,691.25

the entire execution of the GA. Table 2 illustrates an example
of the representation of the referred binary chromosome to
the generation of a Npop initial of four chromosomes and
Fig. 4 shows the pseudo code of the procedure to the gener-
ation of Npop aleatory. After the initiating operator is used,
BO is the name given for the total billing obtained by the
chromosome, as demonstrated in Eq. 8.

BO =
Nbits∑

i=1

Nbits∑

j=1

si j .qi .prqi j ∀si j = {0, 1} (8)

Fitness function (Ff i tness)

Ff itness evaluates the fitness level of each chromosome as
a solution for the OBS and it is applied to all of the Nger

to evaluate the relationships of each individual with the rest
of Npop. So that the randomization that is intrinsic to the
Npop will not to compromise the solution for the OBS nor
the evolution of the GA, by virtue of possible generations of
invalid bits, the Ff itness penalizes unfeasible solutions. Con-
straint penalties are applied by attributing a weight, which in
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Fig. 5 Procedure of penalties applications and calculus of Ff itness

this case corresponds to the bqi j of each violating bit, which
directly affects the fitness of the individual and alters its evo-
lutive process. The constraint penalties are the following:

• The picking process may not take place for a product that
does not exist in the FP stock: If the action prescribed
for the occurrence of picking is given by si j , the penalty
referring to lack of stock Pes that guarantees the quantity
of xi is not exceeded is presented by Eq. 9.

Pesi j =
Nbits∑

j=i

bqi j if si j = 1∀xi = 0 → pri j .qi j = bqi j

(9)

• The picking process may not take place for wi jwhen not
accepted by the client: The occurrence of such event
implies in the penalty called Pew and it is applied when
xi < Qi and the variable C assumes C

wi jNo
α for wi j . The

Pew is presented by Eq. 10.

Pewi j =
Nbits∑

j=i

bqi j if si j =1∀wi j ↔C
wi jNo
a → prqi j .q ji = bqi j

(10)

The penalties described above only apply once to the bqi j
of each bit, regardless of whether, or not, the bit in question
has violated more than one criterion liable to punishment.
Such penalties are applied according to Eq. 11.

Fig. 6 Reparation process of individual

Pesi j =
{
bqi j if si j = 1∀xi = 0
0 if si j = 0

Pewi j =
⎧
⎨

⎩

bqi j if Pes = 0

bqi j if si j = 1∀wi j ↔ C
wi jNo
a

0 if si j = 0
(11)

Then, the GA begins the verification of the attributions
according to the d criterion. In caseswhere xi < Qi , the PO j

referring to the d1 have billing preference in relation to d2.
Thus, in order tomake it possible to direct the search process,
the GA applies a penalty Ped that, contrary to the previous
ones, occurs after the selection operator is used and may be
applied to a bit that has already been punished, according to
Eq. 12.

Pedi j =
Nbits∑

j=i

fqi j if xi < Qi ↔ si j

= 1∀Pd+1
j ∧ si j = 0∀Pd

j → prd+1
i j .q ji = bqi j (12)
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Fig. 7 Calculus of evaluation
and select graphic by the
roulette wheel with elitism

Individual
(String)

Ci

Fitness 
Function 

ifitnessF

Selection 
Percentage

(pi)

Piece of 
Roulette

(º)
C1 33,355.28 22.32% 80.34
C2 37,282.03 24.94% 89.80
C3 41,132.93 27.52% 99.07
C4 37,691.25 25.22% 90.78

Total 149,461.49 100.00% 360.00

Fig. 8 Diagram of crossover and mutation

Evidently, bits = 1 suffer double penalties under certain
circumstances, which might result in a negative BO value.
In this case, $1.00 is attributed to BO for BO ≤ 0 to avoid
problems with the selection operator. Taking BO as the basis
to evaluate the chromosome, the Ff itness that evaluates the
picking process is presented by Eq. 13.

Ff itness =

⎧
⎪⎪⎨

⎪⎪⎩

BO − ∑Nbits
j=1 (Pesi j + Pewi j + Pedi j )

if BO − ∑Nbits
j=1 (Pesi j + Pewi j + Pedi j )

< 1 → Ff itness = $1.00

(13)

According to the Ff itness , the fittest individuals are those
that obtain a higher BO after the penalties are applied. Please
note that the penalties are corrective and have the objective
of helping the Npop to evolve, since the fittest individuals
have more changes of transferring their genetic material to
the Nger + 1. In short, the value of the Ff itness , presup-
posing that it may vary from 1 to the BO, quantitatively
determines whether such individual satisfies, or not, the con-
ditions imposed by the problem and contributes to make the
maximization of the billing the optimized result of the OBS.
After the calculation of Ff itness the reparation process of
individuals starts which, based in the order number, attributes
0 to the invalid bits of a chromosome. Therefore, the bits =
1 which refer to the picking process when xi = 0 and of

wi when C
wi jNo
α will be substituted by bits = 0. In concomi-

tance the respective xi will be updated going back to the
quantity of items attributed improperly to the stock. Table 3
illustrates the decryption of four chromosomes and so to a
better visualization the following colors are used to differ-
entiate the Nbits ; i) bits in color black refer to attribution of
qi j bits in color green to wi j and; ii) the color red indicates
the bits penalized by attributions of qi j and the color blue
the bits penalized by the attributions of wi j . In the sequence,
Fig. 5 shows the procedures of penalties applications and
calculus of Ff itness and Fig. 6 the reparation process of
individuals.

Selection operator

The selection method adopted is the fitness proportionate
selection, also known as the roulette wheel selection with
elitism, proposed by Holland (1975), where pi is the proba-
bility of selection of each individual i equivalent to a certain
slice of the roulettewheel. If the evaluation of Npop is propor-
tional to the evaluation of Ff itness , the solutions obtaining a
higher Ff itness as compared to the others have a higher pi , or
have more chances of being chosen as a solution for the OBS
for they represent larger slices of the roulette wheel. With
regard to the quantity of Npop selected to participate in the
crossover and mutation, we have fixed it at 50% (Npop/2)
of the Npop. Therefore, if the quotient of Npop/2 is an odd
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number, then Npop/2+1 individuals are selected to form the
crossover pairs to be ordered by the Ff itness . Given the Npop

and the Ff itness , the pi is defined by Eq. 14 and Fig. 7 illus-
trates the roulette wheel graphic with elitism to the example
of Table 3.

pi = Ff itnessi
∑Npop

i=1 Ff itnessi

(14)

In the referred selection method only the best individual
of each Nger , which in the example of Fig. 7 is C3, will be
transferred integrally to become the first individual of Nger +
1. Therefore, the risk of this individual not being selected
or even destroyed by crossover and mutation is eliminated.
However, after the spin, the roulette will stop in an random
point determined by the chromosome to be selected, and this
process is repeated as many times as necessary until you
have the sufficient number of pairs to the application of a
new crossover.

Crossover and mutation operators

The crossover operator of a point (Holland 1975), where the
cut-off position is set at 50% of the Nbits , executes the breed-
ing between the pairs of all of the chromosomes selected as
parents. Themutation operator is applied to all of the children
resulting from the crossover using the random bit exchange
technique in which the user has the option of informing the
pmwanted, which may range from 0 to 100%, according to
the need for evolution in the solutions. Figure 8 illustrates the
crossover diagram and mutation to the formation of chromo-
somes children of Nger + 1. Take notice that the example
on Fig. 8 that C2 and C4 will become C2 and C3 and will
join to the chromosome C1 (elitism) in Nger + 1, while C4

will be generated by the technique of the new population
generation.

Generation of the new population

The elitist selection introduced by De Jong (1988) is applied
to the Npop. In this case, only the fittest individual of each
cycle will be fully transferred to Nger + 1, which eliminates
the risk of such individuals not be selected or even destroyed
by the crossover and mutation operators. Thus, it is guaran-
teed that the BO obtained at each Nger is at least equal or
higher than the BO of Nger − 1. However, it is important
to highlight that, as defined in “Fitness function (Ff itness)”
section, the Ff itness of the fittest individual may diminish
from Nger to Nger + 1 because of the application of a Ped .
Therefore, in order to generate the new Npop it has to be
considered that the Npop is always fixed (please refer to
“Fitness function (Ff itness)” section) and that the roulette
wheel selects 50 or 50% +1 chromosomes (please refer to Ta

bl
e
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Fig. 9 Graphs on the convergence of the first experimentation—Npop = 10 , with a 5% mutation rate

“Selection operator” section). Therefore, if only the fittest
individual of the current Npop is transferred to Nger + 1,
then Npop − (Npop/2+1) ou Npop − (Npop/2+2) is estab-
lished as the number of individuals that complete the new
Npop generated by the same method used in “Initial popula-
tion generation” section and repeated in all of the cycles for
each execution of the GA.

Stopping criterion

The GA proposed allows users to specify the Nger wanted to
terminate the evolution process and the stopping criterion of
the GA. In this case, the fact of reaching the maximum value
of the fitness function (MB) is also adopted as a stopping
criterion. Regardless of the number of cycles, if the chromo-
some generated satisfies the objective required findingMB in
any one Nger , the execution is terminated, otherwise the GA
performs all of the cycles until reaching the Nger specified
by the user.

Experimentation and discussion of the results

This section demonstrates the experiments of the GA pro-
posed and the discussion of the results obtained for the
problem shown in Table 1. The performance assessments
were performed in relation to the average results obtained
in the various experiments and per set of results reached. In

addition to evaluating the level of evolution during all of the
Nger , we also evaluated the number of times in which the GA
reached theMB.We performed 4 experiments where the ini-
tial Npop ranged from 10 to 30 individuals, according to the
performance and convergence of the GA. All of the exper-
iments simulated 50 Nger at each execution, employing a
mutation rate ranging from 5 to 10% where the convergence
graphs referring to the Ff itness of the fittest individual of
each Nger are demonstrated. Table 4 presents the results of
the first experiment and Fig. 9 shows the level of convergence
of the GA.

As illustrated in Fig. 9, the number of individuals used is
sufficient for GA convergence. The results of this study show
that up to a certain Nger number the GA reached certain
levels of evolution. However, results do not improve after
a certain point. Logo, Hence, because of elitism, the best
solution of each Nger repeats itself in Nger + 1. Please note
that after a certain point, there are situations of regression in
the level of evolution of the billing due to the action of the
Ped , which punishes even the fittest individuals that violate
the conditions of the d imposed by the OBS. Therefore, the
occurrence of such events is common, which can also be
observed in other graphs of all of the experimentations. In the
next experiment, shown in Table 5 and illustrated in Fig. 10,
16 individuals are used at an 8% mutation rate.

In this second set of simulations, we noted that perfor-
mance was improved with a small increase in the number of
individuals. Figure 10 shows that the GA found the MB at
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28 the first and fourth executions. However, the average result

obtained is not satisfactory since the desirable result was
achieved in only 50% of the executions and there is a risk
the GA will be restricted to a local solution for other execu-
tions. Obviously, the more the Npop is increased the greater
the probability of finding better results. Nevertheless, there
is also a considerable increase in computational time that
tripled in average reaching 09:28min. Twenty individuals
and a 10% mutation rate were used in the third experiment
as shown by Table 6 and Fig. 11.

In the third experiment, we can see that with an increase
in the Npop the level of evolution of the offspring increases
considerably and theGAfinds theMB in all of the executions.
Such a scenario is clearly reflected in the graphs of Fig. 11
showing that despite the contribution of mutation genetic
variety is essentially obtained by population increase, which
makes it easier for the GA to find better solutions. It is impor-
tant to explain that, in spite of the fact that the GA foundMB
at generation number 35 on the third execution, it does not
respect the date criterion. Hence, the result is not considered
and the process continues up to generation 41 where an indi-
vidual that is fit for the OBS is originated. Thirty individuals
and a 10% mutation rate were used in the fourth experiment
presented by Table 7 and Fig. 12.

Upon analysing the results of the simulations for 30 indi-
viduals (Fig. 12), we found that the frequency of convergence
toMBwas quick, 10 Nger , within 06:07 min in average. This
means that the size of the Npop was sufficient to produce a
diversity level capable of representing all of the search space
of the problem, i.e., it is from such environment onward that
the best performance of the GA is verified. The combined
evaluation of the results achieved provides an overall under-
standing of the behaviour of the GA with respect to the ideal
size of the Npop and the complexity of the analyses. It is
unquestionable that, in OBS situation where the managers
need to make decisions quickly, the reaching the maximum
value of the Ff itness depends on the ideal size of the Npop.
Therefore, if the size of the Npop is small the crossover and
mutation effects are also small and there will not be genetic
variety for the evolution of the GA, i.e., the higher the POP
and the complexity of the parameters the greater the number
of individuals needed for the GA to work well.

Final considerations

This article presented the formulation of a GA to optimize
a specific OBS problem. The GA was applied to a set of
data represented by FP and POP and was configured to
satisfy predefined decision-making restrictions and parame-
ters. In the experiments conducted, both the results obtained
and the computational processing time were satisfactory and
coherent with regard to the scope of the research. As demon-
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Fig. 10 Graphs on the convergence of the second experimentation—Npop = 16, with an 8% mutation rate

Table 6 Statistical results of the third experimentation

Sequence of
executions

Population
(Npop)

Generations
(Nger )

Individuals
selected

Individuals
transferred

Total
crossovers

Rate of
mutation (%)

Total
mutations

Npop fittest
individual

Fittest
individual

Billing
(F f itness )

Time
minutes

1 20 29 290 28 145 10 580 29 10 41,132.93 00:02:19

2 20 45 450 44 225 10 900 45 13 41,132.93 00:04:16

3 20 41 410 40 205 10 820 41 10 41,132.93 00:03:13

4 20 34 340 33 170 10 680 34 20 41,132.93 00:03:12

Average 20 37 373 36 186 10 745 37 13 41,132.93 00:03:15

Fig. 11 Graphs on the convergence of the third experimentation—Npop = 20 , with a 10% mutation rate
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Table 7 Statistical results of the fourth experimentation

Sequence of
executions

Population
(Npop)

Generations
(Nger )

Individuals
selected

Individuals
transferred

Total
crossovers

Rate of
mutation (%)

Total
mutations

Npop fittest
individual

Fittest
individual

Billing
(F f itness )

Time
minutes

1 30 6 96 5 48 10 192 6 8 41,132.93 00:07:54

2 30 7 112 6 56 10 224 7 26 41,132.93 00:05:34

3 30 12 192 11 96 10 384 12 24 41,132.93 00:07:18

4 30 13 208 12 104 10 416 13 12 41,132.93 00:03:40

Average 30 10 152 9 76 10 304 10 18 41,132.93 00:06:07

Fig. 12 Graphs on the convergence of the fourth experimentation—Npop = 30, with a 10% mutation rate

strated herein, theGAproposed has an optimization potential
capable of making the picking process faster and of maxi-
mizing billing. Based on the result obtained, the logistics
information flowbecomes quicker in identifyingwhich items
must be set aside for each client. The production area has
a general view of the FP as compared to the POP, which
provides more rapidity and accuracy to programming the
productive process. The cost variables of different depart-
ments associated to the planning and operating issues of the
OBS can be minimized. In short, the solution to the OBS
minimizes actual problems and reduces costs, besides pro-
viding flexibility conditions and adaptation to changes that,
in a certain manner, help achieve effectiveness in a series
of processes that involve time, planning, negotiating, and
decision-making. Despite the fact that other OBS algorithms
were not found for comparison purposes, we have reached
the conclusion that the GA proposed is a feasible option for
entities that wish to maximize billing and face the type of
problem addressed herein. Evidently, further studies on the

current topic may contribute with new methods for prob-
lems of such nature. A few suggestions for future research
include:

• Trying to increase the performance of the GA through
other parameters, operators or representations. In this
research, for example, we consider a change in muta-
tion rate ranging from 5 to 10%, but without considering
the changed rate of fitness value in each generation. We
recommend that in future research these issues should be
considered and suggest Yun and Gen (2003) and Lin and
Gen (2009) as papers references on parameter tuning by
Fuzzy logic controller;

• Conduct studieswith actual application to be able to com-
pare more effectively the existing processes with those
resulting from the application of the GA. Besides that, to
execute a bigger experimentations number and add sta-
tistical analysis to the experimental demonstration as, for
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example, an ANOVA (variance analysis) to demonstrate
the effectiveness of the GA;

• Assess the OBS with respect to the profit margin and
dynamic operating issues such as production lead time
and work-in-process, thus increasing the level of adapta-
tion in response to ever changing environments;

• Minimize the distance to be run when physically separat-
ing the products indicated by the picking process in large
warehouses.
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